triacetate lactone (BioDeep_00000002880)
natural product
代谢物信息卡片
化学式: C6H6O3 (126.0317)
中文名称: 2-羟基-6-甲基-4H-吡喃-4-酮, 6-甲基-4-羟基-2-吡喃酮, 4-羟基-6-甲基-2-吡喃酮
谱图信息:
最多检出来源 Homo sapiens(plant) 4.73%
分子结构信息
SMILES: c1(=O)cc(cc(o1)C)O
InChI: InChI=1S/C6H6O3/c1-4-2-5(7)3-6(8)9-4/h2-3,7H,1H3
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:16458
- KEGG: C02752
- PubChem: 54675757
- Metlin: METLIN44653
- ChEMBL: CHEMBL54907
- MetaCyc: CPD-6862
- KNApSAcK: C00037933
- CAS: 70254-61-4
- CAS: 675-10-5
- PMhub: MS000006762
- PubChem: 5709
- PDB-CCD: KJ6
- NIKKAJI: J86H
- KNApSAcK: 16458
- LOTUS: LTS0007091
- LOTUS: LTS0063593
- wikidata: Q7839869
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
11 个相关的物种来源信息
- 155619 - Agaricomycetes: LTS0007091
- 5204 - Basidiomycota: LTS0007091
- 2759 - Eukaryota: LTS0007091
- 4751 - Fungi: LTS0007091
- 378266 - Meripilaceae: LTS0007091
- 139433 - Physisporinus: LTS0007091
- 139434 - Physisporinus sanguinolentus: 10.1016/S0031-9422(00)00414-3
- 139434 - Physisporinus sanguinolentus: LTS0007091
- 81053 - Rigidoporus: LTS0007091
- 2057570 - Rigidoporus sanguinolentus: 10.1016/S0031-9422(00)00414-3
- 2057570 - Rigidoporus sanguinolentus: LTS0007091
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Huan Liu, Xiaolan Huang, Yangming Liu, Xinyun Jing, Yuchen Ning, Peng Xu, Li Deng, Fang Wang. Efficient Production of Triacetic Acid Lactone from Lignocellulose Hydrolysate by Metabolically Engineered Yarrowia lipolytica.
Journal of agricultural and food chemistry.
2023 Dec; 71(48):18909-18918. doi:
10.1021/acs.jafc.3c06528
. [PMID: 37999448] - Mingfeng Cao, Vinh G Tran, Jiansong Qin, Andrew Olson, Shekhar Mishra, John C Schultz, Chunshuai Huang, Dongming Xie, Huimin Zhao. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone.
Biotechnology and bioengineering.
2022 09; 119(9):2529-2540. doi:
10.1002/bit.28159
. [PMID: 35701887] - Liang Sun, Jae Won Lee, Sangdo Yook, Stephan Lane, Ziqiao Sun, Soo Rin Kim, Yong-Su Jin. Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast.
Nature communications.
2021 08; 12(1):4975. doi:
10.1038/s41467-021-25241-y
. [PMID: 34404791] - Siyuan Shao, Yanan Yang, Ziming Feng, Jianshuang Jiang, Peicheng Zhang. New triacetic acid lactone glycosides from the fruits of Forsythia suspensa and their nitric oxide production inhibitory activity.
Carbohydrate research.
2020 Feb; 488(?):107908. doi:
10.1016/j.carres.2020.107908
. [PMID: 31927345] - Haibo Li, Hal S Alper. Producing Biochemicals in Yarrowia lipolytica from Xylose through a Strain Mating Approach.
Biotechnology journal.
2020 Feb; 15(2):e1900304. doi:
10.1002/biot.201900304
. [PMID: 31554022] - Huan Liu, Monireh Marsafari, Fang Wang, Li Deng, Peng Xu. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica.
Metabolic engineering.
2019 12; 56(?):60-68. doi:
10.1016/j.ymben.2019.08.017
. [PMID: 31470116] - James Yu, Jenny Landberg, Farbod Shavarebi, Virginia Bilanchone, Adam Okerlund, Umayangani Wanninayake, Le Zhao, George Kraus, Suzanne Sandmeyer. Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis.
Biotechnology and bioengineering.
2018 09; 115(9):2383-2388. doi:
10.1002/bit.26733
. [PMID: 29777591] - Kelly A Markham, Claire M Palmer, Malgorzata Chwatko, James M Wagner, Clare Murray, Sofia Vazquez, Arvind Swaminathan, Ishani Chakravarty, Nathaniel A Lynd, Hal S Alper. Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation.
Proceedings of the National Academy of Sciences of the United States of America.
2018 02; 115(9):2096-2101. doi:
10.1073/pnas.1721203115
. [PMID: 29440400] - Heng Li, Wei Chen, Ruinan Jin, Jian-Ming Jin, Shuang-Yan Tang. Biosensor-aided high-throughput screening of hyper-producing cells for malonyl-CoA-derived products.
Microbial cell factories.
2017 Nov; 16(1):187. doi:
10.1186/s12934-017-0794-6
. [PMID: 29096626] - Wei Zhou, Yibin Zhuang, Yanfen Bai, Huiping Bi, Tao Liu, Yanhe Ma. Biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose.
Microbial cell factories.
2016 Aug; 15(1):149. doi:
10.1186/s12934-016-0549-9
. [PMID: 27577056] - Javier Cardenas, Nancy A Da Silva. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone.
Metabolic engineering.
2014 Sep; 25(?):194-203. doi:
10.1016/j.ymben.2014.07.008
. [PMID: 25084369] - Alinanuswe S Mwakaboko, Binne Zwanenburg. Single step synthesis of strigolactone analogues from cyclic keto enols, germination stimulants for seeds of parasitic weeds.
Bioorganic & medicinal chemistry.
2011 Aug; 19(16):5006-11. doi:
10.1016/j.bmc.2011.06.057
. [PMID: 21757362] - Satu Koskela, Päivi P Söderholm, Miia Ainasoja, Tero Wennberg, Karel D Klika, Vladimir V Ovcharenko, Irene Kylänlahti, Tiina Auerma, Jari Yli-Kauhaluoma, Kalevi Pihlaja, Pia M Vuorela, Teemu H Teeri. Polyketide derivatives active against Botrytis cinerea in Gerbera hybrida.
Planta.
2011 Jan; 233(1):37-48. doi:
10.1007/s00425-010-1277-8
. [PMID: 20878179] - Ying Wang, Shun-Yan Mo, Su-Juan Wang, Shuai Li, Yong-Chun Yang, Jian-Gong Shi. A unique highly oxygenated pyrano[4,3-c][2]benzopyran-1,6-dione derivative with antioxidant and cytotoxic activities from the fungus Phellinus igniarius.
Organic letters.
2005 Apr; 7(9):1675-8. doi:
10.1021/ol0475764
. [PMID: 15844878] - J Zhu, M Majikina, S Tawata. Syntheses and biological activities of pyranyl-substituted cinnamates.
Bioscience, biotechnology, and biochemistry.
2001 Jan; 65(1):161-3. doi:
10.1271/bbb.65.161
. [PMID: 11272821] - F Kurosaki. Effect of NADPH-associated keto-reducing domain on substrate entry into 6-hydroxymellein synthase, a multifunctional polyketide synthetic enzyme involved in phytoalexin biosynthesis in carrot.
Archives of biochemistry and biophysics.
1996 Apr; 328(1):213-7. doi:
10.1006/abbi.1996.0163
. [PMID: 8638933]