Methyl hexadecanoic acid
Methyl hexadecanoate, also known as methyl palmitate or palmitic acid methyl ester, is a member of the class of compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Thus, methyl hexadecanoate is considered to be a fatty ester lipid molecule. Methyl hexadecanoate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Methyl hexadecanoate is a fatty, oily, and waxy tasting compound found in cloves, which makes methyl hexadecanoate a potential biomarker for the consumption of this food product. Methyl hexadecanoate can be found primarily in saliva. Methyl hexadecanoic acid belongs to the class of organic compounds known as fatty acid methyl esters. These are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Methyl palmitate is a fatty acid methyl ester. It has a role as a metabolite. Methyl palmitate is a natural product found in Zanthoxylum beecheyanum, Lonicera japonica, and other organisms with data available. A natural product found in Neolitsea daibuensis. Methyl palmitate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-39-0 (retrieved 2024-07-03) (CAS RN: 112-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].
Coniferaldehyde
Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
dehydrocorydalin
Dehydrocorydaline is an alkaloid. Dehydrocorydaline is a natural product found in Corydalis turtschaninovii, Corydalis nobilis, and other organisms with data available. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].
Worenin
Worenine is an alkaloid.
Geranyl acetate
Geranyl acetate is a clear colorless liquid with an odor of lavender. (NTP, 1992) Geranyl acetate is a monoterpenoid that is the acetate ester derivative of geraniol. It has a role as a plant metabolite. It is an acetate ester and a monoterpenoid. It is functionally related to a geraniol. Geranyl acetate is a natural product found in Nepeta nepetella, Xylopia sericea, and other organisms with data available. See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Java citronella oil (part of). Neryl acetate is found in cardamom. Neryl acetate is found in citrus, kumquat and pummelo peel oils, ginger, cardamon, clary sage, myrtle leaf and myrtle berries. Neryl acetate is a flavouring agent A monoterpenoid that is the acetate ester derivative of geraniol. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2].
2',4',6'-Trihydroxyacetophenone
2,4,6-trihydroxyacetophenone is a benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. It has a role as a MALDI matrix material and a plant metabolite. It is a methyl ketone, a benzenetriol and an aromatic ketone. 2,4,6-Trihydroxyacetophenone is a natural product found in Artemisia gypsacea, Daldinia eschscholtzii, and other organisms with data available. A benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. 2,4,6-Trihydroxyacetophenone is found in fruits. 2,4,6-Trihydroxyacetophenone is isolated from bark of Prunus domestica (plum Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].
16a-Hydroxyestrone
16a-Hydroxyestrone or 16alpha-hydroxyestrone (16α-OH-E1 or 16a OHE1), or hydroxyestrone, is an endogenous steroidal estrogen and a major metabolite of estrone and estradiol. 16a-hydroxyestrone belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 16a-hydroxyestrone is considered to be a steroid molecule. 16a-hydroxyestrone is found in all vertebrates. Vertebrates, especially mammals, metabolizes estrogen into two major pathways and one minor. The two major pathways lead to 2-hydroxyestrone and 16a-hydroxyestrone (2-OHE1 and 16a OHE1 respectively). The minor pathway leads to 4-hydroxyestrone (4-OHE1). 2a-hydroxyestrone is considered to be the good metabolite (PMID: 8943806) as 2-hydroxyestrone does not stimulate cell growth and it blocks the action of stronger estrogens that may be carcinogenic. 16a-Hydroxyestrone, on the other hand, has a significantly stronger estrogenic activity, and studies show that it may increase the risk of breast cancer. The binding of 16a-hydroxyestrone to the estrogen receptor is reported to be covalent and irreversible (PMID: 3186693). A low urinary ratio of 2-hydroxyestrone to 16-alpha-hydroxyestrone is a strong predictor of breast cancer risk among women (PMID: 19502596). Estrone (also oestrone) is an estrogenic hormone secreted by the ovary. Its molecular formula is C18H22O2. estrone has a melting point of 254.5 degrees Celsius. estrone is one of the three estrogens, which also include estriol and estradiol. estrone is the least prevalent of the three hormones, estradiol being prevalent almost always in a female body, estriol being prevalent primarily during pregnancy. estrone sulfate is relevant to health and disease due to its conversion to estrone sulfate, a long-lived derivative of estrone. estrone sulfate acts as a pool of estrone which can be converted as needed to the more active estradiol. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Tetraconazole
CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9343; ORIGINAL_PRECURSOR_SCAN_NO 9342 CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9319; ORIGINAL_PRECURSOR_SCAN_NO 9317 CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9331 CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9370; ORIGINAL_PRECURSOR_SCAN_NO 9366 CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9361; ORIGINAL_PRECURSOR_SCAN_NO 9360 CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9358; ORIGINAL_PRECURSOR_SCAN_NO 9356 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3723 D016573 - Agrochemicals D010575 - Pesticides
Mepanipyrim
CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9352; ORIGINAL_PRECURSOR_SCAN_NO 9351 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9350; ORIGINAL_PRECURSOR_SCAN_NO 9348 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9332 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9294; ORIGINAL_PRECURSOR_SCAN_NO 9293 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9316; ORIGINAL_PRECURSOR_SCAN_NO 9313 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9337; ORIGINAL_PRECURSOR_SCAN_NO 9336 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3062
Kasugamycin
An amino cyclitol glycoside that is isolated from Streptomyces kasugaensis and exhibits antibiotic and fungicidal properties. Kasugamycin is an amino cyclitol glycoside that is isolated from Streptomyces kasugaensis and exhibits antibiotic and fungicidal properties. It has a role as a bacterial metabolite, a protein synthesis inhibitor and an antifungal agrochemical. It is an amino cyclitol glycoside, an aminoglycoside antibiotic, a monosaccharide derivative, a carboxamidine and an antibiotic fungicide. Kasugamycin has been reported in Streptomyces celluloflavus and Streptomyces kasugaensis. Kasugamycin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6980-18-3 (retrieved 2024-12-11) (CAS RN: 6980-18-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
D-2-Hydroxyglutaric acid
In humans, D-2-hydroxyglutaric acid is formed by a hydroxyacid-oxoacid transhydrogenase whereas in bacteria it is formed by a 2-hydroxyglutarate synthase. D-2-Hydroxyglutaric acid is also formed via the normal activity of hydroxyacid-oxoacid transhydrogenase during conversion of 4-hydroxybutyrate to succinate semialdehyde. The compound can be converted to alpha-ketoglutaric acid through the action of a 2-hydroxyglutarate dehydrogenase (EC 1.1.99.2). In humans, there are two such enzymes (D2HGDH and L2HGDH). Both the D and the L stereoisomers of hydroxyglutaric acid are found in body fluids. D-2-Hydroxyglutaric acid is a biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (OMIM: 600721) and the genetic disorder glutaric aciduria II. D-2-Hydroxyglutaric aciduria (caused by loss of D2HGDH or gain of function of IDH) is rare, with symptoms including cancer, macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. An elevated urine level of D-2-hydroxyglutaric acid has been reported in patients with spondyloenchondrodysplasia (OMIM: 271550). D-2-Hydroxyglutaric acid can be converted to alpha-ketoglutaric acid through the action of 2-hydroxyglutarate dehydrogenase (D2HGDH). Additionally, the enzyme D-3-phosphoglycerate dehydrogenase (PHGDH) can catalyze the NADH-dependent reduction of alpha-ketoglutarate (AKG) to D-2-hydroxyglutarate (D-2HG). Nyhan et al. (1995) described 3 female patients, 2 of them sibs, who were found to have excess accumulation of D-2-hydroxyglutaric acid in the urine. The phenotype was quite variable, even among the sibs, but included mental retardation, macrocephaly with cerebral atrophy, hypotonia, seizures, and involuntary movements. One of the patients developed severe intermittent vomiting and was given a pyloromyotomy. The electroencephalogram demonstrated hypsarrhythmia. There was an increased concentration of protein in cerebrospinal fluid, an unusual finding in inborn errors of metabolism. D-2-Hydroxyglutaric acid can also be produced via gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). IDH is part of the TCA cycle and this compound is generated in high abundance when IDH is mutated. Since D-2-hydroxyglutaric acid is sufficiently similar in structure to 2-oxoglutarate (2OG), it is able to inhibit a range of 2OG-dependent dioxygenases, including histone lysine demethylases (KDMs) and members of the ten-eleven translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. This inhibitory effect leads to alterations in the hypoxia-inducible factor (HIF)-mediated hypoxic response and alterations in gene expression through global epigenetic remodeling. The net effect is that D-2-hydroxyglutaric acid causes a cascading effect that leads genetic perturbations and malignant transformation. Depending on the circumstances, D-2-hydroxyglutaric acid can act as an oncometabolite, a neurotoxin, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumour growth and survival. A neurotoxin is compound that is toxic to neurons or nerual tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As an oncometabolite, D-2-hydroxyglutaric acid is a competitive inhibitor of multiple alpha-ketoglutarate-dependent dioxygenases, including histone demethylases and the TET family of 5mC hydroxylases. As a result, high levels of 2-hydroxyglutarate lead to genome-wide histone and DNA methylation alterations, which in turn lead to mutations that ultimately cause cancer (PMID: 29038145). As a neurotoxin, D-2-hydroxyglutaric acid mediates its neurotoxicity through activation of N-methyl-D-aspartate receptors. D-2-Hydroxyglutaric acid is structurally similar to the excitatory amino acid glutamate and stimul... Tissue accumulation of high amounts of D 2 hydroxyglutaric acid is the biochemical hallmark of the inherited neurometabolic disorder D 2 hydroxyglutaric aciduria.
4-Hydroxysphinganine
Phytosphingosine is a phospholipid. Phospholipids are a class of lipids and a major component of all biological membranes; sphingolipid metabolites, such as sphingosine and ceramide, are highly bioactive compounds and are involved in diverse cell processes, including cell-cell interaction, cell proliferation, differentiation, and apoptosis. Phytosphingosine is also one of the most widely distributed natural sphingoid bases, which is abundant in fungi and plants, and also found in animals including humans. Phytosphingosine is structurally similar to sphingosine; phytosphingosine possesses a hydroxyl group at C-4 of the sphingoid long-chain base. The physiological roles of phytosphingosine are largely unknown. Phytosphingosine induces apoptosis in human T-cell lymphoma and non-small cell lung cancer cells, and induces caspase-independent cytochrome c release from mitochondria. In the presence of caspase inhibitors, phytosphingosine-induced apoptosis is almost completely suppressed, suggesting that phytosphingosine-induced apoptosis is largely dependent on caspase activities. (PMID: 12576463, 12531554, 8046331, 8048941,8706124) [HMDB] Phytosphingosine is a phospholipid. Phospholipids are a class of lipids and a major component of all biological membranes; sphingolipid metabolites, such as sphingosine and ceramide, are highly bioactive compounds and are involved in diverse cell processes, including cell-cell interaction, cell proliferation, differentiation, and apoptosis. Phytosphingosine is also one of the most widely distributed natural sphingoid bases, which is abundant in fungi and plants, and also found in animals including humans. Phytosphingosine is structurally similar to sphingosine; phytosphingosine possesses a hydroxyl group at C-4 of the sphingoid long-chain base. The physiological roles of phytosphingosine are largely unknown. Phytosphingosine induces apoptosis in human T-cell lymphoma and non-small cell lung cancer cells, and induces caspase-independent cytochrome c release from mitochondria. In the presence of caspase inhibitors, phytosphingosine-induced apoptosis is almost completely suppressed, suggesting that phytosphingosine-induced apoptosis is largely dependent on caspase activities. (PMID: 12576463, 12531554, 8046331, 8048941,8706124). Phytosphingosine is a?phospholipid and has anti-cancer activities. Phytosphingosine induces cell apoptosis via caspase 8 activation and Bax translocation in cancer cells[1].
2-Phenylethyl acetate
2-Phenylethyl acetate, also known as 2-phenethyl acetic acid or benzylcarbinyl acetate, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 2-Phenylethyl acetate is a sweet, floral, and fruity tasting compound. 2-Phenylethyl acetate is found, on average, in the highest concentration within ceylon cinnamons and cloves. 2-Phenylethyl acetate has also been detected, but not quantified, in several different foods, such as butternuts, eggplants, turmerics, radish (var.), and pili nuts. This could make 2-phenylethyl acetate a potential biomarker for the consumption of these foods. The acetate ester of 2-phenylethanol. Flavouring ingredient. 2-Phenylethyl acetate is found in many foods, some of which are acerola, prickly pear, summer grape, and sweet orange.
Pimaric acid
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.561 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.568 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.560
Anisomycin
An antibiotic isolated from various Streptomyces species. It interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic relative retention time with respect to 9-anthracene Carboxylic Acid is 0.392 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.387 Anisomycin is a potent protein synthesis inhibitor which interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system[1]. Anisomycin is a JNK activator, which increases phospho-JNK[2][3]. Anisomycin is a bacterial antibiotic[4].
Prenol
Prenol is found in blackcurrant. Prenol is a constituent of ylang-ylang and hop oils. Prenol is found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Prenol is a flavouring ingredient Constituent of ylang-ylang and hop oils. Found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Flavouring ingredient. 3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.
2-Phenylethanol
2-Phenylethanol, also known as benzeneethanol or benzyl carbinol, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 2-Phenylethanol exists in all living species, ranging from bacteria to humans. 2-Phenylethanol is a bitter, floral, and honey tasting compound. 2-Phenylethanol is found, on average, in the highest concentration within a few different foods, such as red wines, black walnuts, and white wines and in a lower concentration in grape wines, sweet basils, and peppermints. 2-Phenylethanol has also been detected, but not quantified, in several different foods, such as asparagus, allspices, fruits, horned melons, and lemons. 2-Phenylethanol, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis, pervasive developmental disorder not otherwise specified, and autism. 2-phenylethanol has also been linked to the inborn metabolic disorder celiac disease. A primary alcohol that is ethanol substituted by a phenyl group at position 2. Flavouring ingredient. Component of ylang-ylang oil. 2-Phenylethanol is found in many foods, some of which are hickory nut, arrowhead, allspice, and nance. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids D004202 - Disinfectants 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions. 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions.
Isopentanol
Isopentanol, also known as isoamyl alcohol or 3-methylbutanol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, isopentanol is considered to be a fatty alcohol lipid molecule. Isopentanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Isopentanol exists in all eukaryotes, ranging from yeast to humans. Isopentanol is an alcoholic, banana, and burnt tasting compound. Isopentanol is found, on average, in the highest concentration within milk (cow). Isopentanol has also been detected, but not quantified, in several different foods, such as chinese cinnamons, grapefruits, walnuts, wild leeks, and spearmints. This could make isopentanol a potential biomarker for the consumption of these foods. Isopentanol is one of several isomers of amyl alcohol. Isopentanol is the major higher chain alcohol in alcoholic beverages and is present in cider, mead, beer, wine, and spirits to varying degrees, being obtained by the fermentation of starches. Isopentanol, with regard to humans, has been found to be associated with the diseases such as ulcerative colitis; isopentanol has also been linked to the inborn metabolic disorder celiac disease. Isopentanol is a metabolite found in Escherichia (PMID:18676713). Isopentyl alcohol is one of several isomers of amyl alcohol. It is a by-product of gut microbial fermentation (PMID: 17452087). It can be produced by 3-methylbutanal reductase (EC 1.1.1.265) from 3 methylbutanal. Isopentyl alcohol is the major higher chain alcohol in alcoholic beverages and is present in cider, mead, beer, wine, and spirits to varying degrees, being obtained by the fermentation of starches. Isopentanol has been shown to induce expression of CYP3A and CYP2E1 in human liver (PMID: 7574728). Isopentyl alcohol can also be found in many foods, some of which are chinese cabbage, white cabbage, elliotts blueberry, and pasta. It can be used as a flavouring agent.
Ethyl octanoate
Ethyl octanoate is a fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. It has a role as a metabolite. It is a fatty acid ethyl ester and an octanoate ester. Ethyl octanoate is found in alcoholic beverages. Ethyl octanoate is used in many fruit flavourings. Ethyl octanoate is a constituent of plant oils. Also present in Swiss cheese, Camembert cheese, wheat bread, port wine, plum brandy, sparkling wine, apple, apricot, banana, cherry, orange, grapefruit, plum and other fruits. It is used in many fruit flavourings. Constituent of plant oilsand is) also present in Swiss cheese, Camembert cheese, wheat bread, port wine, plum brandy, sparkling wine, apple, apricot, banana, cherry, orange, grapefruit, plum and other fruits. Ethyl octanoate is found in many foods, some of which are milk and milk products, guava, cereals and cereal products, and pepper (c. frutescens).
Acetylphenol
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer Phenyl acetate is an endogenous metabolite.
Naphthazarin
A naphthoquinone that is 1,4-naphthoquinone in which the hydrogens at positions 5 and 8 are replaced by hydroxy groups. D000970 - Antineoplastic Agents
Cinnavalininate
Cinnavalininate is an intermediate in the tryptophan metabolic pathway [Kegg: C05640]. It is generated from 3-hydroxyanthranilate via the enzyme catalase (EC:1.11.1.6). [HMDB] Cinnavalininate is an intermediate in the tryptophan metabolic pathway [Kegg: C05640]. It is generated from 3-hydroxyanthranilate via the enzyme catalase (EC:1.11.1.6). Cinnabarinic acid is a specific orthosteric agonist of mGlu4 by interacting with residues of the glutamate binding pocket of mGlu4, has no activity at other mGlu receptors. Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway of tryptophan. Cinnabarinic acid induces cell apoptosis[1].
Leukotriene E4
Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4 activates contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney (PMID: 12607939, 12432945, 6311078). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signaling pathways. Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4, activate contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney. (PMID: 12607939, 12432945, 6311078)
Isopentyl acetate
Isopentyl acetate, also known as isoamyl acetate or amylacetic ester, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Isopentyl acetate is an ester formed from isoamyl alcohol and acetic acid. It is a colorless liquid that is only slightly soluble in water, but very soluble in most organic solvents. Isopentyl acetate has a sweet, fruity banana odor and similar sweet, fruity banana taste. Isopentyl acetate is used to confer banana flavor in foods. Isopentyl acetate is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Outside of the human body, Isopentyl acetate is found, on average, in the highest concentration within a few different foods, such as red wines, white wines, and beers. Isopentyl acetate has also been detected, but not quantified in, several different foods, such as blackberries (Rubus), figs (Ficus carica), red teas, bananas (Musa acuminata), and black elderberries (Sambucus nigra). This could make isopentyl acetate a potential biomarker for the consumption of these foods. Isopentyl acetate occurs naturally in the banana plant and it is also produced synthetically. Based on a literature review a significant number of articles have been published on Isopentyl acetate. Pure isopentyl acetate, or mixtures of isopentyl acetate, amyl acetate, and other flavors may be referred to as banana oil. Because of its intense, pleasant odor and its low toxicity, isopentyl acetate is used to test the effectiveness of respirators or gas masks. Isopentyl acetate is released by a honey bees sting where it serves as a pheromone beacon to attract other bees and provoke them to sting. Present in many fruit aromas, especies banana. It is used in banana flavouring
Schidigerasaponin D5
Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.
3beta-Hydroxypregn-5-en-20-one sulfate
3beta-Hydroxypregn-5-en-20-one sulfate is a metabolite of pregnenolone. Pregnenolone, also known as 3α,5β-tetrahydroprogesterone (3α,5β-THP), is an endogenous steroid hormone involved in the steroidogenesis of progestogens, mineralocorticoids, glucocorticoids, androgens, and estrogens, as well as the neuroactive steroids. As such it is a prohormone, though it also has biological effects of its own, behaving namely as a neuroactive steroid in its own right with potent anxiolytic effects. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].
16b-Hydroxyestrone
16b-Hydroxyestrone is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Pregnenolone sulfate
Pregnenolone sulfate is a sulfated version of the steroid hormone known as pregnenolone. Pregnenolone sulfate belongs to the class of organic compounds known as sulfated steroids. These are sterol lipids containing a sulfate group attached to the steroid skeleton. Pregnenolone sulfate is a neurosteroid found in the brain and central nervous system. Pregnenolone sulfate is a metabolite synthesized from pregnenolone via sulfation. It is known to have cognitive and memory-enhancing, antidepressant, anxiogenic, and proconvulsant effects (PMID: 21094889). As a neurosteroid, pregnenolone sulfate modulates a variety of ion channels, transporters, and enzymes. Interestingly, as a sulfated steroid, pregnenolone sulfate is not the final- or waste-product of pregnenolone being sulfated via a phase II metabolism reaction and renally excreted, as one would presume from pharmacology textbook knowledge. Pregnenolone sulfate is also the source and thereby the starting point for subsequent steroid synthesis pathways. Recently, pregnenolone sulfate has been shown to not only be a modulator of ion channels, but it is also an activating ion channel ligand (PMID: 24084011). Pregnenolone sulfate, a neurosteroid, is a metabolite of Pregnenolone. It is found in the brain and central nervous system. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].
5,8-Dihydroxy-1,4-naphthoquinone
D000970 - Antineoplastic Agents
Schidigerasaponin D5
Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.
Dehydrocorydaline
Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].
Phenylethyl alcohol
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids D004202 - Disinfectants 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions. 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions.
Dehydrocorydaline
Annotation level-1 Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].
Phytosphingosine
Phytosphingosine is a?phospholipid and has anti-cancer activities. Phytosphingosine induces cell apoptosis via caspase 8 activation and Bax translocation in cancer cells[1].
pregnenolone sulfate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].
Tetraconazole
D016573 - Agrochemicals D010575 - Pesticides
Schidigerasaponin D5
Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.
Leukotriene E
A leukotriene that is (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid substituted by a hydroxy group at position 5 (5S) and an L-cystein-S-yl group at position 6 (6R).
SFE 10:0
A fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1]. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1].
ST 18:4;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents 4-Hydroxyestrone (4-OHE1), an estrone metabolite, has strong neuroprotective effect against oxidative neurotoxicity. 4-Hydroxyestrone increases cytoplasmic translocation of p53 resulting from SIRT1-mediated deacetylation of p53. 4-Hydroxyestrone has little estrogenic activity[1].
Geranyl acetate
Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate has been reported in Cymbopogon martinii, Cymbopogon distans
Uniphat A60
Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].
2-PEA
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids D004202 - Disinfectants 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions. 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions.
Ferulaldehyde
Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].
480-66-0
Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].
Timosaponin A-III
A natural product found in Anemarrhena asphodeloides. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.
Phenyl acetate
Phenyl acetate is an endogenous metabolite. Phenyl acetate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-79-2 (retrieved 2024-08-21) (CAS RN: 122-79-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
3-METHYL-2-BUTEN-1-OL
3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.
16α-Hydroxyestrone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones The 16alpha-hydroxy derivative of estrone; a minor estrogen metabolite.
Cinnabarinic acid
Cinnabarinic acid is a specific orthosteric agonist of mGlu4 by interacting with residues of the glutamate binding pocket of mGlu4, has no activity at other mGlu receptors. Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway of tryptophan. Cinnabarinic acid induces cell apoptosis[1].
Trichloroacetaldehyde
An organochlorine compound that consists of acetaldehyde where all the methyl hydrogens are replaced by chloro groups. C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic