Gene Association: GPR83

UniProt Search: GPR83 (PROTEIN_CODING)
Function Description: G protein-coupled receptor 83

found 21 associated metabolites with current gene based on the text mining result from the pubmed database.

Taurine

2-aminoethanesulfonic acid

C2H7NO3S (125.0147)


Essential nutrient obtained from diet and by in vivo synthysis from methionine and cysteine. Present in meats, fish, legumes, human milk, molluscs and other foods. Dietary supplement, e.g. in Red Bull drink. Taurine is a sulfur amino acid like methionine, cystine, cysteine and homocysteine. It is a lesser-known amino acid because it is not incorporated into the structural building blocks of protein. Yet taurine is an essential amino acid in pre-term and newborn infants of humans and many other species. Adults can synthesize their own taurine, yet are probably dependent in part on dietary taurine. Taurine is abundant in the brain, heart, breast, gallbladder and kidney and has important roles in health and disease in these organs. Taurine has many diverse biological functions serving as a neurotransmitter in the brain, a stabilizer of cell membranes and a facilitator in the transport of ions such as sodium, potassium, calcium and magnesium. Taurine is highly concentrated in animal and fish protein, which are good sources of dietary taurine. It can be synthesized by the body from cysteine when vitamin B6 is present. Deficiency of taurine occurs in premature infants and neonates fed formula milk, and in various disease states. Inborn errors of taurine metabolism have been described. OMIM 168605, an unusual neuropsychiatric disorder inherited in an autosomal dominant fashion through 3 generations of a family. Symptoms began late in the fifth decade in 6 affected persons and death occurred after 4 to 6 years. The earliest and most prominent symptom was mental depression not responsive to antidepressant drugs or electroconvulsive therapy. Sleep disturbances, exhaustion and marked weight loss were features. Parkinsonism developed later, and respiratory failure occurred terminally. OMIM 145350 describes congestive cardiomyopathy and markedly elevated urinary taurine levels (about 5 times normal). Other family members had late or holosystolic mitral valve prolapse and elevated urinary taurine values (about 2.5 times normal). In 2 with mitral valve prolapse, congestive cardiomyopathy eventually developed while the amounts of urinary taurine doubled. Taurine, after GABA, is the second most important inhibitory neurotransmitter in the brain. Its inhibitory effect is one source of taurines anticonvulsant and antianxiety properties. It also lowers glutamic acid in the brain, and preliminary clinical trials suggest taurine may be useful in some forms of epilepsy. Taurine in the brain is usually associated with zinc or manganese. The amino acids alanine and glutamic acid, as well as pantothenic acid, inhibit taurine metabolism while vitamins A and B6, zinc and manganese help build taurine. Cysteine and B6 are the nutrients most directly involved in taurine synthesis. Taurine levels have been found to decrease significantly in many depressed patients. One reason that the findings are not entirely clear is because taurine is often elevated in the blood of epileptics who need it. It is often difficult to distinguish compensatory changes in human biochemistry from true metabolic or deficiency disease. Low levels of taurine are found in retinitis pigmentosa. Taurine deficiency in experimental animals produces degeneration of light-sensitive cells. Therapeutic applications of taurine to eye disease are likely to be forthcoming. Taurine has many important metabolic roles. Supplements can stimulate prolactin and insulin release. The parathyroid gland makes a peptide hormone called glutataurine (glutamic acid-taurine), which further demonstrates taurines role in endocrinology. Taurine increases bilirubin and cholesterol excretion in bile, critical to normal gallbladder function. It seems to inhibit the effect of morphine and potentiates the effects of opiate antagonists. Low plasma taurine levels have been found in a variety of conditions, i.e., depression, hypertension, hypothyroidism, gout, institutionalized patients, infertility, obesity, kidney fa... Taurine is a sulfur amino acid like methionine, cystine, cysteine, and homocysteine. It is a lesser-known amino acid because it is not incorporated into the structural building blocks of protein. Yet taurine is an essential amino acid in pre-term and newborn infants of humans and many other species. Adults can synthesize their own taurine, yet are probably dependent, in part, on dietary taurine. Taurine is abundant in the brain, heart, breast, gallbladder, and kidney and has important roles in health and disease in these organs. Taurine has many diverse biological functions including serving as a neurotransmitter in the brain, a stabilizer of cell membranes, and a facilitator in the transport of ions such as sodium, potassium, calcium, and magnesium. Taurine is highly concentrated in animal and fish protein, which are good sources of dietary taurine. It can be synthesized by the body from cysteine when vitamin B6 is present. Deficiency of taurine occurs in premature infants, neonates fed formula milk, and various disease states. Several inborn errors of taurine metabolism have been described. Perry syndrome is an unusual neuropsychiatric disorder inherited in an autosomal dominant fashion through three generations of a family. Symptoms began late in the fifth decade in 6 affected persons and death occurred after 4 to 6 years. The earliest and most prominent symptom was mental depression that was not responsive to antidepressant drugs or electroconvulsive therapy. Sleep disturbances, exhaustion, and marked weight loss were features. Parkinsonism developed later, and respiratory failure occurred terminally (OMIM: 168605). Hypertaurinuric cardiomyopathy describes congestive cardiomyopathy and markedly elevated urinary taurine levels (about 5 times normal). Other family members had late or holosystolic mitral valve prolapse and elevated urinary taurine values (about 2.5 times normal). In two with mitral valve prolapse, congestive cardiomyopathy eventually developed while the amounts of urinary taurine doubled (OMIM: 145350). Taurine, after GABA, is the second most important inhibitory neurotransmitter in the brain. Its inhibitory effect is one source of taurines anticonvulsant and antianxiety properties. It also lowers glutamic acid in the brain, and preliminary clinical trials suggest taurine may be useful in some forms of epilepsy. Taurine in the brain is usually associated with zinc or manganese. The amino acids alanine and glutamic acid, as well as pantothenic acid, inhibit taurine metabolism while vitamins A and B6, zinc, and manganese help build taurine. Cysteine and B6 are the nutrients most directly involved in taurine synthesis. Taurine levels have been found to decrease significantly in many depressed patients. One reason that the findings are not entirely clear is that taurine is often elevated in the blood of epileptics who need it. It is often difficult to distinguish compensatory changes in human biochemistry from true metabolic or deficiency disease. Low levels of taurine are found in retinitis pigmentosa. Taurine deficiency in experimental animals produces degeneration of light-sensitive cells. Therapeutic applications of taurine to eye disease are likely to be forthcoming. Taurine has many important metabolic roles. Supplements can stimulate prolactin and insulin release. The parathyroid gland makes a peptide hormone called glutataurine (glutamic acid-taurine), which further demonstrates taurines role in endocrinology. Taurine increases bilirubin and cholesterol excretion in bile, critical to normal gallbladder function. It seems to inhibit the effect of morphine and potentiates the effects of opiate antagonists. Low plasma taurine levels have been found in a variety of conditions, i.e. depression, hypertension, hypothyroidism, gout, institutionalized patients, infertility, obesity, kidney failure, and others (http://www.dcnutrition.com/AminoAcids/). Moreover, taurine is found to be associated with maple syrup uri... Large white crystals or white powder. Taurine is an amino sulfonic acid that is the 2-amino derivative of ethanesulfonic acid. It is a naturally occurring amino acid derived from methionine and cysteine metabolism. An abundant component of fish- and meat-based foods, it has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. It has a role as a human metabolite, an antioxidant, a mouse metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a glycine receptor agonist, a nutrient and a radical scavenger. It is a conjugate acid of a 2-aminoethanesulfonate. It is a tautomer of a taurine zwitterion. Taurine, whose chemical name is 2-aminoethanesulfonic acid, is one of the most abundant amino acids in several organs. It plays important role in essential biological processes. This conditional amino acid can be either be manufactured by the body or obtained in the diet mainly by the consumption of fish and meat. The supplements containing taurine were FDA approved by 1984 and they are hypertonic injections composed by cristalline amino acids. Taurine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). A conditionally essential nutrient, important during mammalian development. It is present in milk but is isolated mostly from ox bile and strongly conjugates bile acids. See also: ... View More ... An amino sulfonic acid that is the 2-amino derivative of ethanesulfonic acid. It is a naturally occurring amino acid derived from methionine and cysteine metabolism. An abundant component of fish- and meat-based foods, it has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. [Spectral] Taurine (exact mass = 125.01466) and L-Threonine (exact mass = 119.05824) and 4-Hydroxy-L-proline (exact mass = 131.05824) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Taurine (exact mass = 125.01466) and L-Glutamate (exact mass = 147.05316) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Taurine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-35-7 (retrieved 2024-06-29) (CAS RN: 107-35-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3]. Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3].

   

indicine

BUTANOIC ACID, 2,3-DIHYDROXY-2-(1-METHYLETHYL)-, (2,3,5,7A-TETRAHYDRO-1-HYDROXY-1H-PYRROLIZIN-7-YL)METHYL ESTER, (1S-(1.ALPHA.,7(2R*,3S*),7A.ALPHA.))-

C15H25NO5 (299.1733)


Rinderine is a member of pyrrolizines. Rinderine is a natural product found in Chromolaena odorata, Eupatorium japonicum, and other organisms with data available.

   

1-Methylxanthine

2-hydroxy-1-methyl-6,9-dihydro-1H-purin-6-one

C6H6N4O2 (166.0491)


1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

3-Hydroxybutyric acid

(R)-(-)-beta-Hydroxybutyric acid

C4H8O3 (104.0473)


3-Hydroxybutyric acid (CAS: 300-85-6), also known as beta-hydroxybutanoic acid, is a typical partial-degradation product of branched-chain amino acids (primarily valine) released from muscle for hepatic and renal gluconeogenesis. This acid is metabolized by 3-hydroxybutyrate dehydrogenase (catalyzes the oxidation of 3-hydroxybutyrate to form acetoacetate, using NAD+ as an electron acceptor). The enzyme functions in nervous tissues and muscles, enabling the use of circulating hydroxybutyrate as a fuel. In the liver mitochondrial matrix, the enzyme can also catalyze the reverse reaction, a step in ketogenesis. 3-Hydroxybutyric acid is a chiral compound having two enantiomers, D-3-hydroxybutyric acid and L-3-hydroxybutyric acid, and is a ketone body. Like the other ketone bodies (acetoacetate and acetone), levels of 3-hydroxybutyrate in blood and urine are raised in ketosis. In humans, 3-hydroxybutyrate is synthesized in the liver from acetyl-CoA and can be used as an energy source by the brain when blood glucose is low. Blood levels of 3-hydroxybutyric acid levels may be monitored in diabetic patients to look for diabetic ketoacidosis. Persistent mild hyperketonemia is a common finding in newborns. Ketone bodies serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing mammals. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for the synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for the synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first two weeks of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies is utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmitoylphosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life (PMID: 3884391). 3-Hydroxybutyric acid is found to be associated with fumarase deficiency and medium-chain acyl-CoA dehydrogenase deficiency, which are inborn errors of metabolism. 3-Hydroxybutyric acid is a metabolite of Alcaligenes and can be produced from plastic metabolization or incorporated into polymers, depending on the species (PMID: 7646009, 18615882). (R)-3-Hydroxybutyric acid is a butyric acid substituted with a hydroxyl group in the beta or 3 position. It is involved in the synthesis and degradation of ketone bodies. Like the other ketone bodies (acetoacetate and acetone), levels of beta-hydroxybutyrate are raised in the blood and urine in ketosis. Beta-hydroxybutyrate is a typical partial-degradation product of branched-chain amino acids (primarily valine) released from muscle for hepatic and renal gluconeogenesis This acid is metabolized by 3-hydroxybutyrate dehydrogenase (catalyzes the oxidation of D-3-hydroxybutyrate to form acetoacetate, using NAD+ as an electron acceptor). The enzyme functions in nervous tissues and muscles, enabling the use of circulating hydroxybutyrate as a fuel. In the liver mitochondrial matrix, the enzyme can also catalyze the reverse reaction, a step in ketogenesis. 3-Hydroxybutyric acid is a chiral compound having two enantiomers, D-3-hydroxybutyric acid and L-3-hydroxybutyric acid. In humans, beta-hydroxybutyrate is synthesized in the liver from acetyl-CoA, and can be used as an energy source by the brain when blood glucose is low. It can also be used for the synthesis of biodegradable plastics . [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H022 (R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2]. 3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1]. 3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1].

   

Eprosartan

4-({2-butyl-5-[(1E)-2-carboxy-2-(thiophen-2-ylmethyl)eth-1-en-1-yl]-1H-imidazol-1-yl}methyl)benzoic acid

C23H24N2O4S (424.1457)


Eprosartan is an angiotensin II receptor antagonist used for the treatment of high blood pressure. It acts on the renin-angiotensin system in two ways to decrease total peripheral resistance. First, it blocks the binding of angiotensin II to AT1 receptors in vascular smooth muscle, causing vascular dilatation. Second, it inhibits sympathetic norepinephrine production, further reducing blood pressure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2776 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

Allidochlor

2-chloro-N,N-bis(prop-2-en-1-yl)acetamide

C8H12ClNO (173.0607)


   

Estradiol Benzoate

(17-hydroxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-yl) benzoate

C25H28O3 (376.2038)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D01953

   

N-Nitroso-pyrrolidine

tetrahydro-N-nitroso-Pyrrole

C4H8N2O (100.0637)


N-Nitroso-pyrrolidine belongs to the class of organic compounds known as pyrrolidines. Pyrrolidines are compounds containing a pyrrolidine ring, which is a five-membered saturated aliphatic heterocycle with one nitrogen atom and four carbon atoms. N-Nitroso-pyrrolidine has been detected, but not quantified, in several different foods, such as green bell peppers, orange bell peppers, pepper (c. annuum), red bell peppers, and yellow bell peppers. This could make N-nitroso-pyrrolidine a potential biomarker for the consumption of these foods. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3450 Found in fried bacon

   

Uroporphyrin III

3-[9,14,20-tris(2-carboxyethyl)-5,10,15,19-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1,3,5,7,9,11(23),12,14,16,18(21),19-undecaen-4-yl]propanoic acid

C40H38N4O16 (830.2283)


Uroporphyrin is the porphyrin produced by oxidation of the methylene bridges in uroporphyrinogen. Uroporphyrins have four acetic acid and four propionic acid side chains attached to their pyrrole rings. The enzyme uroporphyrinogen I synthase catalyzes the formation of hydroxymethylbilane from four molecules of porphobilinogen. Uroporphyrinogen III cosynthase then catalyzes the conversion of hydroxymethylbilane into uroporphyrinogen III. Otherwise, hydroxymethylbilane cyclizes nonenzymatically to form uroporphyrinogen I. Uroporphyrinogen I and III yield their respective uroporphyrins via autooxidation or their respective coproporphyrinogens via decarboxylation. Excessive amounts of uroporphyrin I are excreted in congenital erythropoietic porphyria, and both uroporphyrin I and uroporphyrin III are excreted in porphyria cutanea tarda. Uroporphyrin I and III are the most common isomers. Under certain conditions, uroporphyrin III can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, porphyria cutanea tarda, and hereditary coproporphyria (HCP). There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Occurs in urine in small amounts as by-product of haem biosynthesis, also in Rhodopseudomonas spheroides (CCD). Uroporphyrin III is found in soy bean.

   

Cefozopran

Cefozopran

C19H17N9O5S2 (515.0794)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DE - Fourth-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01052

   

Estradiol Cypionate

Estra-1,3,5(10)-triene-3,17-diol (17.beta.)-, 17-cyclopentanepropanoate

C26H36O3 (396.2664)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D04063 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Penicillin F

Penicillin F; 2-Pentenylpenicillin

C14H20N2O4S (312.1144)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Cefozopran

1-({7-[2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(methoxyimino)acetamido]-2-carboxy-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl}methyl)imidazo[1,2-b]pyridazin-1-ium

C19H17N9O5S2 (515.0794)


   

DL-beta-Hydroxybutyric acid

DL-beta-Hydroxybutyric acid

C4H8O3 (104.0473)


(R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].

   

Taurine

Taurine

C2H7NO3S (125.0147)


Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3]. Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3].

   

1-Methylxanthine

1-Methylxanthine

C6H6N4O2 (166.0491)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MVOYJPOZRLFTCP-UHFFFAOYSA-N_STSL_0033_1-Methylxanthine_0500fmol_180410_S2_LC02_MS02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

N-Nitrosopyrrolidine

N-Nitrosopyrrolidine

C4H8N2O (100.0637)


   

Eprosartan

Eprosartan

C23H24N2O4S (424.1457)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   
   

(R)-3-Hydroxybutyric acid

(R)-3-Hydroxybutanoic acid

C4H8O3 (104.0473)


The R-enantiomer of 3-hydroxybutyric acid. Involved in the synthesis and degradation of ketone bodies, it can be used as an energy source by the brain during hypoglycaemia, and for the synthesis of biodegradable plastics. It is a sex pheremone in the European spider Linyphia triangularis. (R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].