Adenine (BioDeep_00000000118)
Secondary id: BioDeep_00000399873, BioDeep_00000860864
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C5H5N5 (135.054493)
中文名称: 腺嘌呤, 腺嘌呤盐酸盐水合物
谱图信息:
最多检出来源 Viridiplantae(plant) 0.14%
Last reviewed on 2024-06-29.
Cite this Page
Adenine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/adenine (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000000118). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=NC2=C(N1)C(=NC=N2)N
InChI: InChI=1S/C5H5N5/c6-4-3-5(9-1-7-3)10-2-8-4/h1-2H,(H3,6,7,8,9,10)
描述信息
Adenine is the parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. It has a role as a human metabolite, a Daphnia magna metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase and a member of 6-aminopurines. It derives from a hydride of a 9H-purine.
A purine base and a fundamental unit of adenine nucleotides.
Adenine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Adenine is a natural product found in Fritillaria cirrhosa, Annona purpurea, and other organisms with data available.
Adenine is a purine nucleobase with an amine group attached to the carbon at position 6. Adenine is the precursor for adenosine and deoxyadenosine nucleosides.
Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (A3372, A3373).
Adenine is a metabolite found in or produced by Saccharomyces cerevisiae.
A purine base and a fundamental unit of ADENINE NUCLEOTIDES.
See also: adenine; dextrose, unspecified form (component of) ... View More ...
Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (PMID: 17052198, 17520339).
Widespread throughout animal and plant tissue, purine components of DNA, RNA, and coenzymes. Vitamin
The parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6.
Adenine (/ˈædɪnɪn/) (symbol A or Ade) is a purine nucleobase. It is one of the four nucleobases in the nucleic acids of DNA, the other three being guanine (G), cytosine (C), and thymine (T). Adenine derivatives have various roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) and Coenzyme A. It also has functions in protein synthesis and as a chemical component of DNA and RNA.[2] The shape of adenine is complementary to either thymine in DNA or uracil in RNA.
The adjacent image shows pure adenine, as an independent molecule. When connected into DNA, a covalent bond is formed between deoxyribose sugar and the bottom left nitrogen (thereby removing the existing hydrogen atom). The remaining structure is called an adenine residue, as part of a larger molecule. Adenosine is adenine reacted with ribose, as used in RNA and ATP; Deoxyadenosine is adenine attached to deoxyribose, as used to form DNA.
Adenine forms several tautomers, compounds that can be rapidly interconverted and are often considered equivalent. However, in isolated conditions, i.e. in an inert gas matrix and in the gas phase, mainly the 9H-adenine tautomer is found.[3][4]
Purine metabolism involves the formation of adenine and guanine. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which in turn is synthesized from a pre-existing ribose phosphate through a complex pathway using atoms from the amino acids glycine, glutamine, and aspartic acid, as well as the coenzyme tetrahydrofolate.
Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].
Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].
Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].
同义名列表
123 个代谢物同义名
Adenine, Pharmaceutical Secondary Standard; Certified Reference Material; InChI=1/C5H5N5/c6-4-3-5(9-1-7-3)10-2-8-4/h1-2H,(H3,6,7,8,9,10; Adenine, United States Pharmacopeia (USP) Reference Standard; Adenine, European Pharmacopoeia (EP) Reference Standard; Adenine, BioReagent, plant cell culture tested, >=99\\%; Adenine, suitable for cell culture, BioReagent; 6H-Purin-6-imine, 1,9-dihydro-, (E)- (9CI); 6H-Purin-6-imine, 3,7-dihydro-, (Z)- (9CI); 6H-Purin-6-imine, 1,7-dihydro-, (Z)- (9CI); 6H-Purin-6-imine, 3,9-dihydro-, (Z)- (9CI); Adenine, Vetec(TM) reagent grade, >=99\\%; ADENOSINE IMPURITY A [EP IMPURITY]; (Z)-3,9-Dihydro-6H-purin-6-imine; 9H-Purine, 1,6-dihydro-6-imino-; 6,7-dihydro-3H-purin-6-imine; 1,9-Dihydro-6H-purin-6-imine; 9H-Purine,6-dihydro-6-imino-; Adenine, cell culture grade; 7H-Purin-6-amine, min. 95\\%; Adenine; 7H-purin-6-amine; 1,6-Dihydro-6-iminopurine; 3,6-Dihydro-6-iminopurine; WLN: T56 BM DN FN HNJ IZ; 6-Aminopurine;Vitamin B4; ADENINE (USP MONOGRAPH); 6-Aminopurine (Adenine); ADENINE [USP MONOGRAPH]; ADENINE [USP IMPURITY]; ADENINE (EP MONOGRAPH); 1H-Purin-6-amine (9CI); ADENINE [EP MONOGRAPH]; 3H-Purin-6-amine (9CI); ADENINE (USP IMPURITY); 7H-Purin-6-amine (9CI); 3H-Purin-6(7H)-imine; 1H-purin-6(9H)-imine; (S)-Norfluoxetine-d5; 9H-Purin-6-yl-amine; 1H-Purine, 6-amino-; 9H-purin-6-ylamine; 9H-Purin-6-amine #; 1H-Purine, 6-amino; 7H-purin-6-ylamine; 9H-Purin-6-yl-amin; 6-Amino-3H-purine; 6-Amino-1H-purine; 1H-Purine-6-amine; 6-Amino-7H-purine; Adenine (USP:JAN); 9H-Purine-6-amine; Adenine (JAN/USP); 6-Amino-9H-purine; Adenine [USP:JAN]; ADENINE (USP-RS); Spectrum4_001891; 9H-Purin-6-amine; ADENINE [WHO-DD]; 1H-Purin-6-amine; Purine, 6-amino-; 7H-Purin-6-amine; ADENINE [USP-RS]; Spectrum5_000542; Spectrum3_000616; Spectrum2_000583; ADENINE [MART.]; Pedatisectine B; ADENINE [VANDF]; Adenine, >=99\\%; ADENINE (MART.); UNII-JAC85A2161; 6-amino-Purine; ADENINE [INCI]; Tox21_111348_1; 6-amino purine; purin-6-amine; 6-Aminopurine; Adenine (8CI); Adenine [JAN]; DivK1c_006631; Oprea1_057274; KBio2_004154; 4, Vitamin B; Tox21_111348; adenine-ring; KBio2_001586; KBio1_001575; KBio3_001652; KBio2_002562; KBio2_007698; B 4, Vitamin; KBio3_003040; ADENINE [MI]; Tox21_302108; NCI60_000998; KBio2_006722; KBio2_005130; Adeninimine; CAS-73-24-5; Vitamin B 4; [3H]adenine; Leucon (TN); Adenine,(S); JAC85A2161; USAF CB-18; 3h-adenine; Adenine, 1; Vitamin B4; AI3-50679; Adenine; Leuco-4; Adenin; Leucon; 3kpv; 1jys; 1nli; 2p8n; 1wei; 2pqj; ADE; A; Adenine; Adenine; Adenine
数据库引用编号
45 个数据库交叉引用编号
- ChEBI: CHEBI:16708
- KEGG: C00147
- KEGGdrug: D00034
- PubChem: 190
- HMDB: HMDB0000034
- Metlin: METLIN85
- DrugBank: DB00173
- ChEMBL: CHEMBL226345
- Wikipedia: Adenine
- MeSH: Adenine
- ChemIDplus: 0000073245
- MetaCyc: ADENINE
- KNApSAcK: C00001490
- foodb: FDB012266
- chemspider: 185
- CAS: 73-24-5
- MoNA: KNA00567
- MoNA: PS003904
- MoNA: PS003902
- MoNA: PS003901
- MoNA: PS003907
- MoNA: KNA00443
- MoNA: KNA00157
- MoNA: KNA00444
- MoNA: PR100491
- MoNA: KNA00445
- MoNA: PS003903
- MoNA: PR100492
- MoNA: PR100018
- MoNA: PR100020
- MoNA: PS003908
- PMhub: MS000000261
- MetaboLights: MTBLC16708
- PDB-CCD: ADE
- 3DMET: B00041
- NIKKAJI: J5.257D
- RefMet: Adenine
- medchemexpress: HY-B0152
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-253
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-797
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-40
- PubChem: 3447
- KNApSAcK: 16708
- LOTUS: LTS0114351
- wikidata: Q15277
分类词条
相关代谢途径
Reactome(7)
BioCyc(23)
- nucleoside and nucleotide degradation (archaea)
- salvage pathways of purine and pyrimidine nucleotides
- purine and pyrimidine metabolism
- salvage pathways of purine nucleosides
- salvage pathways of adenine, hypoxanthine, and their nucleosides
- salvage pathways of purine nucleosides I
- cytokinins degradation
- superpathway of microbial D-galacturonate and D-glucuronate degradation
- methylphosphonate degradation I
- methylphosphonate degradation II
- glyphosate degradation III
- hopanoid biosynthesis (bacteria)
- (aminomethyl)phosphonate degradation
- purine ribonucleosides degradation
- superpathway of purine deoxyribonucleosides degradation
- drosopterin and aurodrosopterin biosynthesis
- adenine salvage
- guanosine nucleotides degradation III
- purine deoxyribonucleosides degradation I
- S-methyl-5'-thioadenosine degradation IV
- S-methyl-5'-thioadenosine degradation I
- L-methionine salvage cycle I (bacteria and plants)
- L-methionine salvage cycle II (plants)
PlantCyc(6)
代谢反应
1485 个相关的代谢反应过程信息。
Reactome(177)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
MTAD + Pi ⟶ Ade + MTRIBP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Methionine salvage pathway:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide metabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Nucleotide salvage:
Gua + R1P, dRibP ⟶ G, dG + Pi
- Purine salvage:
Gua + R1P, dRibP ⟶ G, dG + Pi
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depurination:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Cleavage of the damaged purine:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
BioCyc(342)
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation:
deoxyadenosine + phosphate ⟶ adenine + deoxyribose 1-phosphate
- purine deoxyribonucleosides degradation:
deoxyadenosine + phosphate ⟶ adenine + deoxyribose 1-phosphate
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2'-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2'-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- methionine salvage cycle III:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
dAdoMet + putrescine ⟶ S-methyl-5'-thioadenosine + H+ + spermidine
- L-methionine salvage cycle III:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle II (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- methionine salvage pathway:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
dAdoMet + putrescine ⟶ S-methyl-5'-thioadenosine + H+ + spermidine
- methionine salvage pathway:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-methylthioribose-1-phosphate + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ S-methyl-5-thio-D-ribose + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ S-methyl-5-thio-D-ribose + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ S-methyl-5-thio-D-ribose + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ S-methyl-5-thio-D-ribose + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ S-methyl-5-thio-D-ribose + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ S-methyl-5-thio-D-ribose + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ S-methyl-5-thio-D-ribose + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ S-methyl-5-thio-D-ribose + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ S-methyl-5-thio-D-ribose + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation IV:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- salvage pathways of purine nucleosides:
H2O + adenine ⟶ ammonia + hypoxanthine
- purine nucleosides salvage II (plant):
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribose + adenine
- purine nucleosides salvage II (plant):
H2O + adenosine ⟶ D-ribose + adenine
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine deoxyribonucleosides degradation:
adenine + deoxyribose 1-phosphate ⟶ deoxyadenosine + phosphate
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- superpathway of purine nucleotide salvage:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- 1,4-dihydroxy-6-naphthoate biosynthesis II:
3-[(1-carboxyvinyl)oxy]benzoate + H2O + SAM ⟶ 6-amino-6-deoxyfutalosine + H+ + hydrogencarbonate + met
- fluoroacetate and fluorothreonine biosynthesis:
SAM + fluoride ⟶ 5'-deoxy-5'-fluoroadenosine + met
- (aminomethyl)phosphonate degradation:
AMP + diphosphate ⟶ PRPP + adenine
- superpathway of demethylmenaquinol-6 biosynthesis II:
3-[(1-carboxyvinyl)oxy]benzoate + H2O + SAM ⟶ 6-amino-6-deoxyfutalosine + H+ + hydrogencarbonate + met
- autoinducer AI-2 biosynthesis I:
autoinducer 2 ⟶ (2R,4S)-2-methyl-2,4-dihydroxydihydrofuran-3-one
- autoinducer AI-2 biosynthesis II (Vibrio):
autoinducer 2 ⟶ (2S,4S)-2-methyl-2,4-dihydroxydihydrofuran-3-one
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribofuranose 5-phosphate + adenine
- adeninyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + adenine ⟶ H+ + adenine ribotide phosphate + nicotinate
- purine ribonucleosides degradation:
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
- nucleoside and nucleotide degradation (archaea):
UMP + phosphate ⟶ α-D-ribose 1,5-bisphosphate + uracil
- malonate decarboxylase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- citrate lyase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- superpathway of purine nucleotide salvage:
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
- adenine and adenosine salvage III:
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
- adenine salvage:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage V:
ATP + inosine ⟶ ADP + H+ + IMP
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- L-cysteine biosynthesis VI (from L-methionine):
S-ribosyl-L-homocysteine ⟶ L-homocysteine + autoinducer 2
- glyphosate degradation III:
AMP + diphosphate ⟶ PRPP + adenine
- salinosporamide A biosynthesis:
5'-chloro-5'-deoxyadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- queuosine biosynthesis:
a guanine34 in tRNA + preQ1 ⟶ a 7-aminomethyl-7-deazaguanosine34 in tRNA + guanine
- superpathway of menaquinol-8 biosynthesis III:
3-[(1-carboxyvinyl)oxy]benzoate + H2O + SAM ⟶ 6-amino-6-deoxyfutalosine + H+ + hydrogencarbonate + met
- methylphosphonate degradation I:
(methyl)phosphonate + ATP ⟶ α-D-ribose-1-(methyl)phosphonate-5-triphosphate + adenine
- methylphosphonate degradation II:
(methyl)phosphonate + ATP ⟶ α-D-ribose-1-(methyl)phosphonate-5-triphosphate + adenine
- hopanoid biosynthesis (bacteria):
SAM + methylcob(III)alamin + tetrahymanol ⟶ 2-methyltetrahymanol + 5'-deoxyadenosine + cob(III)alamin + met
- S-adenosyl-L-methionine cycle I:
S-ribosyl-L-homocysteine ⟶ L-homocysteine + autoinducer 2
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage V:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- (aminomethyl)phosphonate degradation:
(acetamidomethyl)phosphonate + ATP ⟶ α-D-ribose 1-(acetamidomethylphosphonate) 5-triphosphate + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- citrate lyase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- methylphosphonate degradation I:
(methyl)phosphonate + ATP ⟶ α-D-ribose-1-(methyl)phosphonate-5-triphosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribofuranose 5-phosphate + adenine
- adenine and adenosine salvage IV:
AMP + diphosphate ⟶ PRPP + adenine
- salvage pathways of adenine, hypoxanthine and their nucleosides:
AMP + diphosphate ⟶ PRPP + adenine
- superpathway of purine nucleosides salvage:
AMP + diphosphate ⟶ PRPP + adenine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- purine nucleosides salvage II (plant):
AMP + diphosphate ⟶ PRPP + adenine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- salvage pathways of purine nucleosides I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- autoinducer AI-2 biosynthesis II (Vibrio):
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage V:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- malonate decarboxylase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- citrate lyase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- L-cysteine biosynthesis VI (from L-methionine):
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribofuranose 5-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage IV:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage V:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- citrate lyase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- purine and pyrimidine metabolism:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- L-cysteine biosynthesis VI (from L-methionine):
S-ribosyl-L-homocysteine ⟶ L-homocysteine + autoinducer 2
- purine ribonucleosides degradation:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenine and adenosine salvage III:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- salinosporamide A biosynthesis:
5'-deoxy-5'-chloroadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- 1,4-dihydroxy-6-naphthoate biosynthesis II:
6-amino-6-deoxyfutalosine + H2O ⟶ adenine + dehypoxanthine futalosine
- superpathway of demethylmenaquinol-6 biosynthesis II:
6-amino-6-deoxyfutalosine + H2O ⟶ adenine + dehypoxanthine futalosine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- L-cysteine biosynthesis VI (from L-methionine):
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribose 5-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- citrate lyase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- adenine and adenosine salvage V:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage IV:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- citrate lyase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribose 5-phosphate + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage IV:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- adenine and adenosine salvage V:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- S-adenosyl-L-methionine cycle I:
S-ribosyl-L-homocysteine + adenine ⟶ S-adenosyl-L-homocysteine + H2O
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribose 5-phosphate + adenine
- adenine salvage:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribofuranose 5-phosphate + adenine
- purine ribonucleosides degradation:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adeninyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + adenine ⟶ H+ + adenine ribotide phosphate + nicotinate
- S-adenosyl-L-methionine cycle I:
S-ribosyl-L-homocysteine ⟶ L-homocysteine + autoinducer 2
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- L-cysteine biosynthesis VI (from L-methionine):
S-ribosyl-L-homocysteine ⟶ L-homocysteine + autoinducer 2
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage III:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenine salvage:
AMP + diphosphate ⟶ PRPP + adenine
- adeninyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + adenine ⟶ H+ + adenine ribotide phosphate + nicotinate
- adenine salvage:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribofuranose 5-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- salvage pathways of purine and pyrimidine nucleotides:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- adenine salvage:
AMP + diphosphate ⟶ PRPP + adenine
- purine and pyrimidine metabolism:
AMP + diphosphate ⟶ PRPP + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
S-adenosyl-L-homocysteine + H2O ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage V:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- citrate lyase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribofuranose 5-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- citrate lyase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribofuranose 5-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage V:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage IV:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- S-adenosyl-L-methionine cycle I:
S-ribosyl-L-homocysteine + adenine ⟶ S-adenosyl-L-homocysteine + H2O
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- autoinducer AI-2 biosynthesis I:
S-ribosyl-L-homocysteine + adenine ⟶ S-adenosyl-L-homocysteine + H2O
- purine and pyrimidine metabolism:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- autoinducer AI-2 biosynthesis II (Vibrio):
S-adenosyl-L-homocysteine + H2O ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- salinosporamide A biosynthesis:
5'-deoxy-5'-chloroadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- fluoroacetate and fluorothreonine biosynthesis:
5'-deoxy-5'-fluoroadenosine + phosphate ⟶ 5-fluoro-5-deoxy-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
S-adenosyl-L-homocysteine + H2O ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- S-adenosyl-L-methionine cycle I:
S-ribosyl-L-homocysteine + adenine ⟶ S-adenosyl-L-homocysteine + H2O
- 2'-(5'-phosphoribosyl)-3'-dephospho-CoA biosynthesis I (citrate lyase):
ATP + H+ + dephospho-CoA ⟶ 2'-(5-triphosphoribosyl)-3'-dephospho-CoA + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage IV:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- fluoroacetate and fluorothreonine biosynthesis:
5'-deoxy-5'-fluoroadenosine + phosphate ⟶ 5-fluoro-5-deoxy-D-ribose-1-phosphate + adenine
- autoinducer AI-2 biosynthesis I:
S-ribosyl-L-homocysteine + adenine ⟶ S-adenosyl-L-homocysteine + H2O
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribofuranose 5-phosphate + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenosine nucleotides degradation III:
AMP + H2O ⟶ D-ribofuranose 5-phosphate + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage III:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- citrate lyase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- citrate lyase activation:
3'-dephospho-CoA + ATP + H+ ⟶ 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine
- adenine and adenosine salvage I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine salvage:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- aminomethylphosphonate degradation:
AMP + diphosphate ⟶ PRPP + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- methylphosphonate degradation I:
ATP + methylphosphonate ⟶ α-D-ribose-1-methylphosphonate-5-triphosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- adenine salvage:
AMP + diphosphate ⟶ PRPP + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine salvage:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- adenine and adenosine salvage I:
AMP + diphosphate ⟶ PRPP + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosyl-L-methionine cycle I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- autoinducer AI-2 biosynthesis I:
H2O + SAH ⟶ S-ribosyl-L-homocysteine + adenine
WikiPathways(4)
- Purine metabolism and related disorders:
Adenine ⟶ AMP
- Purine metabolism:
Adenine ⟶ AMP
- Purine metabolism:
P1,P4-Bis(5'-xanthosyl) tetraphosphate ⟶ XTP
- T cell modulation in pancreatic cancer:
Adenine ⟶ Adenosine
Plant Reactome(228)
- Responses to stimuli: abiotic stimuli and stresses:
Al3+ + CIT ⟶ Al:citrate
- Gravitropism under normal or artificial gravity environments:
FAD + H+ + H2O + isopentenyladenine ⟶ 3-methyl-2-butenal + Adenine + FADH2(2-)
- Regulation of lemma joints development and leaf angle by cytokinin:
FAD + H+ + H2O + isopentenyladenine ⟶ 3-methyl-2-butenal + Adenine + FADH2(2-)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
INOH(5)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- Deoxy-adenosine + Orthophosphate = 2-Deoxy-D-ribose 1-phosphate + Adenine ( Purine nucleotides and Nucleosides metabolism ):
2-Deoxy-D-ribose 1-phosphate + Adenine ⟶ Deoxy-adenosine + Orthophosphate
- Adenosine + Orthophosphate = Adenine + D-Ribose 1-phosphate ( Purine nucleotides and Nucleosides metabolism ):
Adenosine + Orthophosphate ⟶ Adenine + D-Ribose 1-phosphate
- AMP + Pyrophosphate = Adenine + D-5-Phospho-ribosyl 1-diphosphate ( Purine nucleotides and Nucleosides metabolism ):
AMP + Pyrophosphate ⟶ Adenine + D-5-Phospho-ribosyl 1-diphosphate
- AMP + Pyrophosphate = Adenine + D-5-Phospho-ribosyl 1-diphosphate ( Purine nucleotides and Nucleosides metabolism ):
Adenine + D-5-Phospho-ribosyl 1-diphosphate ⟶ AMP + Pyrophosphate
PlantCyc(661)
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6--prenyladenine + FAD + H+ + H2O ⟶ 3-methylbut-2-enal + FADH2 + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- L-methionine salvage cycle I (bacteria and plants):
dAdoMet + putrescine ⟶ S-methyl-5'-thioadenosine + H+ + spermidine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle II (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation I:
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle I (bacteria and plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- L-methionine salvage cycle II (plants):
S-methyl-5'-thioadenosine + H2O ⟶ MTR + adenine
- S-methyl-5'-thioadenosine degradation II:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-MTR-1-P + adenine
- L-methionine salvage cycle II (plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- S-methyl-5'-thioadenosine degradation I:
ATP + MTR ⟶ 5-MTR-1-P + ADP + H+
- L-methionine salvage cycle I (bacteria and plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- L-methionine salvage cycle II (plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- L-methionine salvage cycle I (bacteria and plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- L-methionine salvage cycle II (plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- L-methionine salvage cycle I (bacteria and plants):
4-(methylsulfanyl)-2-oxobutanoate + gln ⟶ 2-oxoglutaramate + met
- S-methyl-5'-thioadenosine degradation I:
ATP + MTR ⟶ 5-MTR-1-P + ADP + H+
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- purine nucleosides salvage II (plant):
ATP + guanosine ⟶ ADP + GMP + H+
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine salvage:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- purine nucleosides salvage II (plant):
GMP + diphosphate ⟶ PRPP + guanine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- purine nucleosides salvage II (plant):
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- Organic Nitrogen Assimilation:
H2O + O2 + urate ⟶ CO2 + allantoin + hydrogen peroxide
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- purine nucleosides salvage II (plant):
H2O + adenosine ⟶ D-ribofuranose + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- fluoroacetate and fluorothreonine biosynthesis:
5'-deoxy-5'-fluoroadenosine + phosphate ⟶ 5-fluoro-5-deoxy-D-ribose 1-phosphate + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenine and adenosine salvage II:
H2O + adenosine ⟶ D-ribofuranose + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- adenine and adenosine salvage II:
AMP + diphosphate ⟶ PRPP + adenine
- Organic Nitrogen Assimilation:
NAD+ + glu ⟶ 2-oxoglutarate + H+ + NADH + gln
- adenine and adenosine salvage III:
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
COVID-19 Disease Map(2)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(66)
- Methylphosphonate Degradation I:
Adenosine triphosphate + Methylphosphonate ⟶ -D-Ribose 1-methylphosphonate 5-triphosphate + Adenine
- Cytokinins Degradation:
FAD + Hydrogen Ion + N6-dimethylallyladenine + Water ⟶ 3-Methyl-2-butenal + Adenine + FADH
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Deoxyribonucleosides Degradation:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- Citrate Lyase Activation:
Adenosine triphosphate + Dephospho-CoA + Hydrogen Ion ⟶ 2'-(5-Triphosphoribosyl)-3'-dephospho-CoA + Adenine
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- Quorum Sensing:
S-Adenosylhomocysteine + Water ⟶ Adenine + S-ribosyl-L-homocysteine
- S-Adenosyl-L-Methionine Biosynthesis:
5'-S-methyl-5'-thioadenosine + Water ⟶ 5-Methylthioribose + Adenine
- PreQ0 Metabolism:
S-Adenosylmethionine ⟶ Adenine + Hydrogen Ion + L-Methionine + epoxyqueuosine
- Adenine and Adenosine Salvage I:
Adenine + Ribose 1-phosphate ⟶ Adenosine + Phosphate
- Adenine and Adenosine Salvage II:
Adenine + Ribose 1-phosphate ⟶ Adenosine + Phosphate
- Adenine and Adenosine Salvage III:
Adenosine + Water ⟶ -D-ribofuranose + Adenine
- Purine Ribonucleosides Degradation:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- S-Adenosyl-L-Methionine Cycle:
S-Adenosylhomocysteine + Water ⟶ Adenine + S-ribosyl-L-homocysteine
- Spermidine Biosynthesis and Metabolism:
5'-S-methyl-5'-thioadenosine + Water ⟶ 5-Methylthioribose + Adenine
- Methionine Metabolism and Salvage:
2-Oxo-4-methylthiobutanoic acid + L-Phenylalanine ⟶ 2-Ketobutyric acid + L-Methionine
- S-Adenosyl-L-Methionine Biosynthesis:
5'-S-methyl-5'-thioadenosine + Water ⟶ 5-Methylthioribose + Adenine
- PreQ0 Metabolism:
S-Adenosylmethionine ⟶ Adenine + Hydrogen Ion + L-Methionine + epoxyqueuosine
- Adenine and Adenosine Salvage III:
Adenosine + Water ⟶ -D-ribofuranose + Adenine
PharmGKB(0)
50 个相关的物种来源信息
- 282720 - Achillea aspleniifolia: 10.1007/BF02908196
- 13329 - Achillea millefolium: 10.1007/BF02908196
- 282770 - Achillea virescens: 10.1007/BF02908196
- 3625 - Actinidia chinensis: 10.1007/S10600-010-9599-0
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 165353 - Angelica sinensis:
- 1123437 - Annona purpurea: 10.1021/NP9800046
- 54796 - Argemone mexicana: 10.1515/ZNC-2003-7-813
- 158539 - Aristolochia cucurbitifolia: 10.1248/CPB.48.1006
- 158550 - Aristolochia kaempferi: 10.1248/BPB.23.1216
- 7091 - Bombyx mori: 10.1016/J.BBAGRM.2018.07.013
- 3708 - Brassica napus: 10.3389/FNUT.2022.822033
- 577015 - Bridelia balansae: 10.1002/HLCA.200390198
- 3055 - Chlamydomonas reinhardtii: 10.1074/JBC.M110.122812
- 3827 - Cicer arietinum: 10.1007/BF02038949
- 71694 - Coprinopsis atramentaria: 10.1515/BCHM2.1960.319.1.17
- 35525 - Daphnia magna: 10.1016/J.ENVINT.2009.12.006
- 16070 - Disporopsis: 10.1016/J.PHYTOCHEM.2006.06.021
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 265763 - Eleutherococcus giraldii: 10.1016/J.BSE.2012.02.004
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 108544 - Fritillaria cirrhosa: 10.1080/00032719.2011.551856
- 3847 - Glycine max: 10.4327/JSNFS.38.129
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 51240 - Juglans regia: 10.1016/S0031-9422(03)00333-9
- 681275 - Litoria verreauxii: 10.1038/SDATA.2018.33
- 159736 - Macrobrachium nipponense: 10.3389/FPHYS.2018.00076
- 3498 - Morus alba L.: -
- 2096 - Mycoplasma gallisepticum: 10.1128/MSYSTEMS.00055-17
- 72228 - Ophiocordyceps sinensis: 10.21767/2172-0479.100132
- 4054 - Panax ginseng: 10.1248/YAKUSHI1947.98.8_1132
- 1392133 - Pedicularis artselaeri: 10.1080/10286029808039851
- 128687 - Phoebe formosana: 10.1002/JCCS.199900034
- 197796 - Plantago asiatica L.: -
- 411227 - Plantago depressa Willd.: -
- 71910 - Pleurocybella porrigens: 10.1248/CPB.54.1213
- 5403 - Russula cyanoxantha: 10.1007/S11745-001-0704-X
- 28901 - Salmonella enterica:
- 4896 - Schizosaccharomyces pombe: 10.1039/C4MB00346B
- 53923 - Senna alata: 10.1248/BPB.26.1361
- 285508 - Streptomyces piomogenus:
- 1142 - Synechocystis: 10.1104/PP.108.129403
- 3641 - Theobroma cacao: 10.1080/01483918308067014
- 5691 - Trypanosoma brucei:
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 94328 - Zingiber Officinale Roscoe: -
- 33090 - 板蓝根: -
- 33090 - 生姜: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Donghao Li, Juan Du, Min Gao, Chongsheng He. Identification of AtALKBH1A and AtALKBH1D as DNA N6-adenine demethylases in Arabidopsis thaliana.
Plant science : an international journal of experimental plant biology.
2024 May; 342(?):112055. doi:
10.1016/j.plantsci.2024.112055
. [PMID: 38432357] - Lucas F F Albuquerque, Fernanda V Lins, Elizabete C I Bispo, Ellyêssa N Borges, Mateus T Silva, Taís Gratieri, Marcílio Cunha-Filho, Antonio Alonso, Juliana L Carvalho, Felipe Saldanha-Araujo, Guilherme M Gelfuso. Ibrutinib topical delivery for melanoma treatment: The effect of nanostructured lipid carriers' composition on the controlled drug skin deposition.
Colloids and surfaces. B, Biointerfaces.
2024 May; 237(?):113875. doi:
10.1016/j.colsurfb.2024.113875
. [PMID: 38547795] - Sichun Xiang, Rongbin Shen, Jingjing Xiang, Ni Zhu, Jianyou Gu, Jianping Shen, Yu Zhang, Hangping Ge. A real-world pharmacovigilance study of FDA Adverse Event Reporting System (FAERS) events for Bruton's tyrosine kinase inhibitors (BTKis) single and its combination therapy.
Expert opinion on drug safety.
2024 May; 23(5):627-636. doi:
10.1080/14740338.2024.2327507
. [PMID: 38456691] - Zitong Qiu, Xingxing Yuan, Xinyue Wang, Songjiang Liu. Crosstalk between m6A modification and non-coding RNAs in HCC.
Cellular signalling.
2024 05; 117(?):111076. doi:
10.1016/j.cellsig.2024.111076
. [PMID: 38309550] - Yunfan Yang, Jiajun Ren, Jifeng Zhang, Henghe Shi, Junnan Wang, Youyou Yan. FTO ameliorates doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via P53-P21/Nrf2 activation in a HuR-dependent m6A manner.
Redox biology.
2024 Apr; 70(?):103067. doi:
10.1016/j.redox.2024.103067
. [PMID: 38316068] - Zengyao Tang, Xin Huang, Hanying Mei, Zeqi Zheng. Silencing of METTL3 suppressed ferroptosis of myocardial cells by m6A modification of SLC7A11 in a YTHDF2 manner.
Journal of bioenergetics and biomembranes.
2024 Apr; 56(2):149-157. doi:
10.1007/s10863-024-10006-1
. [PMID: 38319402] - Jinyun Li, Lu Fang, Miaocui Xi, Anyu Ni, Qiuhui Qian, Zejun Wang, Huili Wang, Jin Yan. Toxic effects of triclosan on hepatic and intestinal lipid accumulation in zebrafish via regulation of m6A-RNA methylation.
Aquatic toxicology (Amsterdam, Netherlands).
2024 Apr; 269(?):106884. doi:
10.1016/j.aquatox.2024.106884
. [PMID: 38458066] - Xi-Song Huo, Dan Lu, Da-Gui Chen, Min Ye, Xiao-Wei Wang, Fu-Sheng Shang. METTL3 Promotes Osteosarcoma Metastasis via an m6A-dependent Epigenetic Activity of CBX4.
Frontiers in bioscience (Landmark edition).
2024 Mar; 29(3):120. doi:
10.31083/j.fbl2903120
. [PMID: 38538251] - Fabio Miloro, András Kis, Zoltán Havelda, Ágnes Dalmadi. Barley AGO4 proteins show overlapping functionality with distinct small RNA-binding properties in heterologous complementation.
Plant cell reports.
2024 Mar; 43(4):96. doi:
10.1007/s00299-024-03177-z
. [PMID: 38480545] - Yanhai Gong, Qintao Wang, Li Wei, Wensi Liang, Lianhong Wang, Nana Lv, Xuefeng Du, Jiashun Zhang, Chen Shen, Yi Xin, Luyang Sun, Jian Xu. Genome-wide adenine N6-methylation map reveals epigenomic regulation of lipid accumulation in Nannochloropsis.
Plant communications.
2024 Mar; 5(3):100773. doi:
10.1016/j.xplc.2023.100773
. [PMID: 38007614] - Xuebin Shen, Mengting Chen, Jian Zhang, Yifan Lin, Xinyue Gao, Jionghong Tu, Kunqi Chen, An Zhu, Shanghua Xu. Unveiling the Impact of ApoF Deficiency on Liver and Lipid Metabolism: Insights from Transcriptome-Wide m6A Methylome Analysis in Mice.
Genes.
2024 Mar; 15(3):. doi:
10.3390/genes15030347
. [PMID: 38540406] - Jen-Yu Hsu, Hsin-Yun Sun, Ling-Ya Chen, Sui-Yuan Chang, Yu-Chung Chuang, Yu-Shan Huang, Yi-Ching Su, Wen-Chun Liu, Chien-Ching Hung. Weight and metabolic changes among virally suppressed people with HIV who switched to co-formulated bictegravir/emtricitabine/tenofovir alafenamide.
Journal of global antimicrobial resistance.
2024 Mar; 36(?):426-435. doi:
10.1016/j.jgar.2023.10.012
. [PMID: 37923129] - Ji Huang, Cong Cheng, Kangxin Li, Chunping Zhu, Youshun Liu. Effectiveness and Safety of Tenofovir Alafenamide Fumarate in the Prevention of Perinatal Hepatitis B Transmission: A Meta-Analysis.
Digestive diseases and sciences.
2024 Mar; 69(3):978-988. doi:
10.1007/s10620-023-08258-9
. [PMID: 38341392] - Dating Zhong, Hong Pan, Kai Li, Ying Zhou, Feiyun Zhao, Lu Ye, Shuting Ruan, Qi Deng, Jieting Xu, Yuming Lu. Targeted A-to-T and A-to-C base replacement in maize using an optimized adenine base editor.
Plant biotechnology journal.
2024 Mar; 22(3):541-543. doi:
10.1111/pbi.14256
. [PMID: 38102813] - Zeyu Liu, Chuanqing Jing, Wei Zhang. METTL3-mediated m6A modification enhances ZDHHC16 expression in nonsmall- cell lung cancer patients, attenuating ferroptosis by suppressing CREB ubiquitination.
Cellular and molecular biology (Noisy-le-Grand, France).
2024 Feb; 70(2):30-37. doi:
10.14715/cmb/2024.70.2.5
. [PMID: 38430044] - Keun Pyo Lee, Kaiwei Liu, Eun Yu Kim, Laura Medina-Puche, Haihong Dong, Minghui Di, Rahul Mohan Singh, Mengping Li, Shan Qi, Zhuoling Meng, Jungnam Cho, Heng Zhang, Rosa Lozano-Duran, Chanhong Kim. The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid-dependent stress responses in Arabidopsis.
The Plant cell.
2024 Feb; 36(3):746-763. doi:
10.1093/plcell/koad300
. [PMID: 38041863] - Wei Bo, Ning Yu, Xiaokai Wang, Chun Wang, Chunying Liu. Lactate promoted cisplatin resistance in NSCLC by modulating the m6A modification-mediated FOXO3/MAGI1-IT1/miR-664b-3p/IL-6R axis.
Neoplasia (New York, N.Y.).
2024 Feb; 48(?):100960. doi:
10.1016/j.neo.2023.100960
. [PMID: 38184887] - Yiran Chen, Yanwei Xiang, Xiao Miao, Le Kuai, Xiaojie Ding, Tian Ma, Bin Li, Bin Fan. METTL14 promotes IL-6-induced viability, glycolysis and inflammation in HaCaT cells via the m6A modification of TRIM27.
Journal of cellular and molecular medicine.
2024 Feb; 28(3):e18085. doi:
10.1111/jcmm.18085
. [PMID: 38146129] - Da Guo, Jiayi Liu, Shuang Li, Peng Xu. Analysis of m6A regulators related immune characteristics in ankylosing spondylitis by integrated bioinformatics and computational strategies.
Scientific reports.
2024 02; 14(1):2724. doi:
10.1038/s41598-024-53184-z
. [PMID: 38302672] - Xing Tao, Gang Wang, Wudi Wei, Jinming Su, Xiu Chen, Minjuan Shi, Yinlu Liao, Tongxue Qin, Yuting Wu, Beibei Lu, Hao Liang, Li Ye, Junjun Jiang. A bibliometric analysis of m6A methylation in viral infection from 2000 to 2022.
Virology journal.
2024 01; 21(1):20. doi:
10.1186/s12985-024-02294-1
. [PMID: 38238848] - A A Zenchenko, E M Savelieva, M S Drenichev, G A Romanov, V E Oslovsky. N6-(5-Phenylpentan-1-yl)adenine-A New Non-competitive Receptor-Specific Anti-cytokinin.
Doklady. Biochemistry and biophysics.
2024 Jan; ?(?):. doi:
10.1134/s1607672923700679
. [PMID: 38189887] - Ying-Chih Chuang, Nicholas W Haas, Robert Pepin, Megan G Behringer, Yasuhiro Oda, Breah LaSarre, Caroline S Harwood, James B McKinlay. Bacterial adenine cross-feeding stems from a purine salvage bottleneck.
The ISME journal.
2024 Jan; 18(1):. doi:
10.1093/ismejo/wrae034
. [PMID: 38452196] - Pin-Nan Cheng, I-Cher Feng, Jyh-Jou Chen, Hsing-Tao Kuo, Pei-Lun Lee, Ming-Lung Yu, Yen-Cheng Chiu, Hung-Chih Chiu, Shih-Chieh Chien, Pei-Jer Chen, Chun-Jen Liu. Body weight increase and metabolic derangements after tenofovir disoproxil fumarate switch to tenofovir alafenamide in patients with chronic hepatitis B.
Alimentary pharmacology & therapeutics.
2024 Jan; 59(2):230-238. doi:
10.1111/apt.17765
. [PMID: 37845815] - Hyeyeon Hong, Won-Mook Choi, Danbi Lee, Ju Hyun Shim, Kang Mo Kim, Young-Suk Lim, Han Chu Lee, Jonggi Choi. Cardiovascular risk in chronic hepatitis B patients treated with tenofovir disoproxil fumarate or tenofovir alafenamide.
Clinical and molecular hepatology.
2024 Jan; 30(1):49-63. doi:
10.3350/cmh.2023.0328
. [PMID: 37981763] - Santhosh Sadayan, Vijayashree Raghavan, Jones Eben Raj Thomson, Abarajitha Shankaranarayanan, Senthil Anbumani, Manickam Subramanian. Boerhavia diffusa attenuates podocyte injury in rats with adenine induced chronic kidney disease by enhancing nephrin expression.
Pakistan journal of pharmaceutical sciences.
2024 Jan; 37(1):155-161. doi:
"
. [PMID: 38741412] - Ju Zhang, Xiaojun Shi, Jing Wang, Jiaping Qi, Yixuan Li, Huan Jiang, Qiong Sun, Qinchen Gu, Chen Li, Zhenhua Ying. Adefovir-induced hypophosphatemic osteochondrosis mimicks ankylosing spondylitis.
International journal of rheumatic diseases.
2024 Jan; 27(1):e15040. doi:
10.1111/1756-185x.15040
. [PMID: 38287538] - Jingqian Zhao, Chenyu Zhao, Tianrong Xun, Xiaokang Wang, Sui Wei, Chunxiao Ye, Mimi Zhang, Dan Guo, Xixiao Yang. Huang Gan Formula Alleviates Systemic Inflammation and Uremia in Adenine-Induced Chronic Kidney Disease Rats May Associate with Modification of Gut Microbiota and Colonic Microenvironment.
Drug design, development and therapy.
2024; 18(?):13-28. doi:
10.2147/dddt.s421446
. [PMID: 38205394] - Scott K Fung, Calvin Q Pan, Grace Lai-Hung Wong, Wai-Kay Seto, Sang Hoon Ahn, Chi-Yi Chen, Hie-Won L Hann, Maciej S Jablkowski, Yoon Jun Kim, Cihan Yurdaydin, Cheng-Yuan Peng, Tuan Nguyen, Hiroshi Yatsuhashi, John F Flaherty, Leland J Yee, Frida Abramov, Hongyuan Wang, Dzhamal Abdurakhmanov, Young-Suk Lim, Maria Buti. Atherosclerotic cardiovascular disease risk profile of patients with chronic hepatitis B treated with tenofovir alafenamide or tenofovir disoproxil fumarate for 96 weeks.
Alimentary pharmacology & therapeutics.
2024 Jan; 59(2):217-229. doi:
10.1111/apt.17764
. [PMID: 37905449] - Xianghao Lin, Xiaojuan Zou, Baifei Hu, Dongyun Sheng, Tianxiang Zhu, Mingzhu Yin, Hui Xia, Haiming Hu, Hongtao Liu. Bi Xie Fen Qing Yin decoction alleviates potassium oxonate and adenine induced-hyperuricemic nephropathy in mice by modulating gut microbiota and intestinal metabolites.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 Jan; 170(?):116022. doi:
10.1016/j.biopha.2023.116022
. [PMID: 38147734] - Liu Xiao-Jing, Xing Bao, Wang Meng-Yu, Li Xiao-Man, Wang Xu-Jing, Wang Zhi-Xing. Transcriptional and proteomic analysis.
GM crops & food.
2023 Dec; 14(1):1-16. doi:
10.1080/21645698.2023.2229927
. [PMID: 37387261] - Jiang Xiao, Guiju Gao, Yi Ding, Jialu Li, Chengyu Gao, Qiuhua Xu, Liang Wu, Hongyuan Liang, Liang Ni, Fang Wang, Yujiao Duan, Di Yang, Hongxin Zhao. Reasons, safety and efficacy analysis for conversion of HAART to TAF/FTC/BIC among HIV-infected patients.
Chinese medical journal.
2023 Dec; 136(24):2931-2937. doi:
10.1097/cm9.0000000000002939
. [PMID: 38032036] - Lin Gan, Xiaoxin Xie, Yanhua Fu, Yebing Song, Chunli Song, Tingting Ren, Hai Long. Efficacy and safety of bictegravir/emtricitabine/tenofovir alafenamide fumarate for adult patients with human immunodeficiency virus-1 in China: a retrospective real-world cohort study.
Expert review of anti-infective therapy.
2023 Dec; ?(?):1-7. doi:
10.1080/14787210.2023.2292544
. [PMID: 38058002] - Wen-Ting Peng, Chuan Jiang, Fei-Lan Yang, Nian-Qi Zhou, Ke-Yu Chen, Jin-Qing Liu, Shi-Fang Peng, Lei Fu. Tenofovir amibufenamide vs tenofovir alafenamide for treating chronic hepatitis B: A real-world study.
World journal of gastroenterology.
2023 Nov; 29(44):5907-5918. doi:
10.3748/wjg.v29.i44.5907
. [PMID: 38111506] - Dingbo Zhang, Jens Boch. Development of TALE-adenine base editors in plants.
Plant biotechnology journal.
2023 Nov; ?(?):. doi:
10.1111/pbi.14246
. [PMID: 37997697] - Xuemei Wu, Bin Ren, Lang Liu, Shengqun Qiu, Xin'ge Li, Peijing Li, Fang Yan, Honghui Lin, Xueping Zhou, Dawei Zhang, Huanbin Zhou. Adenine base editor incorporating the N-methylpurine DNA glycosylase MPGv3 enables efficient A-to-K base editing in rice.
Plant communications.
2023 Nov; 4(6):100668. doi:
10.1016/j.xplc.2023.100668
. [PMID: 37528583] - Chenxiang Pan, Jiali Lin, Xiaoxiao Dai, Lili Jiao, Jinsha Liu, Aidi Lin. An m1A/m6A/m5C-associated long non-coding RNA signature: Prognostic and immunotherapeutic insights into cervical cancer.
The journal of gene medicine.
2023 Nov; ?(?):e3618. doi:
10.1002/jgm.3618
. [PMID: 37923390] - Dominique L Brooks, Madelynn N Whittaker, Hooda Said, Garima Dwivedi, Ping Qu, Kiran Musunuru, Rebecca C Ahrens-Nicklas, Mohamad-Gabriel Alameh, Xiao Wang. A base editing strategy using mRNA-LNPs for in vivo correction of the most frequent phenylketonuria variant.
HGG advances.
2023 Oct; ?(?):100253. doi:
10.1016/j.xhgg.2023.100253
. [PMID: 37922902] - Raul Sanchez-Muñoz. To me, or not to me: Effects of mRNA adenine methylation on biotic stress responses.
The Plant cell.
2023 Oct; 35(11):3924-3925. doi:
10.1093/plcell/koad226
. [PMID: 37606234] - Jie Zhang, Qi Peng, Chengchuan Ma, Jiaxin Wang, Chunfu Xiao, Ting Li, Xiaoge Liu, Liankui Zhou, Xinwei Xu, Wei-Zhen Zhou, Wanqiu Ding, Ni A An, Li Zhang, Ying Liu, Chuan-Yun Li. 6mA-Sniper: Quantifying 6mA sites in eukaryotes at single-nucleotide resolution.
Science advances.
2023 10; 9(42):eadh7912. doi:
10.1126/sciadv.adh7912
. [PMID: 37862411] - Y Q Duan, P Hu. [Research progress on the effect of tenofovir disoproxil fumarate on blood lipid profile].
Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology.
2023 Oct; 31(10):1103-1107. doi:
10.3760/cma.j.cn501113-20220407-00177
. [PMID: 38016781] - Muhammad Arslan Mahmood. Efficient A·T-to-C·G Base Editing via Adenine Transversion Editors.
Cellular reprogramming.
2023 10; 25(5):187-189. doi:
10.1089/cell.2023.0094
. [PMID: 37725011] - Bo Wang, Li-Na Yang, Le-Tian Yang, Yan Liang, Fan Guo, Ping Fu, Liang Ma. Fisetin ameliorates fibrotic kidney disease in mice via inhibiting ACSL4-mediated tubular ferroptosis.
Acta pharmacologica Sinica.
2023 Sep; ?(?):. doi:
10.1038/s41401-023-01156-w
. [PMID: 37696989] - Jingyuan Zhang, Tianming Qiu, Xiaofeng Yao, Xiance Sun. Insights into the role of N6-methyladenosine in ferroptosis.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Sep; 165(?):115192. doi:
10.1016/j.biopha.2023.115192
. [PMID: 37487443] - Ana Laura Calderón-Garcidueñas, Dulce María Barradas-Dermitz, Cirilo Nolasco-Hipolito, Noé López-Amador, Olaide Olawunmi Ajibola, Octavio Carvajal-Zarrabal. Functional and histological effects of Anthurium schlechtendalii Kunth extracts on adenine-induced kidney damage of adult Wistar rats.
Toxicon : official journal of the International Society on Toxinology.
2023 Sep; 233(?):107272. doi:
10.1016/j.toxicon.2023.107272
. [PMID: 37652102] - Sandra Rotea-Salvo, Víctor Giménez-Arufe, Alejandro Martínez-Pradeda, Carla Fernández-Oliveira, Álvaro Mena-de-Cea, Luis Margusino-Framiñán, Isabel Martín-Herranz, Purificación Cid-Silva. Lipid profile changes associated with antiretroviral therapies in a real-world cohort.
Farmacia hospitalaria : organo oficial de expresion cientifica de la Sociedad Espanola de Farmacia Hospitalaria.
2023 Sep; 47(5):T210-T217. doi:
10.1016/j.farma.2023.07.005
. [PMID: 37673703] - Simon Sretenovic, Yumi Green, Yuechao Wu, Yanhao Cheng, Tao Zhang, Joyce Van Eck, Yiping Qi. Genome- and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato.
Plant physiology.
2023 08; 193(1):291-303. doi:
10.1093/plphys/kiad347
. [PMID: 37315207] - Changhui Li, Haipiao Huang, Rui Wang, Chi Zhang, Shiying Huang, Jinru Wu, Pingli Mo, Huimin Yu, Shunmin Li, Jianping Chen. Jian-Pi-Yi-Shen formula restores iron metabolism from dysregulation in anemic rats with adenine-induced nephropathy.
Journal of ethnopharmacology.
2023 Aug; 312(?):116526. doi:
10.1016/j.jep.2023.116526
. [PMID: 37088234] - Yudan Zhao, Wanyue Yang, Xin Zhang, Chongning Lv, Jincai Lu. Icariin, the main prenylflavonoid of Epimedii Folium, ameliorated chronic kidney disease by modulating energy metabolism via AMPK activation.
Journal of ethnopharmacology.
2023 Aug; 312(?):116543. doi:
10.1016/j.jep.2023.116543
. [PMID: 37088241] - Eui Gwon Hwang, Eun-Ae Jung, Jeong-Ju Yoo, Sang Gyune Kim, Young Seok Kim. Risk of dyslipidemia in chronic hepatitis B patients taking tenofovir alafenamide: a systematic review and meta-analysis.
Hepatology international.
2023 Aug; 17(4):860-869. doi:
10.1007/s12072-023-10528-7
. [PMID: 37099248] - Julia Moellmann, Katja Krueger, Dickson W L Wong, Barbara M Klinkhammer, Eva M Buhl, Jonas Dehairs, Johan V Swinnen, Heidi Noels, Joachim Jankowski, Corinna Lebherz, Peter Boor, Nikolaus Marx, Michael Lehrke. 2,8-Dihydroxyadenine-induced nephropathy causes hexosylceramide accumulation with increased mTOR signaling, reduced levels of protective SirT3 expression and impaired renal mitochondrial function.
Biochimica et biophysica acta. Molecular basis of disease.
2023 Aug; ?(?):166825. doi:
10.1016/j.bbadis.2023.166825
. [PMID: 37536502] - Chen Zhang, Xue Zhong, Shaoya Li, Lei Yan, Jingying Li, Yubing He, Yong Lin, Yangjun Zhang, Lanqin Xia. Artificial evolution of OsEPSPS through an improved dual cytosine and adenine base editor generated a novel allele conferring rice glyphosate tolerance.
Journal of integrative plant biology.
2023 Jul; ?(?):. doi:
10.1111/jipb.13543
. [PMID: 37402157] - Sandra Rotea-Salvo, Víctor Giménez-Arufe, Alejandro Martínez-Pradeda, Carla Fernández-Oliveira, Álvaro Mena-de-Cea, Luis Margusino-Framiñán, Isabel Martín-Herranz, Purificación Cid-Silva. Lipid profile changes associated with antiretroviral therapies in a real-world cohort.
Farmacia hospitalaria : organo oficial de expresion cientifica de la Sociedad Espanola de Farmacia Hospitalaria.
2023 Jun; ?(?):. doi:
10.1016/j.farma.2023.04.007
. [PMID: 37349200] - Xi Huang, Liwen Gao, Ruyu Deng, Yu Peng, Shanshan Wu, Jiandong Lu, Xinhui Liu. Huangqi-Danshen decoction reshapes renal glucose metabolism profiles that delays chronic kidney disease progression.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Jun; 164(?):114989. doi:
10.1016/j.biopha.2023.114989
. [PMID: 37315436] - Yiyou Lin, Jiale Wei, Yehui Zhang, Junhao Huang, Sichen Wang, Qihan Luo, Hongxia Yu, Liting Ji, Xiaojie Zhou, Changyu Li. Shen Qi Wan attenuates renal interstitial fibrosis through upregulating AQP1.
Chinese journal of natural medicines.
2023 May; 21(5):359-370. doi:
10.1016/s1875-5364(23)60453-4
. [PMID: 37245874] - Alejandro D Bendala-Estrada, Mariana Diaz-Almiron, Carmen Busca, Rafael Mican, Julen Cadiñanos, Maria Luisa Montes, Luz Martin-Carbonero, Eulalia Valencia, Rocío Montejano, Ana Delgado-Hierro, Jose I Bernardino. Change in metabolic parameters after switching from triple regimens with tenofovir alafenamide to dolutegravir-based dual therapy. Bi-lipid study.
HIV medicine.
2023 05; 24(5):558-567. doi:
10.1111/hiv.13432
. [PMID: 36394195] - Anye Wamucho, Jason Unrine, John May, Olga Tsyusko. Global DNA Adenine Methylation in Caenorhabditis elegans after Multigenerational Exposure to Silver Nanoparticles and Silver Nitrate.
International journal of molecular sciences.
2023 Mar; 24(7):. doi:
10.3390/ijms24076168
. [PMID: 37047139] - Angelica Perna, Maria A Carleo, Silvia Mascolo, Alessandra Guida, Marcella Contieri, Carmine Sellitto, Eleonora Hay, Paolo De Blasiis, Angela Lucariello, Germano Guerra, Alfonso Baldi, Antonio De Luca, Paolo Maggi, Vincenzo Esposito. Adipocyte differentiation of 3T3-L1 cells under tenofovir alafenamide, tenofovir disoproxil fumarate, and integrase strand transfer inhibitors selective challenge: an in-vitro model.
AIDS (London, England).
2023 03; 37(4):561-570. doi:
10.1097/qad.0000000000003455
. [PMID: 36504092] - Anchalee Avihingsanon, Ploenchan Chetchotisakd, Sasisopin Kiertiburanakul, Winai Ratanasuwan, Krittaecho Siripassorn, Khuanchai Supparatpinyo, Hal Martin, Hui Wang, TinHung Wong, Hsiu Yin Wang. Efficacy and safety of switching to bictegravir, emtricitabine, and tenofovir alafenamide in virologically suppressed Asian adults living with HIV: A pooled analysis from three international phase III randomized trials.
HIV medicine.
2023 03; 24(3):290-300. doi:
10.1111/hiv.13386
. [PMID: 36912172] - Rahul Mahadev Shelake, Dibyajyoti Pramanik, Jae-Yean Kim. Improved Dual Base Editor Systems (iACBEs) for Simultaneous Conversion of Adenine and Cytosine in the Bacterium Escherichia coli.
mBio.
2023 02; 14(1):e0229622. doi:
10.1128/mbio.02296-22
. [PMID: 36625577] - Si-Yue Yu, Tiffany Carlaw, Tyler Thomson, Alexandra Birkenshaw, Genc Basha, Daniel Kurek, Cassie Huang, Jayesh Kulkarni, Lin-Hua Zhang, Colin Jd Ross. A Luciferase Reporter Mouse Model to Optimize In Vivo Gene Editing Validated by Lipid Nanoparticle-Mediated Delivery of Adenine Base Editors.
Molecular therapy : the journal of the American Society of Gene Therapy.
2023 Feb; ?(?):. doi:
10.1016/j.ymthe.2023.02.009
. [PMID: 36793209] - Javier Martínez-Sanz, Sergio Serrano-Villar, Alfonso Muriel, Lucio J García Fraile, Eva Orviz, Álvaro Mena de Cea, Antoni A Campins, Santiago Moreno. Metabolic-Related Outcomes After Switching From Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in Adults With Human Immunodeficiency Virus (HIV): A Multicenter Prospective Cohort Study.
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
2023 02; 76(3):e652-e660. doi:
10.1093/cid/ciac621
. [PMID: 35903910] - Yan-Ni Wang, Zhi-Hao Zhang, Hong-Jiao Liu, Zhi-Yuan Guo, Liang Zou, Ya-Mei Zhang, Ying-Yong Zhao. Integrative phosphatidylcholine metabolism through phospholipase A2 in rats with chronic kidney disease.
Acta pharmacologica Sinica.
2023 Feb; 44(2):393-405. doi:
10.1038/s41401-022-00947-x
. [PMID: 35922553] - Charalampos D Moschopoulos, Konstantinos Protopapas, Konstantinos Thomas, Dimitra Kavatha, Antonios Papadopoulos, Anastasia Antoniadou. Switching from Tenofovir Disoproxil to Tenofovir Alafenamide Fumarate: Impact on Cardiovascular Risk and Lipid Profile in People Living with HIV, an Observational Study.
AIDS research and human retroviruses.
2023 02; 39(2):68-75. doi:
10.1089/aid.2022.0086
. [PMID: 36401506] - Yao Zhang, Ying Chen, Wen Wen. Four types of adenine-related RNA modification writers -mediated molecular subtypes contribute to predicting clinical outcomes and treatment options in bladder cancer.
Frontiers in immunology.
2023; 14(?):1152806. doi:
10.3389/fimmu.2023.1152806
. [PMID: 37638051] - Na Chen, Hua Li, Jing Meng, Yi-Fei Yang, Bin Yang. [Anti-hyperuricemia activity and its mechanism of flavonoid extract from saffron floral bio-residues].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jan; 48(1):148-159. doi:
10.19540/j.cnki.cjcmm.20220928.401
. [PMID: 36725267] - Franco Maggiolo, Giuliano Rizzardini, Jean-Michel Molina, Federico Pulido, Stephane De Wit, Linos Vandekerckhove, Juan Berenguer, Michelle L D'Antoni, Christiana Blair, Susan K Chuck, David Piontkowsky, Hal Martin, Richard Haubrich, Ian R McNicholl, Joel Gallant. Bictegravir/emtricitabine/tenofovir alafenamide in older individuals with HIV: Results of a 96-week, phase 3b, open-label, switch trial in virologically suppressed people ≥65 years of age.
HIV medicine.
2023 01; 24(1):27-36. doi:
10.1111/hiv.13319
. [PMID: 35527425] - Qingfeng Niu, Siqun Wu, Hongtao Xie, Qi Wu, Ping Liu, Yaping Xu, Zhaobo Lang. Efficient A·T to G·C base conversions in dicots using adenine base editors expressed under the tomato EF1α promoter.
Plant biotechnology journal.
2023 01; 21(1):5-7. doi:
10.1111/pbi.13736
. [PMID: 34695289] - Mukaram Amatjan, Na Li, Pengke He, Boheng Zhang, Xianyan Mai, Qianle Jiang, Haochen Xie, Xiaoni Shao. A Novel Approach Based on Gut Microbiota Analysis and Network Pharmacology to Explain the Mechanisms of Action of Cichorium intybus L. Formula in the Improvement of Hyperuricemic Nephropathy in Rats.
Drug design, development and therapy.
2023; 17(?):107-128. doi:
10.2147/dddt.s389811
. [PMID: 36712944] - José M Alvarez, Will E Hinckley, Lauriebeth Leonelli, Matthew D Brooks, Gloria M Coruzzi. DamID-seq: A Genome-Wide DNA Methylation Method that Captures Both Transient and Stable TF-DNA Interactions in Plant Cells.
Methods in molecular biology (Clifton, N.J.).
2023; 2698(?):87-107. doi:
10.1007/978-1-0716-3354-0_7
. [PMID: 37682471] - Jing Wen Chen, Xiong Yue Cao, Xun Qi, Ji Ming Zhang. Effect of nucleos(t)ide analogues on blood lipid profiles in patients with chronic hepatitis B: A cross-sectional survey.
Medicine.
2022 Dec; 101(50):e31980. doi:
10.1097/md.0000000000031980
. [PMID: 36550809] - Meixia Wang, Fang Yan, Huanbin Zhou. Protocol for targeted modification of the rice genome using base editing.
STAR protocols.
2022 12; 3(4):101865. doi:
10.1016/j.xpro.2022.101865
. [PMID: 36595935] - Elisa Bernardes Monteiro, Natalia Alvarenga Borges, Mariana Monteiro, Ângela de Castro Resende, Julio Beltrame Daleprane, Christophe Olivier Soulage. Polyphenol-rich açaí seed extract exhibits reno-protective and anti-fibrotic activities in renal tubular cells and mice with kidney failure.
Scientific reports.
2022 12; 12(1):20855. doi:
10.1038/s41598-022-24420-1
. [PMID: 36460743] - Arif Sarowar, Carla S Coffin, Scott Fung, Alexander Wong, Karen Doucette, David Truong, Brian Conway, Sarah Haylock-Jacobs, Alnoor Ramji, Bettina E Hansen, Harry L A Janssen, Curtis Cooper. Brief Report: Effect of Antiretroviral Switch From Tenofovir Disoproxil fumarate to Tenofovir Alafenamide on Alanine Aminotransferase, Lipid Profiles, and Renal Function in HIV/HBV-Coinfected Individuals in a Nationwide Canadian Study.
Journal of acquired immune deficiency syndromes (1999).
2022 12; 91(4):368-372. doi:
10.1097/qai.0000000000003079
. [PMID: 36288543] - Jing Xie, Xin Ma, Yixuan Zheng, Nan Mao, Sichong Ren, Junming Fan. Panax notoginseng saponins alleviate damage to the intestinal barrier and regulate levels of intestinal microbes in a rat model of chronic kidney disease.
Renal failure.
2022 Dec; 44(1):1948-1960. doi:
10.1080/0886022x.2022.2143378
. [PMID: 36354128] - Andrea Brizzolari, Mario C Foti, Luciano Saso, Pierangela Ciuffreda, Jelena Lazarević, Enzo Santaniello. Evaluation of the radical scavenging activity of some representative isoprenoid and aromatic cytokinin ribosides (N6-substituted adenosines) by in vitro chemical assays.
Natural product research.
2022 Dec; 36(24):6443-6447. doi:
10.1080/14786419.2022.2037590
. [PMID: 35130809] - Kelly M Winter, Rachel G Webb, Denese C Marks. Red cells manufactured from lipaemic whole blood donations: Do they have higher haemolysis?.
Vox sanguinis.
2022 Dec; 117(12):1351-1359. doi:
10.1111/vox.13366
. [PMID: 36214384] - Limin Hu, Yungu Zhai, Lei Xu, Jingzhen Wang, Shangpo Yang, Yunxia Sun, Kaidi Yu, Hanzi He, Chuchuan Fan. Precise A∙T to G∙C base editing in the allotetraploid rapeseed (Brassica napus L.) genome.
Journal of cellular physiology.
2022 12; 237(12):4544-4550. doi:
10.1002/jcp.30904
. [PMID: 36256845] - Alexander T Eprintsev, Dmitry N Fedorin, Abir U Igamberdiev. Light Dependent Changes in Adenylate Methylation of the Promoter of the Mitochondrial Citrate Synthase Gene in Maize (Zea mays L.) Leaves.
International journal of molecular sciences.
2022 Nov; 23(21):. doi:
10.3390/ijms232113495
. [PMID: 36362281] - Weihan Hua, Ziqi Gan, Yeke Wu, Lixing Zhao. Identification of a novel missense mutation in non-syndromic familial multiple supernumerary teeth.
Archives of oral biology.
2022 Nov; 143(?):105542. doi:
10.1016/j.archoralbio.2022.105542
. [PMID: 36108431] - Ishaan Jindal, Xiao Wang. Programmable Genome-Editing Technologies as Single-Course Therapeutics for Atherosclerotic Cardiovascular Disease.
Current atherosclerosis reports.
2022 11; 24(11):861-866. doi:
10.1007/s11883-022-01063-1
. [PMID: 35994136] - Xiaoya Li, Xinxin Peng, Bo Qiao, Maijiao Peng, Na Deng, Rong Yu, Zhoujin Tan. Gut-Kidney Impairment Process of Adenine Combined with Folium sennae-Induced Diarrhea: Association with Interactions between Lactobacillus intestinalis, Bacteroides acidifaciens and Acetic Acid, Inflammation, and Kidney Function.
Cells.
2022 10; 11(20):. doi:
10.3390/cells11203261
. [PMID: 36291135] - Tomasz Kopczewski, Elżbieta Kuźniak, Iwona Ciereszko, Andrzej Kornaś. Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012418
. [PMID: 36293272] - Wei Zhou, Wen-Hui Wu, Zi-Lin Si, Hui-Ling Liu, Hanyu Wang, Hong Jiang, Ya-Fang Liu, Raphael N Alolga, Cheng Chen, Shi-Jia Liu, Xue-Yan Bian, Jin-Jun Shan, Jing Li, Ning-Hua Tan, Zhi-Hao Zhang. The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice.
Nature communications.
2022 10; 13(1):6081. doi:
10.1038/s41467-022-33824-6
. [PMID: 36241632] - Yujing Miao, Haimei Chen, Wanqi Xu, Chang Liu, Linfang Huang. Cistanche Species Mitogenomes Suggest Diversity and Complexity in Lamiales-Order Mitogenomes.
Genes.
2022 10; 13(10):. doi:
10.3390/genes13101791
. [PMID: 36292676] - Yushi Chen, Qishen Wang, Haitao Luo, Shanggui Deng, Yongqi Tian, Shaoyun Wang. Mechanisms of the ethanol extract of Gelidium amansii for slow aging in high-fat male Drosophila by metabolomic analysis.
Food & function.
2022 Oct; 13(19):10110-10120. doi:
10.1039/d2fo02116a
. [PMID: 36102920] - William Liu, Sarah Yu, Bingfang Yan. Effect of alcohol exposure on the efficacy and safety of tenofovir alafenamide fumarate, a major medicine against human immunodeficiency virus.
Biochemical pharmacology.
2022 10; 204(?):115224. doi:
10.1016/j.bcp.2022.115224
. [PMID: 36007574] - Liqin Sun, Yun He, Liumei Xu, Fang Zhao, Yang Zhou, Lukun Zhang, Qiaoli Peng, Haitao Zhang, Qiuyue Zhang, Tingzhi Cao, Ying Song, Siyuan Wang, Man Rao, Xinyun Jia, Xiaoning Liu, Jing Zhou, Bin Ju, Hui Wang, Jiaye Liu. Higher Risk of Dyslipidemia With Coformulated Elvitegravir, Cobicistat, Emtricitabine, and Tenofovir Alafenamide than Efavirenz, Lamivudine, and Tenofovir Disoproxil Fumarate Among Antiretroviral-Naive People Living With HIV in China.
Journal of acquired immune deficiency syndromes (1999).
2022 10; 91(S1):S8-S15. doi:
10.1097/qai.0000000000003040
. [PMID: 36094509] - Wei Zhou, Min-Min Chen, Hui-Ling Liu, Zi-Lin Si, Wen-Hui Wu, Hong Jiang, Lin-Xiao Wang, Nosratola D Vaziri, Xiao-Fei An, Ke Su, Cheng Chen, Ning-Hua Tan, Zhi-Hao Zhang. Dihydroartemisinin suppresses renal fibrosis in mice by inhibiting DNA-methyltransferase 1 and increasing Klotho.
Acta pharmacologica Sinica.
2022 Oct; 43(10):2609-2623. doi:
10.1038/s41401-022-00898-3
. [PMID: 35347248] - Olayemi Osiyemi, Stéphane De Wit, Faïza Ajana, Fiona Bisshop, Joaquín Portilla, Jean Pierre Routy, Christoph Wyen, Mounir Ait-Khaled, Peter Leone, Keith A Pappa, Ruolan Wang, Jonathan Wright, Nisha George, Brian Wynne, Michael Aboud, Jean van Wyk, Kimberly Y Smith. Efficacy and Safety of Switching to Dolutegravir/Lamivudine Versus Continuing a Tenofovir Alafenamide-Based 3- or 4-Drug Regimen for Maintenance of Virologic Suppression in Adults Living With Human Immunodeficiency Virus Type 1: Results Through Week 144 From the Phase 3, Noninferiority TANGO Randomized Trial.
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
2022 09; 75(6):975-986. doi:
10.1093/cid/ciac036
. [PMID: 35079789] - Ekaterina M Savelieva, Anastasia A Zenchenko, Mikhail S Drenichev, Anna A Kozlova, Nikolay N Kurochkin, Dmitry V Arkhipov, Alexander O Chizhov, Vladimir E Oslovsky, Georgy A Romanov. In Planta, In Vitro and In Silico Studies of Chiral N6-Benzyladenine Derivatives: Discovery of Receptor-Specific S-Enantiomers with Cytokinin or Anticytokinin Activities.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911334
. [PMID: 36232653] - Rosario Iglesias, Rosita Russo, Nicola Landi, Mariangela Valletta, Angela Chambery, Antimo Di Maro, Andrea Bolognesi, José M Ferreras, Lucía Citores. Structure and Biological Properties of Ribosome-Inactivating Proteins and Lectins from Elder (Sambucus nigra L.) Leaves.
Toxins.
2022 09; 14(9):. doi:
10.3390/toxins14090611
. [PMID: 36136551] - Dezhen Wang, Elaine S Ho, M Grazia Cotticelli, Peining Xu, Jill S Napierala, Lauren A Hauser, Marek Napierala, Blanca E Himes, Robert B Wilson, David R Lynch, Clementina Mesaros. Skin fibroblast metabolomic profiling reveals that lipid dysfunction predicts the severity of Friedreich's ataxia.
Journal of lipid research.
2022 09; 63(9):100255. doi:
10.1016/j.jlr.2022.100255
. [PMID: 35850241] - Osakina Aron, Frankine Jagero Otieno, Ibrahim Tijjani, Zifeng Yang, Huxiao Xu, Shuning Weng, Jiayuan Guo, Songmao Lu, Zonghua Wang, Wei Tang. De novo purine nucleotide biosynthesis mediated by MoAde4 is required for conidiation, host colonization and pathogenicity in Magnaporthe oryzae.
Applied microbiology and biotechnology.
2022 Sep; 106(17):5587-5602. doi:
10.1007/s00253-022-12100-z
. [PMID: 35918446] - Junjun Feng, Haiyun Jiang, Jing Wang, Zhengyi Jing, Fan Zhang, Tianyu Tan, Feng He, Lihua Jiang, Haiqin Li, Shimin Chang, Tengfei Li. [Simultaneous determination of 40 plant growth regulators, fungicides, insecticides, and antibiotics in bean sprouts by QuEChERS-high performance liquid chromatography-tandem mass spectrometry].
Se pu = Chinese journal of chromatography.
2022 Sep; 40(9):843-853. doi:
10.3724/sp.j.1123.2021.12028
. [PMID: 36156631] - Laeticia Scherler, Sofia N Verouti, Daniel Ackermann, Bruno Vogt, Geneviève Escher. Adenine-Induced Nephropathy Reduces Atherosclerosis in ApoE Knockout Mice.
Biomolecules.
2022 08; 12(8):. doi:
10.3390/biom12081147
. [PMID: 36009040] - Tianrong Xun, Zhufen Lin, Mimi Zhang, Liqian Mo, Yan Chen, Xiaokang Wang, Jingqian Zhao, Chunxiao Ye, Haixing Feng, Xixiao Yang. Advanced oxidation protein products upregulate ABCB1 expression and activity via HDAC2-Foxo3α-mediated signaling in vitro and in vivo.
Toxicology and applied pharmacology.
2022 Aug; 449(?):116140. doi:
10.1016/j.taap.2022.116140
. [PMID: 35753429] - Pei Du, Ting Wang, Hang Wang, Meijia Yang, Hongping Yin. Mucin-fused myeloid-derived growth factor (MYDGF164) exhibits a prolonged serum half-life and alleviates fibrosis in chronic kidney disease.
British journal of pharmacology.
2022 08; 179(16):4136-4156. doi:
10.1111/bph.15851
. [PMID: 35393682] - Chia Siang Kow, Dinesh Sangarran Ramachandram, Syed Shahzad Hasan. The use of tenofovir in patients with COVID-19.
HIV medicine.
2022 Aug; 23(7):807-808. doi:
10.1111/hiv.13228
. [PMID: 35023263] - Miriam T Levy, Angela Kashuba, Edward Gane. Plasma and breast milk pharmacokinetics of tenofovir alafenamide of mothers with chronic hepatitis B infection-Authors' reply.
Alimentary pharmacology & therapeutics.
2022 Aug; 56(3):548-549. doi:
10.1111/apt.17102
. [PMID: 35804469]