FA 18:2;O (BioDeep_00000629169)

 

Secondary id: BioDeep_00000003308


代谢物信息卡片


(S)-9-Hydroxy-trans,trans-10,12-octadecadienoic acid

化学式: C18H32O3 (296.2351)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 15.29%

分子结构信息

SMILES: C(/C=C/C(=O)CCCCCCCCCCCCCC)(=O)O
InChI: InChI=1S/C18H32O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-17(19)15-16-18(20)21/h15-16H,2-14H2,1H3,(H,20,21)/b16-15+

描述信息

同义名列表

97 个代谢物同义名

(9R,10S)-(12Z)-9,10-Epoxyoctadecenoic acid; 9R,10S-epoxy-12Z-octadecenoic acid; 9R,10S-EpOME; 9(10)-EpOME; FA 18:2;O; (1S,2S)-3-oxo-2-pentyl-cyclopentaneoctanoic acid; (1R,2R)-3-oxo-2-pentyl-cyclopentaneoctanoic acid; 4-oxo-2E-octadecenoic acid; 13-hydroxy-9Z,12Z-octadecadienoic acid; 13-hydroxyoctadeca-9Z,12Z-dienoic acid; 10-hydroxy-9Z,12Z-octadecadienoic acid; 10-hydroxyoctadeca-9Z,12Z-dienoic acid; 11-Octadecenoic acid, 9-oxo-, (Z)-; 9-keto-11Z-octadecenoic acid; 9-oxo-11Z-octadecenoic acid; 10,12-Octadecadienoic acid, 9-hydroxy-; 9-Hydroxyoctadeca-10,12-dienoic acid; 9-hydroxy-10,12-Octadecadienoic acid; 9,12-Octadecadienoic acid, 15-hydroxy-, (9Z,12Z)-; 9,12-Octadecadienoic acid, 15-hydroxy-, (Z,Z)-; cis-15-Hydroxy-9,12-octadecadienoic acid; 15-hydroxy-9Z,12Z-Octadecadienoic acid; 15-Hydroxy-Z,Z-9,15-octadecadienoic acid; 15-Hydroxy-9Z,15Z-octadecadienoic acid; 15-Hydroxyoctadeca-9c,15c-dienoic acid; 9-Octadecenoic acid, 13-oxo-, (E); 13-keto-trans-9-octadecenoic acid; 13-Oxo-trans-9-octadecenoic acid; 13-Keto-E-9-octadecenoic acid; 13-Oxo-E-9-octadecenoic acid; 13-oxo-9E-Octadecenoic acid; 13-Oxo-E-9-octadecensaeure; 11,14-Octadecadienoic acid, 8-hydroxy-, (Z,Z)-; 8-Hydroxy-Z,Z-11,14-octadecadienoic acid; 8-hydroxy-11Z,14Z-Octadecadienoic acid; 12-Octadecenoic acid, 9-oxo-, (12Z)-; 9-Keto-Z-12-Octadecenoic acid; 9-Keto-Z-12-Octadecensaeure; 9-oxo-12Z-Octadecenoic acid; 9-Oxo-12c-Octadecenoic acid; 9-Oxo-12c-Octadecensaeure; 9,10-epoxy-12-octadecenoic acid; 9,10-EpOME(12); 12,13-epoxy-9-octadecenoic acid; 12,13-EpOME(9); 12-oxo-9Z-octadecenoic acid; 12-OxoOME(9Z); 12-oxo-9E-octadecenoic acid; 12-OxoOME(9E); 12-oxo-10Z-octadecenoic acid; 12-OxoOME(10Z); 12-oxo-10E-octadecenoic acid; 12-OxoOME(10E); 10-Octadecynoic acid, 12-hydroxy-; 12-hydroxy-10-octadecynoic acid; 9-Octadecynoic acid, 12-hydroxy-, (S)-; 12S-hydroxy-9-octadecynoic acid; 9-Octadecynoic acid, 12-hydroxy-; 12-hydroxy-9-octadecynoic acid; Stearolic acid, 12-hydroxy-; Ricinstearolic acid; (S)-9-Hydroxy-trans,trans-10,12-octadecadienoic acid; (S)-9-Hydroxy-10-trans,12-trans-octadecadienoic acid; 10,12-Octadecadienoic acid, 9-hydroxy-, [S-(E,E)]-; (S)-9-Hydroxy-trans,trans-octadecadienoic acid; (S)-9-Hydroxy-10E,12E-octadecadienoic acid; 9S-hydroxy-10E,12E-octadecadienoic acid; beta-Dimorphecolic acid; (S)-; 13-hydroxy-trans-9,trans-11-octadecadienoic acid; 13-hydroxy-9E,11E-octadecadienoic acid; alpha-artemisic acid; 12-hydroxy-cis-9,cis-15-octadecadienoic acid; 12-hydroxy-9Z,15Z-octadecadienoic acid; Densipolic acid; 9-hydroxy-trans-10,trans-12-octadecadienoic acid; 9-hydroxy-10E,12E-octadecadienoic acid; Dimorphecolic acid; 2R-hydroxy-9Z,12Z-octadecadienoic acid; 2R-hydroxy-linoleic acid; 2-hydroxy-linoleic acid; 10-oxo-12-cis-octadecenoic acid; 10-keto-12Z-octadecenoic acid; 10-oxo-12Z-octadecenoic acid; 12(Z)-10KOME; 7-Methoxy-9-methyl-4E,8E-hexadecadienoic acid; 6-oxo-4E-octadecenoic acid; 10-oxo-11E-octadecenoic acid; 11(E)-10-KOME; 11-Octadecenoic acid, 7-oxo-, (Z)-; 7-Keto-11c-octadecenoic acid; 7-Oxo-11c-octadecenoic acid; 7-keto-11-Octadecenoic acid; 7-oxo-11-Octadecenoic acid; (Z)-13-Oxo-9-octadecenoic acid; 13-keto-9Z-octadecenoic acid; 13-Oxo-9Z-octadecenoic acid



数据库引用编号

88 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 AKT1, CASP3, EGFR, PPARG, STAT3, TP53, VEGFA
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 1 EGFR
Nucleus 7 AKT1, CASP3, EGFR, PPARG, STAT3, TP53, VEGFA
cytosol 6 AKT1, CASP3, IL1B, PPARG, STAT3, TP53
centrosome 1 TP53
nucleoplasm 5 AKT1, CASP3, PPARG, STAT3, TP53
RNA polymerase II transcription regulator complex 2 PPARG, STAT3
Cell membrane 3 AKT1, EGFR, TNF
lamellipodium 1 AKT1
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 3 EGFR, TNF, VEGFA
glutamatergic synapse 3 AKT1, CASP3, EGFR
Golgi apparatus 1 VEGFA
Golgi membrane 1 EGFR
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 IL1B
Lysosome 1 IL1B
endosome 1 EGFR
plasma membrane 4 AKT1, EGFR, STAT3, TNF
Membrane 4 AKT1, EGFR, TP53, VEGFA
apical plasma membrane 1 EGFR
basolateral plasma membrane 1 EGFR
extracellular exosome 1 MMP9
endoplasmic reticulum 2 TP53, VEGFA
extracellular space 5 EGFR, IL1B, MMP9, TNF, VEGFA
perinuclear region of cytoplasm 2 EGFR, PPARG
adherens junction 1 VEGFA
mitochondrion 1 TP53
protein-containing complex 3 AKT1, EGFR, TP53
intracellular membrane-bounded organelle 1 PPARG
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 EGFR
Secreted 2 IL1B, VEGFA
extracellular region 4 IL1B, MMP9, TNF, VEGFA
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
transcription regulator complex 2 STAT3, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
nuclear membrane 1 EGFR
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 2 MMP9, VEGFA
microtubule cytoskeleton 1 AKT1
nucleolus 1 TP53
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 2 EGFR, TNF
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 1 EGFR
spindle 1 AKT1
extracellular matrix 1 VEGFA
intracellular vesicle 1 EGFR
Nucleus, PML body 1 TP53
PML body 1 TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 MMP9
secretory granule 2 IL1B, VEGFA
receptor complex 2 EGFR, PPARG
ciliary basal body 1 AKT1
chromatin 3 PPARG, STAT3, TP53
phagocytic cup 1 TNF
site of double-strand break 1 TP53
germ cell nucleus 1 TP53
replication fork 1 TP53
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 MMP9
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
platelet alpha granule lumen 1 VEGFA
tertiary granule lumen 1 MMP9
Secreted, extracellular exosome 1 IL1B
clathrin-coated endocytic vesicle membrane 1 EGFR
[Isoform 1]: Nucleus 1 TP53
death-inducing signaling complex 1 CASP3
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Tatsuya Ihara, Hiroshi Shimura, Sachiko Tsuchiya, Mie Kanda, Satoru Kira, Norifumi Sawada, Masayuki Takeda, Takahiko Mitsui, Eiji Shigetomi, Yoichi Shinozaki, Schuichi Koizumi. Effects of fatty acid metabolites on nocturia. Scientific reports. 2022 02; 12(1):3050. doi: 10.1038/s41598-022-07096-5. [PMID: 35197540]
  • Veronika Paluchova, Anders Vik, Tomas Cajka, Marie Brezinova, Kristyna Brejchova, Viktor Bugajev, Lubica Draberova, Petr Draber, Jana Buresova, Petra Kroupova, Kristina Bardova, Martin Rossmeisl, Jan Kopecky, Trond Vidar Hansen, Ondrej Kuda. Triacylglycerol-Rich Oils of Marine Origin are Optimal Nutrients for Induction of Polyunsaturated Docosahexaenoic Acid Ester of Hydroxy Linoleic Acid (13-DHAHLA) with Anti-Inflammatory Properties in Mice. Molecular nutrition & food research. 2020 06; 64(11):e1901238. doi: 10.1002/mnfr.201901238. [PMID: 32277573]
  • So Yeon Kwon, Karen Massey, Mark A Watson, Tayab Hussain, Giacomo Volpe, Christopher D Buckley, Anna Nicolaou, Paul Badenhorst. Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. Life science alliance. 2020 02; 3(2):. doi: 10.26508/lsa.201900356. [PMID: 31992650]
  • Huan Bian, Jingjing Ma, Zhiming Geng, Ting Liu, Chong Sun, Daoying Wang, Muhan Zhang, Weimin Xu. Changes of hydroxyl-linoleic acids during Chinese-style sausage processing and their relationships with lipids oxidation. Food chemistry. 2019 Oct; 296(?):63-68. doi: 10.1016/j.foodchem.2019.05.183. [PMID: 31202307]
  • Yujin Ye, Tianfu Wu, Ting Zhang, Jie Han, Deena Habazi, Ramesh Saxena, Chandra Mohan. Elevated oxidized lipids, anti-lipid autoantibodies and oxidized lipid immune complexes in active SLE. Clinical immunology (Orlando, Fla.). 2019 08; 205(?):43-48. doi: 10.1016/j.clim.2019.05.004. [PMID: 31075396]
  • Elizabeth M Corteselli, Eugene Gibbs-Flournoy, Steven O Simmons, Philip Bromberg, Avram Gold, James M Samet. Long chain lipid hydroperoxides increase the glutathione redox potential through glutathione peroxidase 4. Biochimica et biophysica acta. General subjects. 2019 05; 1863(5):950-959. doi: 10.1016/j.bbagen.2019.03.002. [PMID: 30844486]
  • Alessandra Pecorelli, Carlo Cervellati, Valeria Cordone, Fernanda Amicarelli, Joussef Hayek, Giuseppe Valacchi. 13-HODE, 9-HODE and ALOX15 as potential players in Rett syndrome OxInflammation. Free radical biology & medicine. 2019 04; 134(?):598-603. doi: 10.1016/j.freeradbiomed.2019.02.007. [PMID: 30743046]
  • Irene Håkansson, Sandra Gouveia-Figueira, Jan Ernerudh, Magnus Vrethem, Nazdar Ghafouri, Bijar Ghafouri, Malin Nording. Oxylipins in cerebrospinal fluid in clinically isolated syndrome and relapsing remitting multiple sclerosis. Prostaglandins & other lipid mediators. 2018 09; 138(?):41-47. doi: 10.1016/j.prostaglandins.2018.08.003. [PMID: 30118859]
  • Małgorzata Jelińska, Agnieszka Białek, Iwona Gielecińska, Hanna Mojska, Andrzej Tokarz. Impact of conjugated linoleic acid administered to rats prior and after carcinogenic agent on arachidonic and linoleic acid metabolites in serum and tumors. Prostaglandins, leukotrienes, and essential fatty acids. 2017 Nov; 126(?):1-8. doi: 10.1016/j.plefa.2017.08.013. [PMID: 29031386]
  • Dennis R Warner, Huilin Liu, Matthew E Miller, Christopher E Ramsden, Bin Gao, Ariel E Feldstein, Susanne Schuster, Craig J McClain, Irina A Kirpich. Dietary Linoleic Acid and Its Oxidized Metabolites Exacerbate Liver Injury Caused by Ethanol via Induction of Hepatic Proinflammatory Response in Mice. The American journal of pathology. 2017 Oct; 187(10):2232-2245. doi: 10.1016/j.ajpath.2017.06.008. [PMID: 28923202]
  • Izabella Surowiec, Sandra Gouveia-Figueira, Judy Orikiiriza, Elisabeth Lindquist, Mari Bonde, Jimmy Magambo, Charles Muhinda, Sven Bergström, Johan Normark, Johan Trygg. The oxylipin and endocannabidome responses in acute phase Plasmodium falciparum malaria in children. Malaria journal. 2017 09; 16(1):358. doi: 10.1186/s12936-017-2001-y. [PMID: 28886714]
  • Stephan W Hohmann, Carlo Angioni, Sorin Tunaru, Seungkyu Lee, Clifford J Woolf, Stefan Offermanns, Gerd Geisslinger, Klaus Scholich, Marco Sisignano. The G2A receptor (GPR132) contributes to oxaliplatin-induced mechanical pain hypersensitivity. Scientific reports. 2017 03; 7(1):446. doi: 10.1038/s41598-017-00591-0. [PMID: 28348394]
  • Marco Sisignano, Carlo Angioni, Chul-Kyu Park, Sascha Meyer Dos Santos, Holger Jordan, Maria Kuzikov, Di Liu, Sebastian Zinn, Stephan W Hohman, Yannick Schreiber, Béla Zimmer, Mike Schmidt, Ruirui Lu, Jing Suo, Dong-Dong Zhang, Stephan M G Schäfer, Martine Hofmann, Ajay S Yekkirala, Natasja de Bruin, Michael J Parnham, Clifford J Woolf, Ru-Rong Ji, Klaus Scholich, Gerd Geisslinger. Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America. 2016 11; 113(44):12544-12549. doi: 10.1073/pnas.1613246113. [PMID: 27791151]
  • David C Nieman, Mary Pat Meaney, Casey S John, Kevin J Knagge, Huiyuan Chen. 9- and 13-Hydroxy-octadecadienoic acids (9+13 HODE) are inversely related to granulocyte colony stimulating factor and IL-6 in runners after 2h running. Brain, behavior, and immunity. 2016 Aug; 56(?):246-52. doi: 10.1016/j.bbi.2016.03.020. [PMID: 27018002]
  • Ting Zhao, Hong Du, Janice S Blum, Cong Yan. Critical role of PPARγ in myeloid-derived suppressor cell-stimulated cancer cell proliferation and metastasis. Oncotarget. 2016 Jan; 7(2):1529-43. doi: 10.18632/oncotarget.6414. [PMID: 26625314]
  • Kexi Zha, Changting Zuo, Aihong Wang, Bingchang Zhang, Yan Zhang, Bei Wang, Yunjia Wang, Jiajun Zhao, Ling Gao, Chao Xu. LDL in patients with subclinical hypothyroidism shows increased lipid peroxidation. Lipids in health and disease. 2015 Aug; 14(?):95. doi: 10.1186/s12944-015-0092-4. [PMID: 26302822]
  • Pelin Cengiz, Frank Zemlan, Jens C Eickhoff, Richard Ellenbogen, Jerry J Zimmerman. Increased cerebrospinal fluid cleaved tau protein (C-tau) levels suggest axonal damage in pediatric patients with brain tumors. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery. 2015 Aug; 31(8):1313-9. doi: 10.1007/s00381-015-2705-7. [PMID: 25899850]
  • K Murotomi, A Umeno, M Yasunaga, M Shichiri, N Ishida, H Abe, Y Yoshida, Y Nakajima. Switching from singlet-oxygen-mediated oxidation to free-radical-mediated oxidation in the pathogenesis of type 2 diabetes in model mouse. Free radical research. 2015 Feb; 49(2):133-8. doi: 10.3109/10715762.2014.985218. [PMID: 25381799]
  • David C Nieman, R Andrew Shanely, Beibei Luo, Mary Pat Meaney, Dustin A Dew, Kirk L Pappan. Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling. American journal of physiology. Regulatory, integrative and comparative physiology. 2014 Jul; 307(1):R68-74. doi: 10.1152/ajpregu.00092.2014. [PMID: 24760997]
  • Loredan S Niculescu, Gabriela M Sanda, Anca V Sima. HDL inhibits endoplasmic reticulum stress by stimulating apoE and CETP secretion from lipid-loaded macrophages. Biochemical and biophysical research communications. 2013 Apr; 434(1):173-8. doi: 10.1016/j.bbrc.2013.03.050. [PMID: 23537656]
  • Zhi-Xin Yuan, Stanley I Rapoport, Steven J Soldin, Alan T Remaley, Ameer Y Taha, Matthew Kellom, Jianghong Gu, Maureen Sampson, Christopher E Ramsden. Identification and profiling of targeted oxidized linoleic acid metabolites in rat plasma by quadrupole time-of-flight mass spectrometry. Biomedical chromatography : BMC. 2013 Apr; 27(4):422-32. doi: 10.1002/bmc.2809. [PMID: 23037960]
  • Jennifer-Marie Garofalo, Dawn M Bowers, Richard W Browne, Brian T MacQueen, Terry Mashtare, Lisa B Martin, Patricia A Masso-Welch. Mouse mammary gland is refractory to the effects of ethanol after natural lactation. Comparative medicine. 2013 Feb; 63(1):38-47. doi: NULL. [PMID: 23561936]
  • Vamsi J Nalam, Jantana Keereetaweep, Jyoti Shah. The green peach aphid, Myzus persicae, acquires a LIPOXYGENASE5-derived oxylipin from Arabidopsis thaliana, which promotes colonization of the host plant. Plant signaling & behavior. 2013 Jan; 8(1):e22735. doi: 10.4161/psb.22735. [PMID: 23221749]
  • Christopher E Ramsden, Amit Ringel, Ariel E Feldstein, Ameer Y Taha, Beth A MacIntosh, Joseph R Hibbeln, Sharon F Majchrzak-Hong, Keturah R Faurot, Stanley I Rapoport, Yewon Cheon, Yoon-Mi Chung, Michael Berk, J Douglas Mann. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins, leukotrienes, and essential fatty acids. 2012 Oct; 87(4-5):135-41. doi: 10.1016/j.plefa.2012.08.004. [PMID: 22959954]
  • Shivani Ruparel, Dustin Green, Paul Chen, Kenneth M Hargreaves. The cytochrome P450 inhibitor, ketoconazole, inhibits oxidized linoleic acid metabolite-mediated peripheral inflammatory pain. Molecular pain. 2012 Sep; 8(?):73. doi: 10.1186/1744-8069-8-73. [PMID: 23006841]
  • Anna Z Pollack, Enrique F Schisterman, Lynn R Goldman, Sunni L Mumford, Neil J Perkins, Michael S Bloom, Carole B Rudra, Richard W Browne, Jean Wactawski-Wende. Relation of blood cadmium, lead, and mercury levels to biomarkers of lipid peroxidation in premenopausal women. American journal of epidemiology. 2012 Apr; 175(7):645-52. doi: 10.1093/aje/kwr375. [PMID: 22302120]
  • Keiji Yuki, Mariko Ikeda, Kenji Miyamoto, Osamu Ohno, Kaoru Yamada, Daisuke Uemura. Isolation of 9-hydroxy-10E,12Z-octadecadienoic acid, an inhibitor of fat accumulation from Valeriana fauriei. Bioscience, biotechnology, and biochemistry. 2012; 76(6):1233-5. doi: 10.1271/bbb.110994. [PMID: 22790953]
  • Penny Zhu, Brian Peck, Hermes Licea-Perez, James F Callahan, Catherine Booth-Genthe. Development of a semi-automated LC/MS/MS method for the simultaneous quantitation of 14,15-epoxyeicosatrienoic acid, 14,15-dihydroxyeicosatrienoic acid, leukotoxin and leukotoxin diol in human plasma as biomarkers of soluble epoxide hydrolase activity in vivo. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2011 Sep; 879(25):2487-93. doi: 10.1016/j.jchromb.2011.06.042. [PMID: 21798825]
  • Audrey J Gaskins, Alisha J Rovner, Sunni L Mumford, Edwina Yeung, Richard W Browne, Maurizio Trevisan, Neil J Perkins, Jean Wactawski-Wende, Enrique F Schisterman. Adherence to a Mediterranean diet and plasma concentrations of lipid peroxidation in premenopausal women. The American journal of clinical nutrition. 2010 Dec; 92(6):1461-7. doi: 10.3945/ajcn.110.000026. [PMID: 20943796]
  • Peizhen Yang, Xiangjun Li, Matthew J Shipp, Jay M Shockey, Edgar B Cahoon. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes. BMC plant biology. 2010 Nov; 10(?):250. doi: 10.1186/1471-2229-10-250. [PMID: 21080948]
  • Satoshi Imaizumi, Victor Grijalva, Mohamad Navab, Brian J Van Lenten, Alan C Wagner, G M Anantharamiah, Alan M Fogelman, Srinivasa T Reddy. L-4F differentially alters plasma levels of oxidized fatty acids resulting in more anti-inflammatory HDL in mice. Drug metabolism letters. 2010 Aug; 4(3):139-48. doi: 10.2174/187231210791698438. [PMID: 20642447]
  • Wei Liu, Huiyong Yin, Yoko Ogawa Akazawa, Yasukazu Yoshida, Etsuo Niki, Ned A Porter. Ex vivo oxidation in tissue and plasma assays of hydroxyoctadecadienoates: Z,E/E,E stereoisomer ratios. Chemical research in toxicology. 2010 May; 23(5):986-95. doi: 10.1021/tx1000943. [PMID: 20423158]
  • Satoru Tamura, Masafumi Kaneko, Atsushi Shiomi, Guang-Ming Yang, Toshiaki Yamaura, Nobutoshi Murakami. Unprecedented NES non-antagonistic inhibitor for nuclear export of Rev from Sida cordifolia. Bioorganic & medicinal chemistry letters. 2010 Mar; 20(6):1837-9. doi: 10.1016/j.bmcl.2010.01.165. [PMID: 20176483]
  • Hideru Obinata, Takashi Izumi. G2A as a receptor for oxidized free fatty acids. Prostaglandins & other lipid mediators. 2009 Sep; 89(3-4):66-72. doi: 10.1016/j.prostaglandins.2008.11.002. [PMID: 19063986]
  • Markus K Muellner, Sabine M Schreier, Hilde Laggner, Marcela Hermann, Harald Esterbauer, Markus Exner, Bernhard M K Gmeiner, Stylianos Kapiotis. Hydrogen sulfide destroys lipid hydroperoxides in oxidized LDL. The Biochemical journal. 2009 May; 420(2):277-81. doi: 10.1042/bj20082421. [PMID: 19265508]
  • Yuki Kawakami, Tomomi Nakamura, Tomoko Hosokawa, Toshiko Suzuki-Yamamoto, Hiromi Yamashita, Masumi Kimoto, Hideaki Tsuji, Hideki Yoshida, Takahiko Hada, Yoshitaka Takahashi. Antiproliferative activity of guava leaf extract via inhibition of prostaglandin endoperoxide H synthase isoforms. Prostaglandins, leukotrienes, and essential fatty acids. 2009 May; 80(5-6):239-45. doi: 10.1016/j.plefa.2009.04.006. [PMID: 19457650]
  • Hiroshi Yokoi, Hajime Mizukami, Akito Nagatsu, Takamasa Ohno, Hiroki Tanabe, Makoto Inoue. Peroxisome proliferator-activated receptor gamma ligands isolated from adlay seed (Coix lacryma-jobi L. var. ma-yuen STAPF.). Biological & pharmaceutical bulletin. 2009 Apr; 32(4):735-40. doi: 10.1248/bpb.32.735. [PMID: 19336916]
  • Anna Leonardini, Luigi Laviola, Sebastio Perrini, Annalisa Natalicchio, Francesco Giorgino. Cross-Talk between PPARgamma and Insulin Signaling and Modulation of Insulin Sensitivity. PPAR research. 2009; 2009(?):818945. doi: 10.1155/2009/818945. [PMID: 20182551]
  • Todd R Harris, Pavel A Aronov, Paul D Jones, Hiromasa Tanaka, Michael Arand, Bruce D Hammock. Identification of two epoxide hydrolases in Caenorhabditis elegans that metabolize mammalian lipid signaling molecules. Archives of biochemistry and biophysics. 2008 Apr; 472(2):139-49. doi: 10.1016/j.abb.2008.01.016. [PMID: 18267101]
  • Abraham Abebe Wube, Eva-Maria Wenzig, Simon Gibbons, Kaleab Asres, Rudolf Bauer, Franz Bucar. Constituents of the stem bark of Discopodium penninervium and their LTB4 and COX-1 and -2 inhibitory activities. Phytochemistry. 2008 Feb; 69(4):982-7. doi: 10.1016/j.phytochem.2007.11.001. [PMID: 18086481]
  • Hideru Obinata, Tomoyasu Hattori, Shinji Nakane, Kazuaki Tatei, Takashi Izumi. Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A. The Journal of biological chemistry. 2005 Dec; 280(49):40676-83. doi: 10.1074/jbc.m507787200. [PMID: 16236715]
  • Mayumi Negishi, Hiroyuki Shimizu, Shuichi Okada, Atsushi Kuwabara, Fumikazu Okajima, Masatomo Mori. 9HODE stimulates cell proliferation and extracellular matrix synthesis in human mesangial cells via PPARgamma. Experimental biology and medicine (Maywood, N.J.). 2004 Nov; 229(10):1053-60. doi: 10.1177/153537020422901010. [PMID: 15522842]
  • Hideto Kimura, Kazushige Yokota. Characterization of metabolic pathway of linoleic acid 9-hydroperoxide in cytosolic fraction of potato tubers and identification of reaction products. Applied biochemistry and biotechnology. 2004 Jul; 118(1-3):115-32. doi: 10.1385/abab:118:1-3:115. [PMID: 15304744]
  • Edgar B Cahoon, Anthony J Kinney. Dimorphecolic acid is synthesized by the coordinate activities of two divergent Delta12-oleic acid desaturases. The Journal of biological chemistry. 2004 Mar; 279(13):12495-502. doi: 10.1074/jbc.m314329200. [PMID: 14718523]
  • Grazyna Nowak, David F Grant, Jeffery H Moran. Linoleic acid epoxide promotes the maintenance of mitochondrial function and active Na+ transport following hypoxia. Toxicology letters. 2004 Mar; 147(2):161-75. doi: 10.1016/j.toxlet.2003.11.002. [PMID: 14757320]
  • Frédéric Coutant, Sophie Agaugué, Laure Perrin-Cocon, Patrice André, Vincent Lotteau. Sensing environmental lipids by dendritic cell modulates its function. Journal of immunology (Baltimore, Md. : 1950). 2004 Jan; 172(1):54-60. doi: 10.4049/jimmunol.172.1.54. [PMID: 14688309]
  • P Komaraiah, G V Reddy, P Srinivas Reddy, A S Raghavendra, S V Ramakrishna, P Reddanna. Enhanced production of antimicrobial sesquiterpenes and lipoxygenase metabolites in elicitor-treated hairy root cultures of Solanum tuberosum. Biotechnology letters. 2003 Apr; 25(8):593-7. doi: 10.1023/a:1023038804556. [PMID: 12882150]
  • Heiko Weichert, Adelheid Kolbe, Angelika Kraus, Claus Wasternack, Ivo Feussner. Metabolic profiling of oxylipins in germinating cucumber seedlings--lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes. Planta. 2002 Aug; 215(4):612-9. doi: 10.1007/s00425-002-0779-4. [PMID: 12172844]
  • Joomi Ha, Maxim Dobretsov, Richard C Kurten, David F Grant, Joseph R Stimers. Effect of linoleic acid metabolites on Na(+)/K(+) pump current in N20.1 oligodendrocytes: role of membrane fluidity. Toxicology and applied pharmacology. 2002 Jul; 182(1):76-83. doi: 10.1006/taap.2002.9435. [PMID: 12127265]
  • Rong Rong, Sumathi Ramachandran, Meera Penumetcha, Nadya Khan, Sampath Parthasarathy. Dietary oxidized fatty acids may enhance intestinal apolipoprotein A-I production. Journal of lipid research. 2002 Apr; 43(4):557-64. doi: 10.1016/s0022-2275(20)31485-1. [PMID: 11907138]
  • Barbara Fischer, Andreas von Knethen, Bernhard Brüne. Dualism of oxidized lipoproteins in provoking and attenuating the oxidative burst in macrophages: role of peroxisome proliferator-activated receptor-gamma. Journal of immunology (Baltimore, Md. : 1950). 2002 Mar; 168(6):2828-34. doi: 10.4049/jimmunol.168.6.2828. [PMID: 11884452]
  • Lex A Mitchell, Jeffery H Moran, David F Grant. Linoleic acid, cis-epoxyoctadecenoic acids, and dihydroxyoctadecadienoic acids are toxic to Sf-21 cells in the absence of albumin. Toxicology letters. 2002 Feb; 126(3):187-96. doi: 10.1016/s0378-4274(01)00463-5. [PMID: 11814707]
  • A Aljada, R Garg, H Ghanim, P Mohanty, W Hamouda, E Assian, P Dandona. Nuclear factor-kappaB suppressive and inhibitor-kappaB stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an antiinflammatory action?. The Journal of clinical endocrinology and metabolism. 2001 Jul; 86(7):3250-6. doi: 10.1210/jcem.86.7.7564. [PMID: 11443197]
  • J H Moran, G Nowak, D F Grant. Analysis of the toxic effects of linoleic acid, 12,13-cis-epoxyoctadecenoic acid, and 12,13-dihydroxyoctadecenoic acid in rabbit renal cortical mitochondria. Toxicology and applied pharmacology. 2001 Apr; 172(2):150-61. doi: 10.1006/taap.2001.9149. [PMID: 11298501]
  • M Jisaka, W E Boeglin, R B Kim, A R Brash. Site-directed mutagenesis studies on a putative fifth iron ligand of mouse 8S-lipoxygenase: retention of catalytic activity on mutation of serine-558 to asparagine, histidine, or alanine. Archives of biochemistry and biophysics. 2001 Feb; 386(2):136-42. doi: 10.1006/abbi.2000.2175. [PMID: 11368335]
  • P Dandona, P Mohanty, H Ghanim, A Aljada, R Browne, W Hamouda, A Prabhala, A Afzal, R Garg. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. The Journal of clinical endocrinology and metabolism. 2001 Jan; 86(1):355-62. doi: 10.1210/jcem.86.1.7150. [PMID: 11232024]
  • M L Fauconnier, J Delcarte, P Hoyaux, P du Jardin, M Marlier. Potato tubers exhibit both homolytic and heterolytic hydroperoxide fatty acid-cleaving activities. Biochemical Society transactions. 2000 Dec; 28(6):853-5. doi: 10.1042/bst0280853. [PMID: 11171231]
  • S Singh, S Thomaeus, M Lee, A Green, S Stymne. Inhibition of polyunsaturated fatty acid accumulation in plants expressing a fatty acid epoxygenase. Biochemical Society transactions. 2000 Dec; 28(6):940-2. doi: 10.1042/bst0280940. [PMID: 11171264]
  • K H Han, M K Chang, A Boullier, S R Green, A Li, C K Glass, O Quehenberger. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator-activated receptor gamma. The Journal of clinical investigation. 2000 Sep; 106(6):793-802. doi: 10.1172/jci10052. [PMID: 10995790]
  • M K Jang, M S Choi, Y B Park. Regulation of ferritin light chain gene expression by oxidized low-density lipoproteins in human monocytic THP-1 cells. Biochemical and biophysical research communications. 1999 Nov; 265(2):577-83. doi: 10.1006/bbrc.1999.1725. [PMID: 10558912]
  • N G Chen, S F Sarabia, P J Malloy, X Y Zhao, D Feldman, G M Reaven. PPARgamma agonists enhance human vascular endothelial adhesiveness by increasing ICAM-1 expression. Biochemical and biophysical research communications. 1999 Oct; 263(3):718-22. doi: 10.1006/bbrc.1999.1437. [PMID: 10512746]
  • M Inouye, T Mio, K Sumino. Formation of 9-hydroxy linoleic acid as a product of phospholipid peroxidation in diabetic erythrocyte membranes. Biochimica et biophysica acta. 1999 May; 1438(2):204-12. doi: 10.1016/s1388-1981(99)00052-9. [PMID: 10320803]
  • S Garcia-Cruset, K L Carpenter, F Guardiola, M J Mitchinson. Oxysterols in cap and core of human advanced atherosclerotic lesions. Free radical research. 1999 May; 30(5):341-50. doi: 10.1080/10715769900300391. [PMID: 10342328]
  • W Jira, G Spiteller. Dramatic increase of linoleic acid peroxidation products by aging, atherosclerosis, and rheumatoid arthritis. Advances in experimental medicine and biology. 1999; 469(?):479-83. doi: 10.1007/978-1-4615-4793-8_70. [PMID: 10667371]
  • P Kreil, G Spiteller, G Johannes, W Wagner. Strong increase of 9-hydroxy-10,12-octadecadienoic acid in low density lipoprotein after a hemorrhagic shock. Zeitschrift fur Naturforschung. C, Journal of biosciences. 1998 Sep; 53(9-10):876-82. doi: 10.1515/znc-1998-9-1016. [PMID: 9825542]
  • U Kiessling, G Spiteller. The course of enzymatically induced lipid peroxidation in homogenized porcine kidney tissue. Zeitschrift fur Naturforschung. C, Journal of biosciences. 1998 May; 53(5-6):431-7. doi: . [PMID: 9679335]
  • L Nagy, P Tontonoz, J G Alvarez, H Chen, R M Evans. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998 Apr; 93(2):229-40. doi: 10.1016/s0092-8674(00)81574-3. [PMID: 9568715]
  • W Jira, G Spiteller, W Carson, A Schramm. Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients. Chemistry and physics of lipids. 1998 Jan; 91(1):1-11. doi: 10.1016/s0009-3084(97)00095-9. [PMID: 9488997]
  • C Gniwotta, J D Morrow, L J Roberts, H Kühn. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. Arteriosclerosis, thrombosis, and vascular biology. 1997 Nov; 17(11):3236-41. doi: 10.1161/01.atv.17.11.3236. [PMID: 9409317]
  • A Batna, C Fuchs, G Spiteller. Lipid peroxidation in presence of ebselen. Chemistry and physics of lipids. 1997 Jul; 87(2):149-58. doi: 10.1016/s0009-3084(97)00037-6. [PMID: 9275309]
  • W Jira, G Spiteller, A Richter. Increased levels of lipid oxidation products in low density lipoproteins of patients suffering from rheumatoid arthritis. Chemistry and physics of lipids. 1997 May; 87(1):81-9. doi: 10.1016/s0009-3084(97)00030-3. [PMID: 9219348]
  • M F Moghaddam, D F Grant, J M Cheek, J F Greene, K C Williamson, B D Hammock. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nature medicine. 1997 May; 3(5):562-6. doi: 10.1038/nm0597-562. [PMID: 9142128]
  • J A Johnson, M L Blackburn, A W Bull, C W Welsch, J T Watson. Separation and quantitation of linoleic acid oxidation products in mammary gland tissue from mice fed low- and high-fat diets. Lipids. 1997 Apr; 32(4):369-75. doi: 10.1007/s11745-997-0047-7. [PMID: 9113624]
  • H Iwase, T Takatori, H Niijima, M Nagao, T Amano, K Iwadate, Y Matsuda, M Nakajima, M Kobayashi. Formation of leukotoxin (9,10-epoxy-12-octadecenoic acid) during the autoxidation of phospholipids promoted by hemoproteins. Biochimica et biophysica acta. 1997 Mar; 1345(1):27-34. doi: 10.1016/s0005-2760(96)00155-5. [PMID: 9084498]
  • E S Kaneshiro, J E Ellis, Z Guo, K Jayasimhulu, J N Maiorano, K A Kallam. Characterizations of neutral lipid fatty acids and cis-9,10-epoxy octadecanoic acid in Pneumocystis carinii carinii. Infection and immunity. 1996 Oct; 64(10):4105-14. doi: 10.1128/iai.64.10.4105-4114.1996. [PMID: 8926076]
  • F Engels, G C Kessels, P A Henricks, F P Nijkamp. Preferential formation of 13-hydroxylinoleic acid by human peripheral blood eosinophils. Prostaglandins. 1996 Aug; 52(2):117-24. doi: 10.1016/0090-6980(96)00057-3. [PMID: 8880897]
  • T Takatori. Investigations on the mechanism of adipocere formation and its relation to other biochemical reactions. Forensic science international. 1996 Jun; 80(1-2):49-61. doi: 10.1016/0379-0738(96)01927-5. [PMID: 8690322]
  • L Guo, A Ogamo, Z Ou, T Shinozuka, Y Nakagawa. Preferential formation of the hydroperoxide of linoleic acid in choline glycerophospholipids in human erythrocytes membrane during peroxidation with an azo initiator. Free radical biology & medicine. 1995 Jun; 18(6):1003-12. doi: 10.1016/0891-5849(94)00234-b. [PMID: 7628726]
  • J K Beckman, F Bagheri, C Ji, I A Blair, L J Marnett. Phospholipid peroxidation in tumor promoter-exposed mouse skin. Carcinogenesis. 1994 Dec; 15(12):2937-44. doi: 10.1093/carcin/15.12.2937. [PMID: 8001259]
  • K Kosaka, K Suzuki, M Hayakawa, S Sugiyama, T Ozawa. Leukotoxin, a linoleate epoxide: its implication in the late death of patients with extensive burns. Molecular and cellular biochemistry. 1994 Oct; 139(2):141-8. doi: 10.1007/bf01081737. [PMID: 7862104]
  • V A Folcik, M K Cathcart. Predominance of esterified hydroperoxy-linoleic acid in human monocyte-oxidized LDL. Journal of lipid research. 1994 Sep; 35(9):1570-82. doi: 10.1016/s0022-2275(20)41155-1. [PMID: 7806971]
  • L L Stoll, M R Morland, A A Spector. 13-HODE increases intracellular calcium in vascular smooth muscle cells. The American journal of physiology. 1994 Apr; 266(4 Pt 1):C990-6. doi: 10.1152/ajpcell.1994.266.4.c990. [PMID: 8178971]
  • C E Thomas, R L Jackson, D F Ohlweiler, G Ku. Multiple lipid oxidation products in low density lipoproteins induce interleukin-1 beta release from human blood mononuclear cells. Journal of lipid research. 1994 Mar; 35(3):417-27. doi: . [PMID: 8014577]
  • R Terkeltaub, C L Banka, J Solan, D Santoro, K Brand, L K Curtiss. Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity. Arteriosclerosis and thrombosis : a journal of vascular biology. 1994 Jan; 14(1):47-53. doi: 10.1161/01.atv.14.1.47. [PMID: 8274477]
  • H Akabane, M Nagao, W D Zhang, Y Yamada, T Oono, T Takatori. Production and characterization of antibodies reactive with leukotoxin. Nihon hoigaku zasshi = The Japanese journal of legal medicine. 1993 Apr; 47(2):93-7. doi: NULL. [PMID: 8315873]
  • B N Setty, C D Dampier, M J Stuart. 1-Deamino-8 D-arginine vasopressin decreases the production of 13-hydroxyoctadecadienoic acid by endothelial cells. Thrombosis research. 1992 Sep; 67(5):545-58. doi: 10.1016/0049-3848(92)90015-3. [PMID: 1448788]
  • G Ku, C E Thomas, A L Akeson, R L Jackson. Induction of interleukin 1 beta expression from human peripheral blood monocyte-derived macrophages by 9-hydroxyoctadecadienoic acid. The Journal of biological chemistry. 1992 Jul; 267(20):14183-8. doi: . [PMID: 1629217]
  • W R Henderson, M Rashed, E C Yong, T R Fritsche, G K Chiang. Toxoplasma gondii stimulates the release of 13- and 9-hydroxyoctadecadienoic acids by human platelets. Biochemistry. 1992 Jun; 31(23):5356-62. doi: 10.1021/bi00138a016. [PMID: 1606159]
  • T Inokuchi, T Hidaka, Y Noda, J Nishi, M Kotegawa, R Ogura. Identification of free and esterified hydroxyoctadecadienoates (HODEs) and linoleate-hydroxylating pathway in the epidermis of hairless mice. The Kurume medical journal. 1992; 39(3):133-40. doi: 10.2739/kurumemedj.39.133. [PMID: 1491546]
  • Y Hanaki, H Kamiya, M Ohno, M Hayakawa, S Sugiyama, T Ozawa. Leukotoxin, 9, 10-epoxy-12-octadecenoate: a possible responsible factor in circulatory shock and disseminated intravascular coagulation. Japanese journal of medicine. 1991 May; 30(3):224-8. doi: 10.2169/internalmedicine1962.30.224. [PMID: 1920962]
  • T Ozawa, S Sugiyama, M Hayakawa, F Taki. [ARDS and leukotoxin]. Nihon Kyobu Shikkan Gakkai zasshi. 1991 Feb; 29(2):159-64. doi: . [PMID: 1851903]
  • S Sugiyama, M Hayakawa, Y Hanaki, T Ogawa, T Ozawa. [Leukotoxin and pulmonary injury]. Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics. 1990 Mar; 27(2):161-5. doi: . [PMID: 2384990]
  • M Hayakawa, K Kosaka, S Sugiyama, K Yokoo, H Aoyama, Y Izawa, T Ozawa. Proposal of leukotoxin, 9,10-epoxy-12-octadecenoate, as a burn toxin. Biochemistry international. 1990; 21(3):573-9. doi: NULL. [PMID: 2222499]
  • F Engels, A A Drijver, F P Nijkamp. Modulation of the release of 9-hydroxy-octadecadienoic acid and other fatty acid derived mediators from guinea-pig pulmonary macrophages. International journal of immunopharmacology. 1990; 12(2):199-205. doi: 10.1016/0192-0561(90)90054-q. [PMID: 2329013]
  • H Kühn, R Wiesner, L Alder, T Schewe. Occurrence of free and esterified lipoxygenase products in leaves of Glechoma hederacea L. and other Labiatae. European journal of biochemistry. 1989 Dec; 186(1-2):155-62. doi: 10.1111/j.1432-1033.1989.tb15190.x. [PMID: 2598926]
  • M Hayakawa, T Ogawa, S Sugiyama, T Ozawa. Hydroxyl radical and leukotoxin biosynthesis in neutrophil plasma membrane. Biochemical and biophysical research communications. 1989 Jun; 161(3):1077-85. doi: 10.1016/0006-291x(89)91353-3. [PMID: 2545194]
  • T L Kaduce, P H Figard, R Leifur, A A Spector. Formation of 9-hydroxyoctadecadienoic acid from linoleic acid in endothelial cells. The Journal of biological chemistry. 1989 Apr; 264(12):6823-30. doi: . [PMID: 2496121]
  • U F Schade, I Burmeister, R Engel, M Reinke, D T Wolter. Lipoxygenase inhibitors suppress formation of tumor necrosis factor in vitro and in vivo. Lymphokine research. 1989; 8(3):245-50. doi: NULL. [PMID: 2506396]
  • T Ozawa, S Sugiyama. [Linoleic cascade and radical peroxidation reaction]. Nihon rinsho. Japanese journal of clinical medicine. 1988 Oct; 46(10):2161-6. doi: ". [PMID: 3241344]