Classification Term: 4090
Aralkylamines (ontology term: CHEMONTID:0003899)
Alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group." []
found 75 associated metabolites at category
metabolite taxonomy ontology rank level.
Ancestor: Amines
Child Taxonomies: Phenylalkylamines
2-Hydroxyphenethylamine
2-Hydroxyphenethylamine, also known as beta-phenethanolamine or 2-amino-1-phenylethanol, belongs to the class of organic compounds known as aralkylamines. These are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group. It is the simplest member of the class of phenylethanolamines that is 2-aminoethanol bearing a phenyl substituent at the 1-position. 2-Hydroxyphenethylamine exists in all living organisms, ranging from bacteria to humans. 2-Hydroxyphenethylamine ia an amine found in the brain. It may be modulator of sympathetic functions. Its derivatives are adrenergic agonists and antagonists. Simple amine found in the brain. It may be modulator of sympathetic functions. Its derivatives are adrenergic agonists and antagonists. It is also used in chemical industry. [HMDB] 2-Amino-1-phenylethanol is an analogue of noradrenaline.
L-Histidinol
L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumour cells of animal origin (PMID:8297120). L-Histidinol inhibits human myristoyl-CoA:protein-myristoyltransferase (hNMT), an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate into the NH2-terminal glycine residue of a number of important proteins of diverse function (PMID:9778369). L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumor cells of animal origin. (PMID 8297120)
Porphobilinogen
Porphobilinogen (PBG) is a pyrrole-containing intermediate in the biosynthesis of porphyrins. It is generated from aminolevulinate (ALA) by the enzyme ALA dehydratase. Porphobilinogen is then converted into hydroxymethylbilane by the enzyme porphobilinogen deaminase (also known as hydroxymethylbilane synthase). Under certain conditions, porphobilinogen can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Porphobilinogen is a pyrrole involved in porphyrin metabolism. -- Wikipedia; It consists of a pyrrole ring with acetyl, propionyl, and aminomethyl side chains; It is a key monopyrrolic intermediate in porphyrin, chlorophyll and vitamin B12 biosynthesis. Porphobilinogen is generated by the enzyme ALA dehydratase by combining two molecules of dALA together, and converted into hydroxymethyl bilane by the enzyme porphobilinogen deaminase. 4 molecules of porphobilinogen are condensed to form one molecule of uroporphyrinogen III, which is then converted successively to coproporphyrinogen III, protoporphyrin IX, and heme. Porphobilinogen is produced in excess and excreted in the urine in acute intermittent porphyria and several other porphyrias. [HMDB]. Porphobilinogen is found in many foods, some of which are strawberry guava, amaranth, parsnip, and ostrich fern.
Biperiden
A muscarinic antagonist that has effects in both the central and peripheral nervous systems. It has been used in the treatment of arteriosclerotic, idiopathic, and postencephalitic parkinsonism. It has also been used to alleviate extrapyramidal symptoms induced by phenothiazine derivatives and reserpine. [PubChem] D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].
Methylphenidate
Methylphenidate is only found in individuals that have used or taken this drug. It is a central nervous system stimulant used most commonly in the treatment of attention-deficit disorders in children and for narcolepsy. Its mechanisms appear to be similar to those of dextroamphetamine. [PubChem]Methylphenidate blocks dopamine uptake in central adrenergic neurons by blocking dopamine transport or carrier proteins. Methylphenidate acts at the brain stem arousal system and the cerebral cortex and causes increased sympathomimetic activity in the central nervous system. Alteration of serotonergic pathways via changes in dopamine transport may result. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
Procyclidine
Procyclidine is only found in individuals that have used or taken this drug. It is a muscarinic antagonist that crosses the blood-brain barrier and is used in the treatment of drug-induced extrapyramidal disorders and in parkinsonism. [PubChem]The mechanism of action is unknown. It is thought that Procyclidine acts by blocking central cholinergic receptors, and thus balancing cholinergic and dopaminergic activity in the basal ganglia. Many of its effects are due to its pharmacologic similarities with atropine. Procyclidine exerts an antispasmodic effect on smooth muscle, and may produce mydriasis and reduction in salivation. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
Trihexyphenidyl
Trihexyphenidyl is only found in individuals that have used or taken this drug. It is one of the centrally acting muscarinic antagonists used for treatment of parkinsonian disorders and drug-induced extrapyramidal movement disorders and as an antispasmodic. [PubChem]Trihexyphenidyl is a selective M1 muscarinic acetylcholine receptor antagonist. It is able to discriminate between the M1 (cortical or neuronal) and the peripheral muscarinic subtypes (cardiac and glandular). Trihexyphenidyl partially blocks cholinergic activity in the CNS, which is responsible for the symptoms of Parkinsons disease. It is also thought to increase the availability of dopamine, a brain chemical that is critical in the initiation and smooth control of voluntary muscle movement. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent
Anatabine
Anatabine is one of the minor alkaloids found in plants in the family Solanaceae, which includes the tobacco plant and tomato. Commercial tobacco plants typically produce alkaloids at levels between 2\\\% and 4\\\% of total dry weight, with nicotine accounting for about 90\\\% of the total alkaloid content, and the related compounds anabatine, nornicotine, and anabasine making up nearly all the rest. These compounds are thought to be biologically active, and part of plants natural defense system against insects. It belongs to the class of organic compounds known as aralkylamines. These are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group. Anatabine is tobacco alkaloid in urine of smokers and smokeless tobacco users (PMID: 8245163). This Nicotine-related alkaloid is an inhibitor of human cytochrome P-450 2A6 (PMID:14757175). Anatabine is tobacco alkaloid in urine of smokers and smokeless tobacco users (PubMed ID 8245163 ); this Nicotine-related alkaloid is an inhibitor of human cytochrome P-450 2A6 (PubMed ID 14757175 ) [HMDB] (R,S)-Anatabine is a a minor tobacco alkaloid found in the Solanaceae family of plants that can be used as a specific marker for the detection of tobacco use[1].
Phencyclidine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D004791 - Enzyme Inhibitors
1-Phenylethylamine
1-Phenylethylamine, or alpha-phenethylamine, is an amine. Individual enantiomers of this basic compound are useful for performing chiral resolution of acidic compounds by forming diastereomeric salts. -- Wikipedia [HMDB] 1-Phenylethylamine, or alpha-phenethylamine, is an amine. Individual enantiomers of this basic compound are useful for performing chiral resolution of acidic compounds by forming diastereomeric salts. -- Wikipedia.
Histidinal
Histidinal (CAS: 23784-33-0), also known as histidinaldehyde, belongs to the class of organic compounds known as aralkylamines. These are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group. Histidinal is a very strong basic compound (based on its pKa). Histidinal is involved in the histidine biosynthesis pathway. Histidinal is produced by the reaction between histidinol and NAD+, with NADH as a byproduct. The reaction is catalyzed by histidinol dehydrogenase. Histidinal reacts with NAD+ and H2O to produce L-histidine and NADH. Histidinol dehydrogenase catalyzes this reaction. Histidinal is involved in the histidine biosynthesis I pathway.
N-Methylphenylethanolamine
N-Methylphenylethanolamine is an intermediate in the metabolism of Tyrosine. It is a substrate for Phenylethanolamine N-methyltransferase. [HMDB] N-Methylphenylethanolamine is an intermediate in the metabolism of Tyrosine. It is a substrate for Phenylethanolamine N-methyltransferase.
Tranylcypromine
A propylamine formed from the cyclization of the side chain of amphetamine. This monoamine oxidase inhibitor is effective in the treatment of major depression, dysthymic disorder, and atypical depression. It also is useful in panic and phobic disorders. (From AMA Drug Evaluations Annual, 1994, p311) N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors
Tridihexethyl
Tridihexethyl is only found in individuals that have used or taken this drug. It is a synthetic anticholinergic agent which has been shown in experimental and clinical studies to have a pronounced antispasmodic and antisecretory effect on the gastrointestinal tract. Tridihexethyl is an antimuscarinic, anticholinergic drug.Tridihexethyl binds the muscarinic acetylcholine receptor. It may block all three types of muscarinic receptors including M-1 receptors in the CNS and ganglia, M-2 receptors in the heart (vagus) and M-3 receptors at the parasympathetic NEJ system. The muscarinic acetylcholine receptors mediate various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Tridihexethyl inhibits vagally mediated reflexes by antagonizing the action of acetylcholine. This in turn reduces the secretion of gastric acids in the stomach. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AB - Synthetic anticholinergics, quaternary ammonium compounds C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent
Gaboxadol
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D04282 THIP (Gaboxadol) is a selective extrasynaptic GABAA receptors (eGABARs) agonist (with blood-brain barrier permeability), shows an EC50 value of 13 μM for δ-GABAAR. THIP induces strong tense GABAA-mediated currents in layer 2/3 neurons, but shows on effect on miniature IPSCs. THIP can be used in studies of sleep disorders[1][2][3].
Ranitidine
Ranitidine (CAS: 66357-35-5) is a non-imidazole blocker of histamine receptors that mediate gastric secretion (H2 receptors). It is used to treat gastrointestinal ulcers (PubChem). Ranitidine is a histamine H2-receptor antagonist that inhibits stomach acid production and is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD). It is currently marketed by GlaxoSmithKline under the trade name Zantac (Wikipedia). A non-imidazole blocker of those histamine receptors that mediate gastric secretion (H2 receptors). It is used to treat gastrointestinal ulcers. -- Pubchem; Ranitidine is a histamine H2-receptor antagonist that inhibits stomach acid production, and commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD). It is currently marketed by GlaxoSmithKline under the trade name Zantac. -- Wikipedia [HMDB] A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BA - H2-receptor antagonists C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents
Pramipexole
Pramipexole is a medication indicated for treating Parkinsons disease and restless legs syndrome (RLS). It is also sometimes used off-label as a treatment for cluster headache or to counteract the problems with low libido experienced by some users of SSRI antidepressant drugs. Pramipexole has shown robust effects on pilot studies in bipolar disorder. Pramipexole is classified as a non-ergoline dopamine agonist. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D020011 - Protective Agents > D000975 - Antioxidants Pramipexole is a selective and blood-brain barrier (BBB) penetrant dopamine D2-type receptor agonist, with Kis of 2.2 nM, 3.9 nM, 0.5 nM and 1.3 nM for D2-type receptor, D2, D3 and D4 receptors, respectively. Pramipexole can be used for the research of Parkinson's disease (PD) and restless legs syndrome (RLS)[1][2][3].
Ritalinic acid
Ritalinic acid belongs to the family of Beta Amino Acids and Derivatives. These are amino acids having a (-NH2) group attached to the beta carbon atom.
Betahistine
Betahistine is only found in individuals that have used or taken this drug. It is an antivertigo drug first used for treating vertigo assosicated with Menieres disease. It is also commonly used for patients with balance disorders.Betahistine primarily acts as a histamine H1-agonist with 0.07 times the activity of histamine. Stimulating the H1-receptors in the inner ear causes a vasodilatory effect and increased permeability in the blood vessels which results in reduced endolymphatic pressure. Betahistine is believed to act by reducing the asymmetrical functioning of sensory vestibular organs as well as by increasing vestibulocochlear blood flow. Doing so aids in decreasing symptoms of vertigo and balance disorders. Betahistine also acts as a histamine H3-receptor antagonist which causes an increased output of histamine from histaminergic nerve endings which can further increase the direct H1-agonist activity. Furthermore, H3-receptor antagonism increases the levels of neurotransmitters such as serotonin in the brainstem, which inhibits the activity of vestibular nuclei, helping to restore proper balance and decrease in vertigo symptoms. N - Nervous system > N07 - Other nervous system drugs > N07C - Antivertigo preparations > N07CA - Antivertigo preparations D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Betahistine is an orally active histamine H1 receptor agonist and a H3 receptor antagonist[1]. Betahistine is used for the study of rheumatoid arthritis (RA)[3].
N-Methylhistamine
N-Methylhistamine belongs to the class of organic compounds known as aralkylamines. These are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group.
Na,Na-Dimethylhistamine
Na,Na-Dimethylhistamine is found in mushrooms. Na,Na-Dimethylhistamine is an alkaloid from Coprinus comatus (shaggy ink cap) and Casimiroa edulis seeds (Mexican apple). Alkaloid from Coprinus comatus (shaggy ink cap) and Casimiroa edulis seeds (Mexican apple). Na,Na-Dimethylhistamine is found in mushrooms, pomes, and spinach.
Cycrimine
Cycrimine is only found in individuals that have used or taken this drug. It is a drug used to reduce levels of acetylcholine to return a balance with dopamine in the treatment and management of Parkinsons disease. Cycrimine binds the muscarinic acetylcholine receptor M1, effectively inhibiting acetylcholine. This decrease in acetylcholine restores the normal dopamine-acetylcholine balance and relieves the symptoms of Parkinsons disease. C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Cycrimine is an orally active muscarinic cholinergic receptor (mAChR) M1 antagonist, reduces the acetylcholine levels in parkinson model. Cycrimine shows antispasmodic activity, can be used in studies of behavioral and mental disorder[1][2][3][4].
Dexmethylphenidate
Dexmethylphenidate is only found in individuals that have used or taken this drug. It is the dextrorotary form of methylphenidate. It is used for treatment of Attention Deficit Hyperactivity Disorder (ADHD). Methylphenidate blocks dopamine uptake in central adrenergic neurons by blocking dopamine transport or carrier proteins. Methylphenidate acts at the brain stem arousal system and the cerebral cortex and causes increased sympathomimetic activity in the central nervous system.Methylphenidate is a catecholamine reuptake inhibitor that indirectly increases catecholaminergic neurotransmission by inhibiting the dopamine transporter (DAT) and norepinephrine transporter (NET), which are responsible for clearing catecholamines from the synapse, particularly in the striatum and meso-limbic system. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
N,N-Dimethylphenethylamine
N,N-Dimethylphenethylamine is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
2-(2-Furanyl)piperidine
Proline-derived Maillard product. Proline-derived Maillard product
2-(5-Methyl-2-furanyl)piperidine
Proline-derived Maillard product. Proline-derived Maillard product
2-(2-Furanyl)-3-piperidinol
Proline-derived Maillard product. Proline-derived Maillard product
2-(5-Methyl-2-furanyl)-3-piperidinol
Proline-derived Maillard product. Proline-derived Maillard product
1-Furfurylpyrrolidine
1-Furfurylpyrrolidine is found in mollusks. Proline-derived Maillard product. 1-Furfurylpyrrolidine is a constituent of dried, roasted squid aroma. Proline-derived Maillard product. Constituent of dried, roasted squid aroma. 1-Furfurylpyrrolidine is found in mollusks.
5-(1-Pyrrolidinylmethyl)-2-furanmethanol
Proline-derived Maillard product. Proline-derived Maillard product
2-(5-Methyl-2-furanyl)pyrrolidine
Putative proline-derived Maillard product formed in model reactions with 1-pyrroline and ascorbic acid. Putative proline-derived Maillard product formed in model reactions with 1-pyrroline and ascorbic acid
1-[(5-Methyl-2-furanyl)methyl]pyrrolidine
1-[(5-Methyl-2-furanyl)methyl]pyrrolidine is found in mollusks. Proline-derived Maillard product. 1-[(5-Methyl-2-furanyl)methyl]pyrrolidine is a constituent of roasted, dried squid aroma. Proline-derived Maillard product. Constituent of roasted, dried squid aroma. 1-[(5-Methyl-2-furanyl)methyl]pyrrolidine is found in mollusks.
(±)-2-(2-Furanyl)pyrrolidine
Putative proline-derived Maillard product formed in model reactions with 1-pyrroline and ascorbic acid. Putative proline-derived Maillard product formed in model reactions with 1-pyrroline and ascorbic acid
N(tele)-methylhistaminium
N(tele)-methylhistaminium is considered to be slightly soluble (in water) and basic COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Phenylethanolaminium
Phenylethanolaminium is also known as 2-ammonio-1-Phenylethanol or 2-Hydroxy-2-phenylethan-1-aminium. Phenylethanolaminium is considered to be slightly soluble (in water) and relatively neutral
N-methylphenylethanolaminium
N-methylphenylethanolaminium is also known as (2-Hydroxy-2-phenylethyl)(methyl)azanium. N-methylphenylethanolaminium is considered to be practically insoluble (in water) and relatively neutral
trans-2-Phenylcyclopropylamine
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors
Bemcentinib
1,2,3,6-Tetrahydro-2,3'-bipyridine
(R,S)-Anatabine is a a minor tobacco alkaloid found in the Solanaceae family of plants that can be used as a specific marker for the detection of tobacco use[1].
Desmethylranitidine
1-Phenyl-2-(pyridin-2-yl)ethanamine
(Rac)-Lanicemine ((Rac)-AZD6765) is the racemate of Lanicemine. Lanicemine (AZD6765) is a low-trapping NMDA channel blocker (Ki of 0.56-2.1?μM for NMDA receptor; IC50s of 4-7?μM and 6.4 μM in CHO and Xenopus oocyte cells, respectively). Antidepressant effects[1].
1-Phenyl-2-decanoylamino-3-morpholino-1-propanol
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
N-(2-Fluoro-4-(methylsulfonyl)phenyl)-6-(4-(3-isopropyl-1,2,4-oxadiazol-5-yl)piperidin-1-yl)-5-nitropyrimidin-4-amine
N-[1-Hydroxy-3-(morpholin-4-yl)-1-phenylpropan-2-yl]hexadecanamide
N-[2-[[5-[(Dimethylamino)methyl]furan-2-yl]methylsulfanyl]ethyl]-N'-methyl-2-nitroethanimidamide
Ethylphenidate
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
Eticyclidine
C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Fingolimod
L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D000081243 - Sphingosine 1 Phosphate Receptor Modulators COVID info from Guide to PHARMACOLOGY, DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials C308 - Immunotherapeutic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Nefopam
C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics
Pentisomide
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
Ranitidine S-oxide
1-Phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol
Tenocyclidine
D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D020011 - Protective Agents
thienylcyclohexylpiperidine
D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents
Tiletamine Hydrochloride
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Ranisen
Cyclohexanones
Cyclohexanones, also known as cn-54521-2ci-634tiletamine hydrochloride or cl 399, is a member of the class of compounds known as aralkylamines. Aralkylamines are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group. Cyclohexanones can be found in tea, which makes cyclohexanones a potential biomarker for the consumption of this food product. Cyclohexanones is the organic compound with the formula (CH2)5CO. The molecule consists of six-carbon cyclic molecule with a ketone functional group. This colorless oil has an odor reminiscent of that of acetone. Over time, samples of cyclohexanone assume a yellow color. Cyclohexanones is slightly soluble in water and miscible with common organic solvents. Billions of kilograms are produced annually, mainly as a precursor to nylon .