Classification Term: 169754

Metallotetrapyrroles (ontology term: c69c9d91fb48954de14cae295f05cc78)

found 9 associated metabolites at sub_class metabolite taxonomy ontology rank level.

Ancestor: Tetrapyrroles

Child Taxonomies: There is no child term of current ontology term.

Chlorophyll a

(5R,22S,23S)-17-ethenyl-12-ethyl-5-(methoxycarbonyl)-8,13,18,22-tetramethyl-6-oxo-23-(3-oxo-3-{[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-2,25lambda5,26lambda5,27-tetraaza-1-magnesanonacyclo[12.11.1.1^{1,16}.0^{2,9}.0^{3,7}.0^{4,24}.0^{11,26}.0^{21,25}.0^{19,27}]heptacosa-3,7,9,11(26),12,14,16,18,20,24-decaene-25,26-bis(ylium)-1,1-diuide

C55H72MgN4O5 (892.5352922)


Chlorophyll a is found in common wheat. Chlorophyll a is used in food processing as an appearance control agent for colours.Chlorophyll is a chlorin pigment, which is structurally similar to and produced through the same metabolic pathway as other porphyrin pigments such as heme. At the center of the chlorin ring is a magnesium ion. For the structures depicted in this article, some of the ligands attached to the Mg2+ center are omitted for clarity. The chlorin ring can have several different side chains, usually including a long phytol chain. There are a few different forms that occur naturally, but the most widely distributed form in terrestrial plants is chlorophyll a. The general structure of chlorophyll a was elucidated by Hans Fischer in 1940, and by 1960, when most of the stereochemistry of chlorophyll a was known, Robert Burns Woodward published a total synthesis of the molecule as then known. In 1967, the last remaining stereochemical elucidation was completed by Ian Fleming, and in 1990 Woodward and co-authors published an updated synthesis. Chlorophyll is a green pigment found in most plants, algae, and cyanobacteria. Its name is derived from the Greek (chloros "green") and (phyllon "leaf"). Chlorophyll absorbs light most strongly in the blue and red but poorly in the green portions of the electromagnetic spectrum, hence the green colour of chlorophyll-containing tissues such as plant leaves. Chlorophyll itself is bound to proteins and can transfer the absorbed energy in the required direction. Protochlorophyllide, differently, mostly occur in the free form and under light conditions act as photosensitizer, forming highly toxic free radicals. Hence plants need an efficient mechanism of regulating the amount of chlorophyll precursor. In angiosperms, this is done at the step of aminolevulinic acid (ALA), one of the intermediate compounds in the biosynthesis pathway. Plants that are fed by ALA accumulate high and toxic levels of protochlorophyllide, so do the mutants with the damaged regulatory system. Chlorosis is a condition in which leaves produce insufficient chlorophyll, turning them yellow. Chlorosis can be caused by a nutrient deficiency including iron - called iron chlorosis, or in a shortage of magnesium or nitrogen. Soil pH sometimes play a role in nutrient-caused chlorosis, many plants are adapted to grow in soils with specific pHs and their ability to absorb nutrients from the soil can be dependent on the soil pH. Chlorosis can also be caused by pathogens including viruses, bacteria and fungal infections or sap sucking insects It is used in food processing as an appearance control agent for colours

   
   

Protochlorophyllide

(5R)-23-(2-carboxyethyl)-17-ethenyl-12-ethyl-5-(methoxycarbonyl)-8,13,18,22-tetramethyl-6-oxo-2,25lambda5,26lambda5,27-tetraaza-1-magnesanonacyclo[12.11.1.1^{1,16}.0^{2,9}.0^{3,7}.0^{4,24}.0^{11,26}.0^{21,25}.0^{19,27}]heptacosa-3(7),4(24),8,10,12,14(26),15,17,19,21(25),22-undecaene-25,26-bis(ylium)-1,1-diuide

C35H32MgN4O5 (612.2223081999999)


Protochlorophyllide is found in fruits. Protochlorophyllide is isolated from the seed husks of Cucurbita pepo Chlorophyll itself is bound to proteins and can transfer the absorbed energy in the required direction. Protochlorophyllide, differently, mostly occurs in the free form and under light conditions acts as photosensitizer, forming highly toxic free radicals. Hence plants need an efficient mechanism of regulating the amount of chlorophyll precursor. In angiosperms, this is done at the step of D-Aminolevulinic acid (ALA), one of the intermediate compounds in the biosynthesis pathway. Plants that are fed by ALA accumulate high and toxic levels of protochlorophyllide, so do the mutants with the damaged regulatory system. Despite of numerous past attempts to find the mutant that overacumulates protochlorophyllide under usual conditions, only one such gene (flu) is currently (2009) known. Flu (first described in ) is a nuclear - encoded, chloroplast - located protein that appears containing only protein - protein interaction sites. It is currently not know which other proteins interact through this linker. The regulatory protein is a transmembrane protein that is located in the thylakoid membrane. Later it was discovered that Tigrina mutants in barley, known long time ago, are also mutated in the same gene It is not obvious why no mutants of any other gene were observed; maybe mutations in other proteins, involved into the regulatory chain, are fatal. Flu is a single gene, not a member of the gene family. Protochlorophyllide , more accurate monovinyl protochlorophyllide, is an immediate precursor of chlorophyll a that lacks the phytol side chain of chlorophyll. Unlike chlorophyll, protochlorophyllide is highly fluorescent; mutants that accumulate it glow in red if irradiated by the blue lightIn Angiosperms, the last step, conversion of protochlorophyllide to chlorophyll, is light - dependent and such plants are pale (etiolated) if grown in the darkness. Gymnosperms, algae, and photosynthetic bacteria additionally have another, light - independent enzyme and grow green in the darkness as well. The enzyme that converts protochlorophyllide to chlorophyll is protochlorophyllide reductase , EC 1.3.1.33. There are two structurally unrelated proteins with this activity: the light - dependent and the dark - operative. The light dependent reductase needs light to operate. The dark - operative version is a completely different protein, consisting of three subunits that exhibit significant sequence similarity to the three subunits of nitrogenase, which catalyzes the formation of ammonia from dinitrogen. This enzyme might be evolutionary older but (being similar to nitrogenase) is highly sensitive to free oxygen and does not work if its concentration exceeds about 3 \\%. Hence the alternative, light dependent version needed to evolve

   
   
   

chlorophyllide b

magnesium(2+) ion 22-(2-carboxyethyl)-16-ethenyl-11-ethyl-3-(methoxycarbonyl)-17,21,26-trimethyl-12-(oxidomethylidene)-4-oxo-7,23,24,25-tetraazahexacyclo[18.2.1.1⁵,⁸.1¹⁰,¹³.1¹⁵,¹⁸.0²,⁶]hexacosa-1,5(26),6,8,10,13(25),14,16,18,20(23)-decaen-24-ide

C35H32MgN4O6 (628.2172232)


Chlorophyllide b is a member of the class of compounds known as metallotetrapyrroles. Metallotetrapyrroles are polycyclic compounds containing a tetrapyrrole skeleton combined with a metal atom. Chlorophyllide b is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). Chlorophyllide b can be found in a number of food items such as cardoon, peach (variety), lime, and loquat, which makes chlorophyllide b a potential biomarker for the consumption of these food products.

   
   
   

adenosylcobinamide phosphate

adenosylcobinamide phosphate

C58H85CoN16O14P (1319.5500459999998)


An O-phosphocorrinoid that is cobinamide phosphate having a 5-adenosyl group attached to the central cobalt atom.