Protochlorophyllide (BioDeep_00000005021)

   

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(5R)-23-(2-carboxyethyl)-17-ethenyl-12-ethyl-5-(methoxycarbonyl)-8,13,18,22-tetramethyl-6-oxo-2,25lambda5,26lambda5,27-tetraaza-1-magnesanonacyclo[12.11.1.1^{1,16}.0^{2,9}.0^{3,7}.0^{4,24}.0^{11,26}.0^{21,25}.0^{19,27}]heptacosa-3(7),4(24),8,10,12,14(26),15,17,19,21(25),22-undecaene-25,26-bis(ylium)-1,1-diuide

化学式: C35H32MgN4O5 (612.2223)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(otcml) 29.7%

分子结构信息

SMILES: CCC1=C(C)/C/2=C/c3c(C=C)c(C)c4/C=C\5/C(=C(CCC(=O)O)C(=N5)C5=c6c(c(C)/c(=C/C1=N2)/n6[Mg]n34)C(=O)[C@@H]5C(=O)OC)C
InChI: /q

描述信息

Protochlorophyllide is found in fruits. Protochlorophyllide is isolated from the seed husks of Cucurbita pepo Chlorophyll itself is bound to proteins and can transfer the absorbed energy in the required direction. Protochlorophyllide, differently, mostly occurs in the free form and under light conditions acts as photosensitizer, forming highly toxic free radicals. Hence plants need an efficient mechanism of regulating the amount of chlorophyll precursor. In angiosperms, this is done at the step of D-Aminolevulinic acid (ALA), one of the intermediate compounds in the biosynthesis pathway. Plants that are fed by ALA accumulate high and toxic levels of protochlorophyllide, so do the mutants with the damaged regulatory system. Despite of numerous past attempts to find the mutant that overacumulates protochlorophyllide under usual conditions, only one such gene (flu) is currently (2009) known. Flu (first described in ) is a nuclear - encoded, chloroplast - located protein that appears containing only protein - protein interaction sites. It is currently not know which other proteins interact through this linker. The regulatory protein is a transmembrane protein that is located in the thylakoid membrane. Later it was discovered that Tigrina mutants in barley, known long time ago, are also mutated in the same gene It is not obvious why no mutants of any other gene were observed; maybe mutations in other proteins, involved into the regulatory chain, are fatal. Flu is a single gene, not a member of the gene family. Protochlorophyllide , more accurate monovinyl protochlorophyllide, is an immediate precursor of chlorophyll a that lacks the phytol side chain of chlorophyll. Unlike chlorophyll, protochlorophyllide is highly fluorescent; mutants that accumulate it glow in red if irradiated by the blue lightIn Angiosperms, the last step, conversion of protochlorophyllide to chlorophyll, is light - dependent and such plants are pale (etiolated) if grown in the darkness. Gymnosperms, algae, and photosynthetic bacteria additionally have another, light - independent enzyme and grow green in the darkness as well. The enzyme that converts protochlorophyllide to chlorophyll is protochlorophyllide reductase , EC 1.3.1.33. There are two structurally unrelated proteins with this activity: the light - dependent and the dark - operative. The light dependent reductase needs light to operate. The dark - operative version is a completely different protein, consisting of three subunits that exhibit significant sequence similarity to the three subunits of nitrogenase, which catalyzes the formation of ammonia from dinitrogen. This enzyme might be evolutionary older but (being similar to nitrogenase) is highly sensitive to free oxygen and does not work if its concentration exceeds about 3 \\%. Hence the alternative, light dependent version needed to evolve

同义名列表

5 个代谢物同义名

(5R)-23-(2-carboxyethyl)-17-ethenyl-12-ethyl-5-(methoxycarbonyl)-8,13,18,22-tetramethyl-6-oxo-2,25lambda5,26lambda5,27-tetraaza-1-magnesanonacyclo[12.11.1.1^{1,16}.0^{2,9}.0^{3,7}.0^{4,24}.0^{11,26}.0^{21,25}.0^{19,27}]heptacosa-3(7),4(24),8,10,12,14(26),15,17,19,21(25),22-undecaene-25,26-bis(ylium)-1,1-diuide; {3-[(21R)-14-ethyl-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-9-vinyl-3,4-didehydrophorbin-3-yl-kappa(4)N(23),N(24),N(25),N(26)]propanoato(2-)}magnesium; Protochlorophyllide a; Protochlorophyllide; Protochlorophyllide



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 BFSP2, CAT, CPOX, DHFR, GGPS1, HID1, HMBS, LHPP, SRP54, TYRP1
Peripheral membrane protein 3 BFSP2, ERVW-1, HSD17B6
Endosome membrane 1 TYRP1
Endoplasmic reticulum membrane 1 PLN
Mitochondrion membrane 1 PLN
Nucleus 4 ALAD, LHPP, PIF1, SRP54
cytosol 11 ALAD, CAT, COP1, CPOX, DHFR, GGPS1, HID1, HMBS, LHPP, SRP54, UROD
mitochondrial membrane 1 PLN
nucleoplasm 5 ATP2B1, COP1, GGPS1, PIF1, UROD
Cell membrane 2 ATP2B1, BFSP2
Lipid-anchor 1 HID1
Cytoplasmic side 1 BFSP2
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 ATP2B1
Golgi apparatus membrane 1 HID1
Synapse 1 ATP2B1
cell cortex 1 BFSP2
glutamatergic synapse 1 ATP2B1
Golgi apparatus 1 HID1
mitochondrial inner membrane 1 FECH
presynaptic membrane 1 ATP2B1
plasma membrane 3 ATP2B1, BFSP2, ERVW-1
synaptic vesicle membrane 1 ATP2B1
Membrane 6 ATP2B1, CAT, COP1, CPOX, HID1, PLN
basolateral plasma membrane 1 ATP2B1
extracellular exosome 4 ALAD, ATP2B1, CAT, HID1
Lumenal side 1 HSD17B6
endoplasmic reticulum 3 HSD17B6, PLN, SRP54
perinuclear region of cytoplasm 2 GGPS1, PLN
mitochondrion 6 CAT, CPOX, DHFR, FECH, PIF1, PLN
protein-containing complex 2 CAT, COP1
intracellular membrane-bounded organelle 3 ATP2B1, CAT, HSD17B6
Microsome membrane 1 HSD17B6
Single-pass type I membrane protein 2 ERVW-1, TYRP1
extracellular region 2 ALAD, CAT
Single-pass membrane protein 1 PLN
mitochondrial matrix 2 CAT, FECH
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Z disc 1 GGPS1
Melanosome membrane 1 TYRP1
Cytoplasm, perinuclear region 1 GGPS1
Mitochondrion inner membrane 1 FECH
Cytoplasm, cytoskeleton 1 BFSP2
focal adhesion 1 CAT
Peroxisome 1 CAT
intracellular vesicle 1 TYRP1
sarcoplasmic reticulum 1 PLN
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
mitochondrial intermembrane space 1 CPOX
intermediate filament 1 BFSP2
lateral plasma membrane 1 ATP2B1
nuclear speck 3 COP1, LHPP, SRP54
NLRP3 inflammasome complex 1 COP1
cell projection 1 ATP2B1
cytoskeleton 1 BFSP2
chromosome, telomeric region 1 PIF1
Cytoplasm, cell cortex 1 BFSP2
Basolateral cell membrane 1 ATP2B1
Melanosome 1 TYRP1
Nucleus speckle 1 SRP54
Presynaptic cell membrane 1 ATP2B1
replication fork 1 PIF1
Cytoplasm, myofibril, sarcomere, Z line 1 GGPS1
ficolin-1-rich granule lumen 2 ALAD, CAT
secretory granule lumen 2 ALAD, CAT
Sarcoplasmic reticulum membrane 1 PLN
immunological synapse 1 ATP2B1
AIM2 inflammasome complex 1 COP1
clathrin-coated endocytic vesicle membrane 1 TYRP1
cytoplasmic microtubule 1 HID1
[Transmembrane protein]: Cell membrane 1 ERVW-1
[Surface protein]: Cell membrane 1 ERVW-1
signal recognition particle 1 SRP54
signal recognition particle, endoplasmic reticulum targeting 1 SRP54
Golgi medial cisterna 1 HID1
[Isoform 4]: Mitochondrion 1 PIF1
catalase complex 1 CAT
photoreceptor ribbon synapse 1 ATP2B1
Golgi trans cisterna 1 HID1
calcium ion-transporting ATPase complex 1 PLN
cytoplasmic side of Golgi membrane 1 HID1
IPAF inflammasome complex 1 COP1
protease inhibitor complex 1 COP1
Cul4A-RING E3 ubiquitin ligase complex 1 COP1
[Syncytin-1]: Virion 1 ERVW-1


文献列表

  • Veronika Balakhonova, Nadiia Pushkarova, Jan Skalak, Tereza Dobisova, Zuzana Benedikty, Klara Panzarova, Martin Trtilek, Jan Hejátko. Non-invasive Assay for Chlorophyll Biosynthesis Kinetics Determination during Early Stages of Arabidopsis De-etiolation. Journal of visualized experiments : JoVE. 2024 Jan; ?(203):. doi: 10.3791/66087. [PMID: 38284522]
  • Josephine Herbst, Xiaoqing Pang, Lena Roling, Bernhard Grimm. The novel tetratricopeptide-repeat protein TTP1 forms complexes with GluTR and POR during tetrapyrrole biosynthesis. Journal of experimental botany. 2023 Dec; ?(?):. doi: 10.1093/jxb/erad491. [PMID: 38070484]
  • Akiko Yoshihara, Keiko Kobayashi, Noriko Nagata, Sho Fujii, Hajime Wada, Koichi Kobayashi. Anionic lipids facilitate membrane development and protochlorophyllide biosynthesis in etioplasts. Plant physiology. 2023 Nov; ?(?):. doi: 10.1093/plphys/kiad604. [PMID: 37962588]
  • Ruiyuan Liu, Leng Wang, Yue Meng, Yiyi Tian, Fang Li, Huizhe Lu. Theoretical and Experimental Studies on Plant Light-Dependent Protochlorophyllide Oxidoreductase as a Novel Target for Searching Potential Herbicides. Journal of agricultural and food chemistry. 2023 Aug; 71(30):11654-11666. doi: 10.1021/acs.jafc.3c01783. [PMID: 37467369]
  • Ji-San Ha, Duckhyun Lhee, Robert A Andersen, Barbara Melkonian, Michael Melkonian, Hwan Su Yoon. Plastid Genome Evolution of Two Colony-Forming Benthic Ochrosphaera neapolitana Strains (Coccolithales, Haptophyta). International journal of molecular sciences. 2023 Jun; 24(13):. doi: 10.3390/ijms241310485. [PMID: 37445662]
  • Shuiling Ji, Bernhard Grimm, Peng Wang. Chloroplast SRP43 and SRP54 independently promote thermostability and membrane binding of light-dependent protochlorophyllide oxidoreductases. The Plant journal : for cell and molecular biology. 2023 Jun; ?(?):. doi: 10.1111/tpj.16339. [PMID: 37269173]
  • Tingting Fan, Lena Roling, Boris Hedtke, Bernhard Grimm. FC2 stabilizes POR and suppresses ALA formation in the tetrapyrrole biosynthesis pathway. The New phytologist. 2023 May; ?(?):. doi: 10.1111/nph.18952. [PMID: 37161708]
  • Minting Liang, Dachuan Gu, Zhiyang Lie, Yongyi Yang, Longxin Lu, Guangyi Dai, Tao Peng, Ling Deng, Feng Zheng, Xuncheng Liu. Regulation of chlorophyll biosynthesis by light-dependent acetylation of NADPH:protochlorophyll oxidoreductase A in Arabidopsis. Plant science : an international journal of experimental plant biology. 2023 Feb; 330(?):111641. doi: 10.1016/j.plantsci.2023.111641. [PMID: 36806610]
  • Anis Ali Shah, Nasim Ahmad Yasin, Muhammad Mudassir, Musarrat Ramzan, Iqtidar Hussain, Manzer H Siddiqui, Hayssam M Ali, Zunera Shabbir, Aamir Ali, Shakil Ahmed, Ritesh Kumar. Iron oxide nanoparticles and selenium supplementation improve growth and photosynthesis by modulating antioxidant system and gene expression of chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR) in arsenic-stressed Cucumis melo. Environmental pollution (Barking, Essex : 1987). 2022 Aug; 307(?):119413. doi: 10.1016/j.envpol.2022.119413. [PMID: 35525515]
  • Mohamad Abbas, Gunjan Sharma, Charlene Dambire, Julietta Marquez, Carlos Alonso-Blanco, Karina Proaño, Michael J Holdsworth. An oxygen-sensing mechanism for angiosperm adaptation to altitude. Nature. 2022 06; 606(7914):565-569. doi: 10.1038/s41586-022-04740-y. [PMID: 35650430]
  • Pedro Humberto Castro, Daniel Couto, Miguel Ângelo Santos, Sara Freitas, Tiago Lourenço, Eva Dias, Stéphanie Huguet, Jorge Marques da Silva, Rui Manuel Tavares, Eduardo Rodríguez Bejarano, Herlander Azevedo. SUMO E3 ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis. Plant physiology. 2022 06; 189(2):934-954. doi: 10.1093/plphys/kiac085. [PMID: 35238389]
  • Hassan Sameer, Guallar Victor, Solymosi Katalin, Aronsson Henrik. Elucidation of ligand binding and dimerization of NADPH:protochlorophyllide (Pchlide) oxidoreductase from pea (Pisum sativum L.) by structural analysis and simulations. Proteins. 2021 10; 89(10):1300-1314. doi: 10.1002/prot.26151. [PMID: 34021929]
  • Nikhil Job, Sourav Datta. PIF3/HY5 module regulates BBX11 to suppress protochlorophyllide levels in dark and promote photomorphogenesis in light. The New phytologist. 2021 04; 230(1):190-204. doi: 10.1111/nph.17149. [PMID: 33330975]
  • Wanqing Wang, Yuhong Li, Rongcheng Lin. Characterization of Seedling Greening Process in Plant Photomorphogenesis. Methods in molecular biology (Clifton, N.J.). 2021; 2297(?):95-103. doi: 10.1007/978-1-0716-1370-2_10. [PMID: 33656673]
  • Liangsheng Wang, Tatjana Kleine. Singlet Oxygen and Protochlorophyllide Detection in Arabidopsis thaliana. Methods in molecular biology (Clifton, N.J.). 2021; 2202(?):63-69. doi: 10.1007/978-1-0716-0896-8_5. [PMID: 32857346]
  • Shaowei Zhang, Alan R F Godwin, Aoife Taylor, Samantha J O Hardman, Thomas A Jowitt, Linus O Johannissen, Sam Hay, Clair Baldock, Derren J Heyes, Nigel S Scrutton. Dual role of the active site 'lid' regions of protochlorophyllide oxidoreductase in photocatalysis and plant development. The FEBS journal. 2021 01; 288(1):175-189. doi: 10.1111/febs.15542. [PMID: 32866986]
  • Michal Gabruk, Beata Mysliwa-Kurdziel. The origin, evolution and diversification of multiple isoforms of light-dependent protochlorophyllide oxidoreductase (LPOR): focus on angiosperms. The Biochemical journal. 2020 06; 477(12):2221-2236. doi: 10.1042/bcj20200323. [PMID: 32568402]
  • Guangyu E Chen, C Neil Hunter. Protochlorophyllide synthesis by recombinant cyclases from eukaryotic oxygenic phototrophs and the dependence on Ycf54. The Biochemical journal. 2020 06; 477(12):2313-2325. doi: 10.1042/bcj20200221. [PMID: 32469391]
  • Yuqing Zhao, Qiaohong Han, Chunbang Ding, Yan Huang, Jinqiu Liao, Tao Chen, Shiling Feng, Lijun Zhou, Zhongwei Zhang, Yanger Chen, Shu Yuan, Ming Yuan. Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening. International journal of molecular sciences. 2020 Feb; 21(4):. doi: 10.3390/ijms21041390. [PMID: 32092859]
  • Zhiyun Li, Weiping Mo, Liqiang Jia, Yong-Chao Xu, Weijiang Tang, Wenqiang Yang, Ya-Long Guo, Rongcheng Lin. Rice FLUORESCENT1 Is Involved in the Regulation of Chlorophyll. Plant & cell physiology. 2019 Oct; 60(10):2307-2318. doi: 10.1093/pcp/pcz129. [PMID: 31290959]
  • Tiantian Zhi, Zhou Zhou, Bo Qiu, Qi Zhu, Xingyao Xiong, Chunmei Ren. Loss of fumarylacetoacetate hydrolase causes light-dependent increases in protochlorophyllide and cell death in Arabidopsis. The Plant journal : for cell and molecular biology. 2019 05; 98(4):622-638. doi: 10.1111/tpj.14235. [PMID: 30666736]
  • V A Sineshchekov, O B Belyaeva. Regulation of Chlorophyll Biogenesis by Phytochrome A. Biochemistry. Biokhimiia. 2019 May; 84(5):491-508. doi: 10.1134/s0006297919050043. [PMID: 31234764]
  • Anna Laura Erdei, Annamária Kósa, Béla Böddi. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls. Photosynthesis research. 2019 Apr; 140(1):93-102. doi: 10.1007/s11120-018-0584-y. [PMID: 30225812]
  • Geng-Jen Jang, Jun-Yi Yang, Hsu-Liang Hsieh, Shu-Hsing Wu. Processing bodies control the selective translation for optimal development of Arabidopsis young seedlings. Proceedings of the National Academy of Sciences of the United States of America. 2019 03; 116(13):6451-6456. doi: 10.1073/pnas.1900084116. [PMID: 30850529]
  • Matthew J Terry, Sylwia M Kacprzak. A Simple Method for Quantification of Protochlorophyllide in Etiolated Arabidopsis Seedlings. Methods in molecular biology (Clifton, N.J.). 2019; 2026(?):169-177. doi: 10.1007/978-1-4939-9612-4_14. [PMID: 31317412]
  • Tzan-Chain Lee, Tin-Han Shih, Meng-Yuan Huang, Kuan-Hung Lin, Wen-Dar Huang, Chi-Ming Yang. Eliminating interference by anthocyanins when determining the porphyrin ratio of red plant leaves. Journal of photochemistry and photobiology. B, Biology. 2018 Oct; 187(?):106-112. doi: 10.1016/j.jphotobiol.2018.08.007. [PMID: 30121420]
  • Yi Zhang, Youjun Zhang, Heather E McFarlane, Toshihiro Obata, Andreas S Richter, Mark Lohse, Bernhard Grimm, Staffan Persson, Alisdair R Fernie, Patrick Giavalisco. Inhibition of TOR Represses Nutrient Consumption, Which Improves Greening after Extended Periods of Etiolation. Plant physiology. 2018 09; 178(1):101-117. doi: 10.1104/pp.18.00684. [PMID: 30049747]
  • Sho Fujii, Koichi Kobayashi, Noriko Nagata, Tatsuru Masuda, Hajime Wada. Digalactosyldiacylglycerol Is Essential for Organization of the Membrane Structure in Etioplasts. Plant physiology. 2018 08; 177(4):1487-1497. doi: 10.1104/pp.18.00227. [PMID: 29946018]
  • Tina B Schreier, Antoine Cléry, Michael Schläfli, Florian Galbier, Martha Stadler, Emilie Demarsy, Daniele Albertini, Benjamin A Maier, Felix Kessler, Stefan Hörtensteiner, Samuel C Zeeman, Oliver Kötting. Plastidial NAD-Dependent Malate Dehydrogenase: A Moonlighting Protein Involved in Early Chloroplast Development through Its Interaction with an FtsH12-FtsHi Protease Complex. The Plant cell. 2018 08; 30(8):1745-1769. doi: 10.1105/tpc.18.00121. [PMID: 29934433]
  • Yuqiu Wang, Jian Li, Xing-Wang Deng, Danmeng Zhu. Arabidopsis noncoding RNA modulates seedling greening during deetiolation. Science China. Life sciences. 2018 02; 61(2):199-203. doi: 10.1007/s11427-017-9187-9. [PMID: 29143279]
  • Xiaoqin Liu, Renlu Liu, Yue Li, Xing Shen, Shangwei Zhong, Hui Shi. EIN3 and PIF3 Form an Interdependent Module That Represses Chloroplast Development in Buried Seedlings. The Plant cell. 2017 12; 29(12):3051-3067. doi: 10.1105/tpc.17.00508. [PMID: 29114016]
  • Sho Fujii, Koichi Kobayashi, Noriko Nagata, Tatsuru Masuda, Hajime Wada. Monogalactosyldiacylglycerol Facilitates Synthesis of Photoactive Protochlorophyllide in Etioplasts. Plant physiology. 2017 Aug; 174(4):2183-2198. doi: 10.1104/pp.17.00304. [PMID: 28655777]
  • Daniel Hey, Maxi Rothbart, Josephine Herbst, Peng Wang, Jakob Müller, Daniel Wittmann, Kirsten Gruhl, Bernhard Grimm. LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in Arabidopsis thaliana. Plant physiology. 2017 Jun; 174(2):1037-1050. doi: 10.1104/pp.17.00505. [PMID: 28432258]
  • Haruki Yamamoto, Junko Kusumi, Hisanori Yamakawa, Yuichi Fujita. The Effect of Two Amino acid Residue Substitutions via RNA Editing on Dark-operative Protochlorophyllide Oxidoreductase in the Black Pine Chloroplasts. Scientific reports. 2017 05; 7(1):2377. doi: 10.1038/s41598-017-02630-2. [PMID: 28539650]
  • Jun-Ho Ha, Hyo-Jun Lee, Jae-Hoon Jung, Chung-Mo Park. Thermo-Induced Maintenance of Photo-oxidoreductases Underlies Plant Autotrophic Development. Developmental cell. 2017 04; 41(2):170-179.e4. doi: 10.1016/j.devcel.2017.03.005. [PMID: 28392197]
  • Andrea Kakuszi, Katalin Solymosi, Béla Böddi. Transformation of plastids in soil-shaded lowermost hypocotyl segments of bean (Phaseolus vulgaris) during a 60-day cultivation period. Physiologia plantarum. 2017 Apr; 159(4):483-491. doi: 10.1111/ppl.12519. [PMID: 27734513]
  • Michal Gabruk, Beata Mysliwa-Kurdziel, Jerzy Kruk. MGDG, PG and SQDG regulate the activity of light-dependent protochlorophyllide oxidoreductase. The Biochemical journal. 2017 03; 474(7):1307-1320. doi: 10.1042/bcj20170047. [PMID: 28188256]
  • Hongjia Liu, Qingzhu Li, Feng Yang, Fuyuan Zhu, Yi Sun, Yuezhi Tao, Clive Lo. Differential Regulation of Protochlorophyllide Oxidoreductase Abundances by VIRESCENT 5A (OsV5A) and VIRESCENT 5B (OsV5B) in Rice Seedlings. Plant & cell physiology. 2016 Nov; 57(11):2392-2402. doi: 10.1093/pcp/pcw151. [PMID: 27565208]
  • Anna Laura Erdei, Annamária Kósa, Lilla Kovács-Smirová, Béla Böddi. Wavelength-dependent photooxidation and photoreduction of protochlorophyllide and protochlorophyll in the innermost leaves of cabbage (Brassica oleracea var. capitata L.). Photosynthesis research. 2016 Apr; 128(1):73-83. doi: 10.1007/s11120-015-0200-3. [PMID: 26519365]
  • Janina Apitz, Kenji Nishimura, Judith Schmied, Anja Wolf, Boris Hedtke, Klaas J van Wijk, Bernhard Grimm. Posttranslational Control of ALA Synthesis Includes GluTR Degradation by Clp Protease and Stabilization by GluTR-Binding Protein. Plant physiology. 2016 04; 170(4):2040-51. doi: 10.1104/pp.15.01945. [PMID: 26884485]
  • Verdiana Steccanella, Mats Hansson, Poul Erik Jensen. Linking chlorophyll biosynthesis to a dynamic plastoquinone pool. Plant physiology and biochemistry : PPB. 2015 Dec; 97(?):207-16. doi: 10.1016/j.plaphy.2015.10.009. [PMID: 26480470]
  • Gang Xu, Haiyan Guo, Dong Zhang, Dongqin Chen, Zhimin Jiang, Rongcheng Lin. REVEILLE1 promotes NADPH: protochlorophyllide oxidoreductase A expression and seedling greening in Arabidopsis. Photosynthesis research. 2015 Dec; 126(2-3):331-40. doi: 10.1007/s11120-015-0146-5. [PMID: 25910753]
  • Alessio Garrone, Nataliya Archipowa, Peter F Zipfel, Gudrun Hermann, Benjamin Dietzek. Plant Protochlorophyllide Oxidoreductases A and B: CATALYTIC EFFICIENCY AND INITIAL REACTION STEPS. The Journal of biological chemistry. 2015 Nov; 290(47):28530-28539. doi: 10.1074/jbc.m115.663161. [PMID: 26408201]
  • Annamária Kósa, Éva Preininger, Béla Böddi. Nitrogen deficiency hinders etioplast development in stems of dark-grown pea (Pisum sativum) shoot cultures. Physiologia plantarum. 2015 Nov; 155(3):330-7. doi: 10.1111/ppl.12339. [PMID: 25825156]
  • Jana Kopečná, Jan Pilný, Vendula Krynická, Aleš Tomčala, Mihály Kis, Zoltan Gombos, Josef Komenda, Roman Sobotka. Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization in Synechocystis sp. Strain PCC 6803. Plant physiology. 2015 Oct; 169(2):1307-17. doi: 10.1104/pp.15.01150. [PMID: 26269547]
  • Michal Gabruk, Beata Mysliwa-Kurdziel. Light-Dependent Protochlorophyllide Oxidoreductase: Phylogeny, Regulation, and Catalytic Properties. Biochemistry. 2015 Sep; 54(34):5255-62. doi: 10.1021/acs.biochem.5b00704. [PMID: 26230427]
  • Sylviane Liotenberg, Anne-Soisig Steunou, Anne Durand, Marie-Line Bourbon, David Bollivar, Mats Hansson, Chantal Astier, Soufian Ouchane. Oxygen-dependent copper toxicity: targets in the chlorophyll biosynthesis pathway identified in the copper efflux ATPase CopA deficient mutant. Environmental microbiology. 2015 Jun; 17(6):1963-76. doi: 10.1111/1462-2920.12733. [PMID: 25471928]
  • Satpal Turan, Baishnab C Tripathy. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiologia plantarum. 2015 Mar; 153(3):477-91. doi: 10.1111/ppl.12250. [PMID: 25132047]
  • Michael Scharfenberg, Lukas Mittermayr, Edda VON Roepenack-Lahaye, Hagen Schlicke, Bernhard Grimm, Dario Leister, Tatjana Kleine. Functional characterization of the two ferrochelatases in Arabidopsis thaliana. Plant, cell & environment. 2015 Feb; 38(2):280-98. doi: 10.1111/pce.12248. [PMID: 24329537]
  • Michał Gabruk, Anna Stecka, Wojciech Strzałka, Jerzy Kruk, Kazimierz Strzałka, Beata Mysliwa-Kurdziel. Photoactive protochlorophyllide-enzyme complexes reconstituted with PORA, PORB and PORC proteins of A. thaliana: fluorescence and catalytic properties. PloS one. 2015; 10(2):e0116990. doi: 10.1371/journal.pone.0116990. [PMID: 25659137]
  • Andrea Kakuszi, Béla Böddi. Light piping activates chlorophyll biosynthesis in the under-soil hypocotyl section of bean seedlings. Journal of photochemistry and photobiology. B, Biology. 2014 Nov; 140(?):1-7. doi: 10.1016/j.jphotobiol.2014.06.015. [PMID: 25063979]
  • O B Belyaeva, F F Litvin. Mechanisms of phototransformation of protochlorophyllide into chlorophyllide. Biochemistry. Biokhimiia. 2014 Apr; 79(4):337-48. doi: 10.1134/s0006297914040038. [PMID: 24910207]
  • Shangwei Zhong, Hui Shi, Chang Xue, Ning Wei, Hongwei Guo, Xing Wang Deng. Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proceedings of the National Academy of Sciences of the United States of America. 2014 Mar; 111(11):3913-20. doi: 10.1073/pnas.1402491111. [PMID: 24599595]
  • Janina Apitz, Judith Schmied, Maik J Lehmann, Boris Hedtke, Bernhard Grimm. GluTR2 complements a hema1 mutant lacking glutamyl-tRNA reductase 1, but is differently regulated at the post-translational level. Plant & cell physiology. 2014 Mar; 55(3):645-57. doi: 10.1093/pcp/pcu016. [PMID: 24449654]
  • Minoru Ueda, Ayumi Tanaka, Kazuhiko Sugimoto, Toshiharu Shikanai, Yoshiki Nishimura. chlB requirement for chlorophyll biosynthesis under short photoperiod in Marchantia polymorpha L. Genome biology and evolution. 2014 Mar; 6(3):620-8. doi: 10.1093/gbe/evu045. [PMID: 24586029]
  • Neveen B Talaat. RNAi based simultaneous silencing of all forms of light-dependent NADPH:protochlorophyllide oxidoreductase genes result in the accumulation of protochlorophyllide in tobacco (Nicotiana tabacum). Plant physiology and biochemistry : PPB. 2013 Oct; 71(?):31-6. doi: 10.1016/j.plaphy.2013.06.025. [PMID: 23867601]
  • Jae-Yong Lee, Ho-Seok Lee, Ji-Young Song, Young Jun Jung, Steffen Reinbothe, Youn-Il Park, Sang Yeol Lee, Hyun-Sook Pai. Cell growth defect factor1/chaperone-like protein of POR1 plays a role in stabilization of light-dependent protochlorophyllide oxidoreductase in Nicotiana benthamiana and Arabidopsis. The Plant cell. 2013 Oct; 25(10):3944-60. doi: 10.1105/tpc.113.111096. [PMID: 24151298]
  • Joanna M Grzyb, Katalin Solymosi, Kazimierz Strzałka, Beata Mysliwa-Kurdziel. Visualization and characterization of prolamellar bodies with atomic force microscopy. Journal of plant physiology. 2013 Sep; 170(14):1217-27. doi: 10.1016/j.jplph.2013.04.017. [PMID: 23777838]
  • Beáta Vitányi, Annamária Kósa, Katalin Solymosi, Béla Böddi. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions. Physiologia plantarum. 2013 Jun; 148(2):307-15. doi: 10.1111/j.1399-3054.2012.01714.x. [PMID: 23067197]
  • Beata Mysliwa-Kurdziel, Jerzy Kruk, Kazimierz Strzałka. Protochlorophyllide in model systems--an approach to in vivo conditions. Biophysical chemistry. 2013 May; 175-176(?):28-38. doi: 10.1016/j.bpc.2013.02.002. [PMID: 23524289]
  • Katalin Solymosi, Zoltán Tuba, Béla Böddi. Desiccoplast-etioplast-chloroplast transformation under rehydration of desiccated poikilochlorophyllous Xerophyta humilis leaves in the dark and upon subsequent illumination. Journal of plant physiology. 2013 Apr; 170(6):583-90. doi: 10.1016/j.jplph.2012.11.022. [PMID: 23415648]
  • Beata Mysliwa-Kurdziel, Jerzy Kruk, Kazimierz Strzałka. Protochlorophyllide and protochlorophyll in model membranes - an influence of hydrophobic side chain moiety. Biochimica et biophysica acta. 2013 Mar; 1828(3):1075-82. doi: 10.1016/j.bbamem.2012.12.007. [PMID: 23261391]
  • Jana Kopečná, Roman Sobotka, Josef Komenda. Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of Photosystem I and Photosystem II in the cyanobacterium Synechocystis PCC 6803. Planta. 2013 Feb; 237(2):497-508. doi: 10.1007/s00425-012-1761-4. [PMID: 23011568]
  • Pingrong Wang, Chunmei Wan, Zhengjun Xu, Pingyu Wang, Wenming Wang, Changhui Sun, Xiaozhi Ma, Yunhua Xiao, Jianqing Zhu, Xiaoling Gao, Xiaojian Deng. One divinyl reductase reduces the 8-vinyl groups in various intermediates of chlorophyll biosynthesis in a given higher plant species, but the isozyme differs between species. Plant physiology. 2013 Jan; 161(1):521-34. doi: 10.1104/pp.112.208421. [PMID: 23154534]
  • Annamária Kósa, Béla Böddi. Dominance of a 675 nm chlorophyll(ide) form upon selective 632.8 or 654 nm laser illumination after partial protochlorophyllide phototransformation. Photosynthesis research. 2012 Dec; 114(2):111-20. doi: 10.1007/s11120-012-9782-1. [PMID: 23104011]
  • Ming Yuan, Da-Wei Zhang, Zhong-Wei Zhang, Yang-Er Chen, Shu Yuan, Yi-Ran Guo, Hong-Hui Lin. Assembly of NADPH: protochlorophyllide oxidoreductase complex is needed for effective greening of barley seedlings. Journal of plant physiology. 2012 Sep; 169(13):1311-6. doi: 10.1016/j.jplph.2012.05.010. [PMID: 22704664]
  • Nigel S Scrutton, Marie Louise Groot, Derren J Heyes. Excited state dynamics and catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Physical chemistry chemical physics : PCCP. 2012 Jul; 14(25):8818-24. doi: 10.1039/c2cp23789j. [PMID: 22419074]
  • Xiao-Gang Liu, Hong Xu, Jing-Ya Zhang, Guang-Wang Liang, Ying-Tuan Liu, Ai-Guang Guo. Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85. Physiologia plantarum. 2012 Jul; 145(3):384-94. doi: 10.1111/j.1399-3054.2012.01604.x. [PMID: 22380525]
  • Sandra K Tanz, Joachim Kilian, Christoffer Johnsson, Klaus Apel, Ian Small, Klaus Harter, Dierk Wanke, Barry Pogson, Verónica Albrecht. The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LHCB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings. The Plant journal : for cell and molecular biology. 2012 Mar; 69(5):743-54. doi: 10.1111/j.1365-313x.2011.04833.x. [PMID: 22040291]
  • Beata Mysliwa-Kurdziel, Anna Stecka, Kazimierz Strzalka. Initial stages of angiosperm greening monitored by low-temperature fluorescence spectra and fluorescence lifetimes. Methods in molecular biology (Clifton, N.J.). 2012; 875(?):231-9. doi: 10.1007/978-1-61779-806-1_11. [PMID: 22573443]
  • Beata Myśliwa-Kurdziel, Małgorzata Jemioła-Rzemińska, Elżbieta Turek, Kazimierz Strzałka, Przemysław Malec. Variations in xanthophyll composition in etiolated seedlings of Arabidopsis thaliana correlate with protochlorophyllide accumulation. Acta biochimica Polonica. 2012; 59(1):57-60. doi: 10.18388/abp.2012_2171. [PMID: 22428143]
  • Sasmita Mohanty, Baishnab C Tripathy. Early and late plastid development in response to chill stress and heat stress in wheat seedlings. Protoplasma. 2011 Oct; 248(4):725-36. doi: 10.1007/s00709-010-0235-4. [PMID: 21063735]
  • Judith Schmied, Boris Hedtke, Bernhard Grimm. Overexpression of HEMA1 encoding glutamyl-tRNA reductase. Journal of plant physiology. 2011 Aug; 168(12):1372-9. doi: 10.1016/j.jplph.2010.12.010. [PMID: 21272955]
  • Soizic Cheminant, Michael Wild, Florence Bouvier, Sandra Pelletier, Jean-Pierre Renou, Mathieu Erhardt, Scott Hayes, Matthew J Terry, Pascal Genschik, Patrick Achard. DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis. The Plant cell. 2011 May; 23(5):1849-60. doi: 10.1105/tpc.111.085233. [PMID: 21571951]
  • Olaf Czarnecki, Enrico Peter, Bernhard Grimm. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis. Methods in molecular biology (Clifton, N.J.). 2011; 775(?):357-85. doi: 10.1007/978-1-61779-237-3_20. [PMID: 21863454]
  • Christiane Reinbothe, Majida El Bakkouri, Frank Buhr, Norifumi Muraki, Jiro Nomata, Genji Kurisu, Yuichi Fujita, Steffen Reinbothe. Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends in plant science. 2010 Nov; 15(11):614-24. doi: 10.1016/j.tplants.2010.07.002. [PMID: 20801074]
  • Ming Yuan, Shu Yuan, Zhong-Wei Zhang, Fei Xu, Yang-Er Chen, Jun-Bo Du, Hong-Hui Lin. Putative mutation mechanism and light responses of a protochlorophyllide oxidoreductase-less barley mutant NYB. Plant & cell physiology. 2010 Aug; 51(8):1361-71. doi: 10.1093/pcp/pcq097. [PMID: 20616380]
  • Pingrong Wang, Jiaxu Gao, Chunmei Wan, Fantao Zhang, Zhengjun Xu, Xiaoqun Huang, Xiaoqiu Sun, Xiaojian Deng. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant physiology. 2010 Jul; 153(3):994-1003. doi: 10.1104/pp.110.158477. [PMID: 20484022]
  • Mohammad Reza Amirjani. Protochlorophyllide spectral forms. Pakistan journal of biological sciences : PJBS. 2010 Jun; 13(12):563-76. doi: 10.3923/pjbs.2010.563.576. [PMID: 21061907]
  • Andreas Richter, Enrico Peter, Yvonne Pörs, Stephan Lorenzen, Bernhard Grimm, Olaf Czarnecki. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Plant & cell physiology. 2010 May; 51(5):670-81. doi: 10.1093/pcp/pcq047. [PMID: 20375109]
  • Eva Hideg, Beáta Vitányi, Annamária Kósa, Katalin Solymosi, Károly Bóka, Sungae Won, Yumi Inoue, Robert W Ridge, Béla Böddi. Reactive oxygen species from type-I photosensitized reactions contribute to the light-induced wilting of dark-grown pea (Pisum sativum) epicotyls. Physiologia plantarum. 2010 Apr; 138(4):485-92. doi: 10.1111/j.1399-3054.2009.01329.x. [PMID: 20002326]
  • Beata Myśliwa-Kurdziel, Kazimierz Strzałka. [Light-induced reduction of protochlorophyllide in angiosperms and chloroplast development]. Postepy biochemii. 2010; 56(4):418-26. doi: . [PMID: 21473046]
  • Andrea Szenzenstein, Annamária Kósa, Katalin Solymosi, Eva Sárvári, Béla Böddi. Preferential regeneration of the NADPH: protochlorophyllide oxidoreductase oligomer complexes in pea epicotyls after bleaching. Physiologia plantarum. 2010 Jan; 138(1):102-12. doi: 10.1111/j.1399-3054.2009.01296.x. [PMID: 20070845]
  • O B Belyaeva, F F Litvin. Pathways of formation of pigment forms at the terminal photobiochemical stage of chlorophyll biosynthesis. Biochemistry. Biokhimiia. 2009 Dec; 74(13):1535-44. doi: 10.1134/s0006297909130070. [PMID: 20210707]
  • Jessica Shui, Eileen Saunders, Robert Needleman, Michelle Nappi, Joseph Cooper, Lauren Hall, David Kehoe, Emily Stowe-Evans. Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. Plant & cell physiology. 2009 Aug; 50(8):1507-21. doi: 10.1093/pcp/pcp095. [PMID: 19561333]
  • Viktor Demko, Andrej Pavlovic, Danka Valková, L'udmila Slováková, Bernhard Grimm, Ján Hudák. A novel insight into the regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. Planta. 2009 Jun; 230(1):165-76. doi: 10.1007/s00425-009-0933-3. [PMID: 19404675]
  • Shinji Masuda, Rei Ikeda, Tatsuru Masuda, Haruki Hashimoto, Tohru Tsuchiya, Hiroko Kojima, Jiro Nomata, Yuichi Fujita, Mamoru Mimuro, Hiroyuki Ohta, Ken-Ichiro Takamiya. Prolamellar bodies formed by cyanobacterial protochlorophyllide oxidoreductase in Arabidopsis. The Plant journal : for cell and molecular biology. 2009 Jun; 58(6):952-60. doi: 10.1111/j.1365-313x.2009.03833.x. [PMID: 19222806]
  • Patrick G Stephenson, Christian Fankhauser, Matthew J Terry. PIF3 is a repressor of chloroplast development. Proceedings of the National Academy of Sciences of the United States of America. 2009 May; 106(18):7654-9. doi: 10.1073/pnas.0811684106. [PMID: 19380736]
  • Núria S Coll, Antoine Danon, Jörg Meurer, Won Kyong Cho, Klaus Apel. Characterization of soldat8, a suppressor of singlet oxygen-induced cell death in Arabidopsis seedlings. Plant & cell physiology. 2009 Apr; 50(4):707-18. doi: 10.1093/pcp/pcp036. [PMID: 19273469]
  • M Rafiqul Islam, Shimpei Aikawa, Takafumi Midorikawa, Yasuhiro Kashino, Kazuhiko Satoh, Hiroyuki Koike. slr1923 of Synechocystis sp. PCC6803 is essential for conversion of 3,8-divinyl(proto)chlorophyll(ide) to 3-monovinyl(proto)chlorophyll(ide). Plant physiology. 2008 Oct; 148(2):1068-81. doi: 10.1104/pp.108.123117. [PMID: 18715956]
  • Henrik Aronsson, Mark A Schöttler, Amélie A Kelly, Christer Sundqvist, Peter Dörmann, Sazzad Karim, Paul Jarvis. Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant physiology. 2008 Sep; 148(1):580-92. doi: 10.1104/pp.108.123372. [PMID: 18641085]
  • Beata Myśliwa-Kurdziel, Katalin Solymosi, Jerzy Kruk, Béla Böddi, Kazimierz Strzałka. Solvent effects on fluorescence properties of protochlorophyll and its derivatives with various porphyrin side chains. European biophysics journal : EBJ. 2008 Sep; 37(7):1185-93. doi: 10.1007/s00249-008-0288-x. [PMID: 18340441]
  • Qing Wei, Wenbin Zhou, Guangzhen Hu, Jiamian Wei, Hongquan Yang, Jirong Huang. Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls. Cell research. 2008 Sep; 18(9):949-60. doi: 10.1038/cr.2008.271. [PMID: 19160542]
  • Frank Buhr, Majida El Bakkouri, Oscar Valdez, Stephan Pollmann, Nikolai Lebedev, Steffen Reinbothe, Christiane Reinbothe. Photoprotective role of NADPH:protochlorophyllide oxidoreductase A. Proceedings of the National Academy of Sciences of the United States of America. 2008 Aug; 105(34):12629-34. doi: 10.1073/pnas.0803950105. [PMID: 18723681]
  • Jennifer Moon, Ling Zhu, Hui Shen, Enamul Huq. PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2008 Jul; 105(27):9433-8. doi: 10.1073/pnas.0803611105. [PMID: 18591656]
  • Hisashi Ito, Makio Yokono, Ryouichi Tanaka, Ayumi Tanaka. Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803. The Journal of biological chemistry. 2008 Apr; 283(14):9002-11. doi: 10.1074/jbc.m708369200. [PMID: 18230620]
  • Andrea Szenzenstein, Annamária Kósa, Béla Böddi. Biological variability in the ratios of protochlorophyllide forms in leaves and epicotyls of dark-grown pea (Pisum sativum L.) seedlings (a statistical method to resolve complex spectra). Journal of photochemistry and photobiology. B, Biology. 2008 Feb; 90(2):88-94. doi: 10.1016/j.jphotobiol.2007.11.006. [PMID: 18178095]
  • O B Belyaeva, F F Litvin. Photoactive pigment-enzyme complexes of chlorophyll precursor in plant leaves. Biochemistry. Biokhimiia. 2007 Dec; 72(13):1458-77. doi: 10.1134/s0006297907130044. [PMID: 18282136]
  • Simon P Gough, Kamila Rzeznicka, Ragna Peterson Wulff, Jose da Cruz Francisco, Andreas Hansson, Poul Erik Jensen, Mats Hansson. A new method for isolating physiologically active Mg-protoporphyrin monomethyl ester, the substrate of the cyclase enzyme of the chlorophyll biosynthetic pathway. Plant physiology and biochemistry : PPB. 2007 Dec; 45(12):932-6. doi: 10.1016/j.plaphy.2007.09.001. [PMID: 17949988]