Inosine 5'-monophosphate (IMP) (BioDeep_00000002969)
Secondary id: BioDeep_00000400015, BioDeep_00000405211
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C10H13N4O8P (348.0471)
中文名称: 肌苷5-单磷酸, 5-肌苷酸, 肌酐酸, 聚肌苷酸, 5'-肌苷酸
谱图信息:
最多检出来源 Homo sapiens(plant) 18.17%
Last reviewed on 2024-09-13.
Cite this Page
Inosine 5'-monophosphate (IMP). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/inosine_5_-monophosphate_(imp) (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000002969). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=NC(=O)C2=C(N1)N(C=N2)C3C(C(C(O3)COP(=O)(O)O)O)O
InChI: InChI=1S/C10H13N4O8P/c15-6-4(1-21-23(18,19)20)22-10(7(6)16)14-3-13-5-8(14)11-2-12-9(5)17/h2-4,6-7,10,15-16H,1H2,(H,11,12,17)(H2,18,19,20)
描述信息
Inosinic acid, also known as inosine monophosphate, IMP, 5-inosinate or 5-IMP, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. IMP is also classified as a nucleotide (a nucleoside monophosphate). Inosinic acid exists in all living species, ranging from bacteria to plants to humans. IMP is widely used as a flavor enhancer. In the food industry it is known as E number reference E630. Inosinic acid can be converted into various salts including disodium inosinate (E631), dipotassium inosinate (E632), and calcium inosinate (E633). These three inosinate compounds are used as flavor enhancers for the basic taste umami. These inosinate salts are mostly used in soups, sauces, and seasonings for the intensification and balance of the flavor of meat. Inosinic acid is typically obtained from chicken byproducts or other meat industry waste. Inosinic acid or IMP is important in metabolism. It is the ribonucleotide of hypoxanthine and the first nucleotide formed during the synthesis of purine nucleotides. It can also be formed by the deamination of adenosine monophosphate by AMP deaminase. GMP is formed by the inosinate oxidation to xanthylate (XMP). Within humans, inosinic acid participates in a number of enzymatic reactions. In particular, inosinic acid can be converted into phosphoribosyl formamidocarboxamide; which is catalyzed by the bifunctional purine biosynthesis protein. In addition, inosinic acid can be converted into xanthylic acid; which is catalyzed by the enzyme inosine-5-monophosphate dehydrogenase 1.
Origin: Microbe; Formula(Parent): C10H13N4O8P; Bottle Name:Inosine-5-monophosphate; PRIME Parent Name:Inosine-5-monophosphate; PRIME in-house No.:0258, Purines
A purine nucleotide which has hypoxanthine as the base and one phosphate group esterified to the sugar moiety.
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map
Acquisition and generation of the data is financially supported in part by CREST/JST.
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Inosinic acid is an endogenous metabolite.
同义名列表
35 个代谢物同义名
{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-oxo-6,9-dihydro-1H-purin-9-yl)oxolan-2-yl]methoxy}phosphonic acid; Ribosylhypoxanthine monophosphoric acid; Hypoxanthosine 5-monophosphoric acid; monoPhosphate, ribosylhypoxanthine; Ribosylhypoxanthine monophosphate; 2-Inosine-5-monophosphoric acid; Hypoxanthosine 5-monophosphate; 5-Inosine monophosphoric acid; Inosine 5-monophosphoric acid; Inosine 5-monophosphate (IMP); Inosine monophosphoric acid; 2-Inosine-5-monophosphate; Inosine 5-phosphoric acid; Inosine 5-monophosphate; 5-Inosine monophosphate; Inosine-5-monophosphate; monoPhosphate, inosine; Inosine monophosphate; Inosine 5-phosphate; Oligoinosinic acid; Inosinate, sodium; Polyinosinic acid; Sodium inosinate; 5-Inosinic Acid; Acids, inosinic; Inosinic acids; Acid, inosinic; Inosinic acid; 5-Inosinate; Inosinate; 5-IMP; IMP; Inosine-monophosphate(IMP); 5'-IMP; Inosine 5'-(dihydrogen phosphate)
数据库引用编号
41 个数据库交叉引用编号
- ChEBI: CHEBI:17202
- KEGG: C00130
- PubChem: 135402036
- PubChem: 135398640
- PubChem: 8582
- HMDB: HMDB0000175
- Metlin: METLIN3490
- DrugBank: DB04566
- ChEMBL: CHEMBL1207374
- ChEMBL: CHEMBL277150
- Wikipedia: Inosinic_acid
- MeSH: Inosine Monophosphate
- MetaCyc: IMP
- KNApSAcK: C00007224
- foodb: FDB021901
- chemspider: 8264
- MoNA: PR100573
- MoNA: PS025804
- MoNA: PS025811
- MoNA: PS025802
- MoNA: PS025808
- MoNA: NGA02106
- MoNA: PR100152
- MoNA: NGA02105
- MoNA: NGA02107
- MoNA: PS025807
- MoNA: PS025805
- MoNA: BML81461
- MoNA: BML81460
- MoNA: PS025812
- MoNA: PS025803
- MoNA: PS025801
- MoNA: PS025806
- MoNA: NGA02108
- PMhub: MS000007554
- PubChem: 3430
- PDB-CCD: IMP
- 3DMET: B01168
- NIKKAJI: J9.493E
- CAS: 4691-65-0
- medchemexpress: HY-108213
分类词条
相关代谢途径
Reactome(0)
BioCyc(7)
- salvage pathways of purine nucleosides
- purine nucleotide metabolism (phosphotransfer and nucleotide modification)
- salvage pathways of adenine, hypoxanthine, and their nucleosides
- purine nucleotides de novo biosynthesis I
- superpathway of histidine, purine, and pyrimidine biosynthesis
- purine nucleotides de novo biosynthesis II
- salvage pathways of purine nucleosides I
PlantCyc(11)
- superpathway of purines degradation in plants
- adenine and adenosine salvage III
- superpathway of adenosine nucleotides de novo biosynthesis I
- inosine 5'-phosphate degradation
- superpathway of purine nucleotides de novo biosynthesis I
- inosine-5'-phosphate biosynthesis II
- guanosine ribonucleotides de novo biosynthesis
- adenosine nucleotides degradation I
- adenosine ribonucleotides de novo biosynthesis
- ureide biosynthesis
- purine nucleotides degradation I (plants)
代谢反应
1117 个相关的代谢反应过程信息。
Reactome(26)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Purine ribonucleoside monophosphate biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Purine ribonucleoside monophosphate biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Purine ribonucleoside monophosphate biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Abacavir transport and metabolism:
IMP + carbovir ⟶ Ino + xenobiotic
- Abacavir metabolism:
IMP + carbovir ⟶ Ino + xenobiotic
BioCyc(11)
- purine nucleotide metabolism (phosphotransfer and nucleotide modification):
AMP + ATP ⟶ ADP + H+
- purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of histidine, purine, and pyrimidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- guanosine nucleotides de novo biosynthesis:
ATP + ammonia + xanthosine-5-phosphate ⟶ AMP + GMP + H+ + diphosphate
- purine nucleotides de novo biosynthesis II:
adenylo-succinate ⟶ AMP + fumarate
- salvage pathways of purine nucleosides I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- inosine-5'-phosphate biosynthesis I:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- inosine-5'-phosphate biosynthesis II:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- adenosine nucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- salvage pathways of purine nucleosides:
H2O + adenine ⟶ ammonia + hypoxanthine
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
Plant Reactome(237)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
H2O + IMP + NAD ⟶ NADH + XMP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H imidazole-5-carboxylate ⟶ allantoin + carbon dioxide
INOH(4)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- IMP + H2O = 5'-Phospho-ribosyl-4-carboxamido-5-formamido-imidazole ( Purine nucleotides and Nucleosides metabolism ):
5'-Phospho-ribosyl-4-carboxamido-5-formamido-imidazole ⟶ H2O + IMP
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
- IMP + Pyrophosphate = Hypoxanthine + D-5-Phospho-ribosyl 1-diphosphate ( Purine nucleotides and Nucleosides metabolism ):
D-5-Phospho-ribosyl 1-diphosphate + Hypoxanthine ⟶ IMP + Pyrophosphate
PlantCyc(768)
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
ATP + H2O + XMP + gln ⟶ AMP + GMP + H+ + diphosphate + glu
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + H2O + XMP + gln ⟶ AMP + GMP + H+ + diphosphate + glu
- inosine-5'-phosphate biosynthesis II:
H2O + IMP ⟶ FAICAR
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- adenosine ribonucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- inosine-5'-phosphate biosynthesis II:
SAICAR ⟶ AICAR + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
CAIR + H+ ⟶ AIR + CO2
- superpathway of adenosine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + an oxidized thioredoxin + dGDP ⟶ GDP + a reduced thioredoxin
- inosine-5'-phosphate biosynthesis II:
H2O + IMP ⟶ FAICAR
- guanosine ribonucleotides de novo biosynthesis:
ATP + GMP ⟶ ADP + GDP
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purines degradation in plants:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- ureide biosynthesis:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of adenosine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- ureide biosynthesis:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- inosine-5'-phosphate biosynthesis II:
H2O + IMP ⟶ FAICAR
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + GMP ⟶ ADP + GDP
- superpathway of guanosine nucleotides de novo biosynthesis I:
ATP + GMP ⟶ ADP + GDP
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine ribonucleotides de novo biosynthesis:
ATP + GMP ⟶ ADP + GDP
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- superpathway of purines degradation in plants:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides de novo biosynthesis I:
ATP + H2O + XMP + gln ⟶ AMP + GMP + H+ + diphosphate + glu
- superpathway of adenosine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- ureide biosynthesis:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- inosine-5'-phosphate biosynthesis II:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- adenosine ribonucleotides de novo biosynthesis:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- adenine and adenosine salvage III:
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
COVID-19 Disease Map(2)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(68)
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis 2:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis 2:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
Adenosine triphosphate + Ammonia + L-Aspartic acid ⟶ Adenosine monophosphate + L-Asparagine + Pyrophosphate
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Adenine and Adenosine Salvage II:
Adenine + Ribose 1-phosphate ⟶ Adenosine + Phosphate
- AMP Degradation (Hypoxanthine Route):
Adenosine monophosphate + Hydrogen Ion + Water ⟶ Ammonium + Inosinic acid
- Adenine and Adenosine Salvage I:
Adenine + Ribose 1-phosphate ⟶ Adenosine + Phosphate
PharmGKB(0)
8 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14594
- 1697 - Corynebacterium ammoniagenes: 10.1271/BBB.56.763
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 4896 - Schizosaccharomyces pombe: 10.1039/C4MB00346B
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xiangli He, Jiayan Cui, Hui Ma, Naijipu Abuduaini, Ying Huang, Lu Tang, Wanyan Wang, Yuanyuan Zhang, Yang Wang, Weiqiang Lu, Bo Feng, Jin Huang. Berberrubine is a novel and selective IMPDH2 inhibitor that impairs the growth of colorectal cancer.
Biochemical pharmacology.
2023 Oct; 218(?):115868. doi:
10.1016/j.bcp.2023.115868
. [PMID: 37871880] - Anamika Gupta, Rumana Ahmad, Sahabjada Siddiqui, Kusum Yadav, Aditi Srivastava, Anchal Trivedi, Bilal Ahmad, Mohsin Ali Khan, Amit Kumar Shrivastava, Girish Kumar Singh. Flavonol morin targets host ACE2, IMP-α, PARP-1 and viral proteins of SARS-CoV-2, SARS-CoV and MERS-CoV critical for infection and survival: a computational analysis.
Journal of biomolecular structure & dynamics.
2022 08; 40(12):5515-5546. doi:
10.1080/07391102.2021.1871863
. [PMID: 33526003] - Joseph P Dewulf, Sandrine Marie, Marie-Cécile Nassogne. Disorders of purine biosynthesis metabolism.
Molecular genetics and metabolism.
2022 07; 136(3):190-198. doi:
10.1016/j.ymgme.2021.12.016
. [PMID: 34998670] - H Ara, S K Paul, N Kobayashi, S A Nasreen, F Ahmed, S S Nila. Molecular Detection of MBL Encoding Genes in Acinetobacter baumannii strains Isolated from Various Samples at a Tertiary Care Hospital in Mymensingh.
Mymensingh medical journal : MMJ.
2022 Jul; 31(3):666-672. doi:
. [PMID: 35780348]
- Sasikan Katemala, Amonrat Molee, Kanjana Thumanu, Jirawat Yongsawatdigul. A comparative study of meat quality and vibrational spectroscopic properties of different chicken breeds.
Poultry science.
2022 Jun; 101(6):101829. doi:
10.1016/j.psj.2022.101829
. [PMID: 35385823] - Lucas P Bonagurio, Alice E Murakami, Camila A Moreira, Jurandir F Comar, Paulo C Pozza. Dietary supplementation with inosine-5'-monophosphate improves the functional, energetic, and antioxidant status of liver and muscle growth in pigs.
Scientific reports.
2022 01; 12(1):350. doi:
10.1038/s41598-021-04023-y
. [PMID: 35013384] - M P Freire, C H Camargo, A Y Yamada, F O Nagamori, J O Reusing Junior, F Spadão, A P Cury, F Rossi, W C Nahas, E David-Neto, L C Pierrotti. Critical points and potential pitfalls of outbreak of IMP-1-producing carbapenem-resistant Pseudomonas aeruginosa among kidney transplant recipients: a case-control study.
The Journal of hospital infection.
2021 Sep; 115(?):83-92. doi:
10.1016/j.jhin.2021.05.006
. [PMID: 34033889] - Jae Jung Lee, Jung Han Yoon, Sang Jin Kim, Han Soo Yoo, Seok Jong Chung, Yang Hyun Lee, Suk Yun Kang, Hae-Won Shin, Sook Keun Song, Jin Yong Hong, MunKyung Sunwoo, Ji Eun Lee, Jong Sam Baik, Young H Sohn, Phil Hyu Lee. Inosine 5'-Monophosphate to Raise Serum Uric Acid Level in Multiple System Atrophy (IMPROVE-MSA study).
Clinical pharmacology and therapeutics.
2021 05; 109(5):1274-1281. doi:
10.1002/cpt.2082
. [PMID: 33064299] - Takeaki Wajima, Yuji Hirai, Takayuki Otake, Yui Momose, Hidemasa Nakaminami, Norihisa Noguchi. First isolation of an IMP-1 metallo-β-lactamase-producing Kluyvera ascorbata in Japan.
Journal of global antimicrobial resistance.
2020 12; 23(?):228-231. doi:
10.1016/j.jgar.2020.09.026
. [PMID: 33065331] - Shu Iwata, Tatsuya Tada, Tomomi Hishinuma, Mari Tohya, Satoshi Oshiro, Kyoko Kuwahara-Arai, Miho Ogawa, Masahiro Shimojima, Teruo Kirikae. Emergence of Carbapenem-Resistant Providencia rettgeri and Providencia stuartii Producing IMP-Type Metallo-β-Lactamase in Japan.
Antimicrobial agents and chemotherapy.
2020 10; 64(11):. doi:
10.1128/aac.00382-20
. [PMID: 32816727] - Wenjun Chang, Heng Li, Hanqing Chen, Fan Qiao, Huicai Zeng. Identification of mimp-associated effector genes in Fusarium oxysporum f. sp. cubense race 1 and race 4 and virulence confirmation of a candidate effector gene.
Microbiological research.
2020 Feb; 232(?):126375. doi:
10.1016/j.micres.2019.126375
. [PMID: 31783262] - Manrong Yu, Hui Chen, Pan Liu, Mei Yang, Leqin Zou, Dingfu Xiao. Antioxidant Function and Metabolomics Study in Mice after Dietary Supplementation with Methionine.
BioMed research international.
2020; 2020(?):9494528. doi:
10.1155/2020/9494528
. [PMID: 33145362] - Baixing Wu, Dong Zhang, Hongbo Nie, Senlin Shen, Yan Li, Sisi Li. Structure of Arabidopsis thaliana N6-methyl-AMP deaminase ADAL with bound GMP and IMP and implications for N6-methyl-AMP recognition and processing.
RNA biology.
2019 10; 16(10):1504-1512. doi:
10.1080/15476286.2019.1642712
. [PMID: 31318636] - Md Sakhawat Hossain, Shunsuke Koshio, Manabu Ishikawa, Saichiro Yokoyama, Nadia Mahjabin Sony, Md Jakiul Islam. Fishmeal replacement by soya protein concentrate with inosine monophosphate supplementation influences growth, digestibility, immunity, blood health, and stress resistance of red sea bream, Pagrus major.
Fish physiology and biochemistry.
2019 Apr; 45(2):613-629. doi:
10.1007/s10695-018-0581-2
. [PMID: 30367428] - Peiyu Zhang, Lele Fu, Haokun Liu, Noor-Ul Huda, Xiaoming Zhu, Dong Han, Junyan Jin, Yunxia Yang, Yang-Su Kim, Shouqi Xie. Effects of inosine 5'-monophosphate supplementation in high fishmeal and high soybean diets on growth, immune-related gene expression in gibel carp (Carassius auratus gibelio var. CAS Ⅲ), and its challenge against Aeromonas hydrophila infection.
Fish & shellfish immunology.
2019 Mar; 86(?):913-921. doi:
10.1016/j.fsi.2018.12.016
. [PMID: 30550991] - Hideharu Hagiya, Norihisa Yamamoto, Ryuji Kawahara, Yukihiro Akeda, Rathina Kumar Shanmugakani, Akiko Ueda, Isao Nishi, Rumiko Asada, Hisao Yoshida, Kazunori Tomono. Risk factors for fecal carriage of IMP-6-producing Enterobacteriaceae at a long-term care hospital in Japan: A follow-up report from the northern Osaka multicentre study group.
Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.
2018 Sep; 24(9):769-772. doi:
10.1016/j.jiac.2018.03.009
. [PMID: 29656900] - Shigetoshi Takaya, Nobukatsu Sawamoto, Tomohisa Okada, Gosuke Okubo, Sei Nishida, Kaori Togashi, Hidenao Fukuyama, Ryosuke Takahashi. Differential diagnosis of parkinsonian syndromes using dopamine transporter and perfusion SPECT.
Parkinsonism & related disorders.
2018 02; 47(?):15-21. doi:
10.1016/j.parkreldis.2017.11.333
. [PMID: 29157745] - Yuichi Yasutake, Kengo Tomita, Masaaki Higashiyama, Hirotaka Furuhashi, Kazuhiko Shirakabe, Takeshi Takajo, Koji Maruta, Hirokazu Sato, Kazuyuki Narimatsu, Kenichi Yoshikawa, Yoshikiyo Okada, Chie Kurihara, Chikako Watanabe, Shunsuke Komoto, Shigeaki Nagao, Hirotaka Matsuo, Soichiro Miura, Ryota Hokari. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.
Journal of gastroenterology and hepatology.
2017 Nov; 32(11):1839-1845. doi:
10.1111/jgh.13785
. [PMID: 28295549] - Norihisa Yamamoto, Ryuji Kawahara, Yukihiro Akeda, Rathina Kumar Shanmugakani, Hisao Yoshida, Hideharu Hagiya, Naohiro Hara, Isao Nishi, Satomi Yukawa, Rumiko Asada, Yumi Sasaki, Kazuhiro Maeda, Noriko Sakamoto, Shigeyuki Hamada, Kazunori Tomono. Development of selective medium for IMP-type carbapenemase-producing Enterobacteriaceae in stool specimens.
BMC infectious diseases.
2017 03; 17(1):229. doi:
10.1186/s12879-017-2312-1
. [PMID: 28340557] - Bethany R Baumgart, Faye Wang, Jae Kwagh, Chris Storck, Catherine Euler, Megan Fuller, Damir Simic, Suresh Sharma, Jamie J Arnold, Craig E Cameron, Terry R Van Vleet, Oliver Flint, Roderick T Bunch, Marc H Davies, Michael J Graziano, Thomas P Sanderson. Effects of BMS-986094, a Guanosine Nucleotide Analogue, on Mitochondrial DNA Synthesis and Function.
Toxicological sciences : an official journal of the Society of Toxicology.
2016 10; 153(2):396-408. doi:
10.1093/toxsci/kfw135
. [PMID: 27466212] - Y Hamano, Y Kurimoto. Effects of acetylated wood powder on growth performance, hepatic and muscular free amino acid profiles, and inosine 5'-monophosphate concentration of breast meat in broiler chickens.
British poultry science.
2016 Oct; 57(5):643-654. doi:
10.1080/00071668.2016.1190809
. [PMID: 27185488] - Y Hamano. Alteration of fatty acid profile and nucleotide-related substances in post-mortem breast meat of α-lipoic acid-fed broiler chickens.
British poultry science.
2016 Aug; 57(4):501-14. doi:
10.1080/00071668.2016.1184227
. [PMID: 27138100] - Orrapun Selamassakul, Natta Laohakunjit, Orapin Kerdchoechuen, Khanok Ratanakhanokchai. A novel multi-biofunctional protein from brown rice hydrolysed by endo/endo-exoproteases.
Food & function.
2016 Jun; 7(6):2635-44. doi:
10.1039/c5fo01344e
. [PMID: 27186602] - M T Ortega, B Jeffery, J E Riviere, N A Monteiro-Riviere. Toxicological effects of pet food ingredients on canine bone marrow-derived mesenchymal stem cells and enterocyte-like cells.
Journal of applied toxicology : JAT.
2016 Feb; 36(2):189-98. doi:
10.1002/jat.3158
. [PMID: 25976427] - Jing Wang, Xiao-jian Dai, Yi-fan Zhang, Da-fang Zhong, Yu-lin Wu, Xiao-yan Chen. [Simultaneous determination of sivelestat and its metabolite XW-IMP-A in human plasma using HPLC-MS/MS].
Yao xue xue bao = Acta pharmaceutica Sinica.
2015 Oct; 50(10):1318-23. doi:
NULL
. [PMID: 26837180] - J Koči, B Jeffery, J E Riviere, N A Monteiro-Riviere. In vitro safety assessment of food ingredients in canine renal proximal tubule cells.
Toxicology in vitro : an international journal published in association with BIBRA.
2015 Mar; 29(2):289-98. doi:
10.1016/j.tiv.2014.11.002
. [PMID: 25458622] - Kodai Nishi, Asuka Mizutani, Naoto Shikano, Ken-Ichi Fujita, Masato Kobayashi, Masahiro Ono, Ryuichi Nishii, Yasutuna Sasaki, Seigo Kinuya, Keiichi Kawai. In vivo radioactive metabolite analysis for individualized medicine: a basic study of a new method of CYP activity assay using (123)I-IMP.
Nuclear medicine and biology.
2015 Feb; 42(2):171-6. doi:
10.1016/j.nucmedbio.2014.08.015
. [PMID: 25441254] - Hong Li, Donald E Mager, Brenda M Sandmaier, Barry E Storer, Michael J Boeckh, Meagan J Bemer, Brian R Phillips, Linda J Risler, Jeannine S McCune. Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil.
Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.
2014 Aug; 20(8):1121-9. doi:
10.1016/j.bbmt.2014.03.032
. [PMID: 24727337] - A C Weaver, S W Kim. Supplemental nucleotides high in inosine 5'-monophosphate to improve the growth and health of nursery pigs.
Journal of animal science.
2014 Feb; 92(2):645-51. doi:
10.2527/jas.2013-6564
. [PMID: 24398830] - Jennifer Williamson, Donna Ryland, Miyoung Suh, Michel Aliani. The effect of chilled conditioning at 4°C on selected water and lipid-soluble flavor precursors in Bison bison longissimus dorsi muscle and their impact on sensory characteristics.
Meat science.
2014 Jan; 96(1):136-46. doi:
10.1016/j.meatsci.2013.06.023
. [PMID: 23896147] - Juan Miguel Cabello-Díaz, Francisco Antonio Quiles, Rocío Lambert, Manuel Pineda, Pedro Piedras. Identification of a novel phosphatase with high affinity for nucleotides monophosphate from common bean (Phaseolus vulgaris).
Plant physiology and biochemistry : PPB.
2012 Apr; 53(?):54-60. doi:
10.1016/j.plaphy.2012.01.012
. [PMID: 22322249] - Chao Tan, Hui Wang, Yue Zhang, Bin Qi, Guoxin Xu, Huiqiong Zheng. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type.
Proteome science.
2011 Nov; 9(?):72. doi:
10.1186/1477-5956-9-72
. [PMID: 22085406] - Sibylle von Vietinghoff, Ekaterina K Koltsova, Javier Mestas, Cody J Diehl, Joseph L Witztum, Klaus Ley. Mycophenolate mofetil decreases atherosclerotic lesion size by depression of aortic T-lymphocyte and interleukin-17-mediated macrophage accumulation.
Journal of the American College of Cardiology.
2011 May; 57(21):2194-204. doi:
10.1016/j.jacc.2010.12.030
. [PMID: 21596236] - Sofie Haglund, Svante Vikingsson, Jan Söderman, Ulf Hindorf, Christer Grännö, Margareta Danelius, Sally Coulthard, Curt Peterson, Sven Almer. The role of inosine-5'-monophosphate dehydrogenase in thiopurine metabolism in patients with inflammatory bowel disease.
Therapeutic drug monitoring.
2011 Apr; 33(2):200-8. doi:
10.1097/ftd.0b013e31820b42bb
. [PMID: 21311411] - Matthias C Raggi, Stephanie B Siebert, Werner Steimer, Tibor Schuster, Manfred J Stangl, Dietmar K Abendroth. Customized mycophenolate dosing based on measuring inosine-monophosphate dehydrogenase activity significantly improves patients' outcomes after renal transplantation.
Transplantation.
2010 Dec; 90(12):1536-41. doi:
10.1097/tp.0b013e3182000027
. [PMID: 21076373] - Reza Rahimian, Gohar Fakhfouri, Ali Daneshmand, Hamed Mohammadi, Arash Bahremand, Mohammad Reza Rasouli, Kazem Mousavizadeh, Ahmad Reza Dehpour. Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats.
European journal of pharmacology.
2010 Dec; 649(1-3):376-81. doi:
10.1016/j.ejphar.2010.09.044
. [PMID: 20868668] - Nicholas P L Tuckey, Malcolm E Forster, Steven P Gieseg. Effects of rested harvesting on muscle metabolite concentrations and K-values in Chinook salmon (Oncorhynchus tshawytscha) fillets during storage at 15 degrees C.
Journal of food science.
2010 Jun; 75(5):C459-64. doi:
10.1111/j.1750-3841.2010.01648.x
. [PMID: 20629868] - Hua Shui, Ping Gao, Xiaoyun Si, Guohua Ding. Mycophenolic acid inhibits albumin-induced MCP-1 expression in renal tubular epithelial cells through the p38 MAPK pathway.
Molecular biology reports.
2010 Apr; 37(4):1749-54. doi:
10.1007/s11033-009-9599-y
. [PMID: 19578979] - T Maiguma, T Yosida, K Otsubo, Y Okabe, A Sugitani, M Tanaka, R Oishi, D Teshima. Evaluation of inosin-5'-monophosphate dehydrogenase activity during maintenance therapy with tacrolimus.
Journal of clinical pharmacy and therapeutics.
2010 Feb; 35(1):79-85. doi:
10.1111/j.1365-2710.2009.01072.x
. [PMID: 20175815] - Nina A Lehr, Aleksandra Adomas, Frederick O Asiegbu, Rüdiger Hampp, Mika T Tarkka. WS-5995 B, an antifungal agent inducing differential gene expression in the conifer pathogen Heterobasidion annosum but not in Heterobasidion abietinum.
Applied microbiology and biotechnology.
2009 Nov; 85(2):347-58. doi:
10.1007/s00253-009-2254-7
. [PMID: 19798499] - Takeshi Ichinohe, Akira Ainai, Masato Tashiro, Tetsutaro Sata, Hideki Hasegawa. PolyI:polyC12U adjuvant-combined intranasal vaccine protects mice against highly pathogenic H5N1 influenza virus variants.
Vaccine.
2009 Oct; 27(45):6276-9. doi:
10.1016/j.vaccine.2009.04.074
. [PMID: 19840660] - Gee-Wook Shin, Seong-Won Nho, Seong-Bin Park, Ho-Bin Jang, In-Seok Cha, Mi-Ae Ha, Young-Rim Kim, Rishikesh S Dalvi, Seong-Joon Joh, Tae-Sung Jung. Comparison of antigenic proteins from Lactococcus garvieae KG- and KG+ strains that are recognized by olive flounder (Paralichthys olivaceus) antibodies.
Veterinary microbiology.
2009 Oct; 139(1-2):113-20. doi:
10.1016/j.vetmic.2009.05.007
. [PMID: 19556079] - Ferdi Sombogaard, Annemiek M A Peeters, Carla C Baan, Ron A A Mathot, Monique E Quaedackers, Arnold G Vulto, Willem Weimar, Teun van Gelder. Inosine monophosphate dehydrogenase messenger RNA expression is correlated to clinical outcomes in mycophenolate mofetil-treated kidney transplant patients, whereas inosine monophosphate dehydrogenase activity is not.
Therapeutic drug monitoring.
2009 Oct; 31(5):549-56. doi:
10.1097/ftd.0b013e3181b7a9d0
. [PMID: 19704402] - H Tang, Y Z Gong, C X Wu, J Jiang, Y Wang, K Li. Variation of meat quality traits among five genotypes of chicken.
Poultry science.
2009 Oct; 88(10):2212-8. doi:
10.3382/ps.2008-00036
. [PMID: 19762878] - Natalie D Luscombe-Marsh, Astrid J P G Smeets, Margriet S Westerterp-Plantenga. The addition of monosodium glutamate and inosine monophosphate-5 to high-protein meals: effects on satiety, and energy and macronutrient intakes.
The British journal of nutrition.
2009 Sep; 102(6):929-37. doi:
10.1017/s0007114509297212
. [PMID: 19267954] - Qing-Ying Chen, Suzanne Alarcon, Anilet Tharp, Osama M Ahmed, Nelsa L Estrella, Tiffani A Greene, Joseph Rucker, Paul A S Breslin. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes.
The American journal of clinical nutrition.
2009 Sep; 90(3):770S-779S. doi:
10.3945/ajcn.2009.27462n
. [PMID: 19587085] - Sara Bremer, Nils T Vethe, Helge Rootwelt, Pål F Jørgensen, Jean Stenstrøm, Hallvard Holdaas, Karsten Midtvedt, Stein Bergan. Mycophenolate pharmacokinetics and pharmacodynamics in belatacept treated renal allograft recipients - a pilot study.
Journal of translational medicine.
2009 Jul; 7(?):64. doi:
10.1186/1479-5876-7-64
. [PMID: 19635156] - Hemant R Kushwaha, Anil K Singh, Sudhir K Sopory, Sneh L Singla-Pareek, Ashwani Pareek. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation.
BMC genomics.
2009 Apr; 10(?):200. doi:
10.1186/1471-2164-10-200
. [PMID: 19400948] - C Alfaro, N Suarez, A Gonzalez, S Solano, L Erro, J Dubrot, A Palazon, S Hervas-Stubbs, A Gurpide, J M Lopez-Picazo, E Grande-Pulido, I Melero, J L Perez-Gracia. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes.
British journal of cancer.
2009 Apr; 100(7):1111-9. doi:
10.1038/sj.bjc.6604965
. [PMID: 19277038] - Christiane Stahl-Hennig, Martin Eisenblätter, Edith Jasny, Tamara Rzehak, Klara Tenner-Racz, Christine Trumpfheller, Andres M Salazar, Klaus Uberla, Karen Nieto, Jürgen Kleinschmidt, Reiner Schulte, Lutz Gissmann, Martin Müller, Anna Sacher, Paul Racz, Ralph M Steinman, Mariagrazia Uguccioni, Ralf Ignatius. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques.
PLoS pathogens.
2009 Apr; 5(4):e1000373. doi:
10.1371/journal.ppat.1000373
. [PMID: 19360120] - Joachim Kuhn, Christian Prante, Knut Kleesiek, Christian Götting. Measurement of mycophenolic acid and its glucuronide using a novel rapid liquid chromatography-electrospray ionization tandem mass spectrometry assay.
Clinical biochemistry.
2009 Jan; 42(1-2):83-90. doi:
10.1016/j.clinbiochem.2008.10.004
. [PMID: 18996104] - Gunnar Brandhorst, Pierre Marquet, Leslie M Shaw, Gerhard Liebisch, Gerd Schmitz, Mary Jane Coffing, Ingrid Domke, Frank Streit, Hilmar Luthe, Michael Oellerich. Multicenter evaluation of a new inosine monophosphate dehydrogenase inhibition assay for quantification of total mycophenolic acid in plasma.
Therapeutic drug monitoring.
2008 Aug; 30(4):428-33. doi:
10.1097/ftd.0b013e31817fd590
. [PMID: 18641549] - L D Calvert, S J Singh, P L Greenhaff, M D Morgan, M C Steiner. The plasma ammonia response to cycle exercise in COPD.
The European respiratory journal.
2008 Apr; 31(4):751-8. doi:
10.1183/09031936.00164106
. [PMID: 18094007] - Yeyun Li, Shinjiro Ogita, Chaman Ara Keya, Hiroshi Ashihara. Expression of caffeine biosynthesis genes in tea (Camellia sinensis).
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2008 Mar; 63(3-4):267-70. doi:
10.1515/znc-2008-3-417
. [PMID: 18533472] - Leszek Domański, Tadeusz Sulikowski, Maciej Romanowski, Krzysztof Safranow, Andrzej Pawlik, Katarzyna Jakubowska, Violetta Dziedziejko, Magda Wiśniewska, Maciej Domański, Dariusz Chlubek, Maria Olszewska, Kazimierz Ciechanowski. The effect of preservation solutions UW and EC on purine concentration in rat kidney.
Annales Academiae Medicae Stetinensis.
2008; 54(1):53-9. doi:
NULL
. [PMID: 19127810] - Aaron L Olsen, John D Morrey, Donald F Smee, Robert W Sidwell. Correlation between breakdown of the blood-brain barrier and disease outcome of viral encephalitis in mice.
Antiviral research.
2007 Aug; 75(2):104-12. doi:
10.1016/j.antiviral.2006.11.013
. [PMID: 17223204] - Fatos Bejta, Elizabeth H Moore, Michael Avella, Peter J Gough, Keith E Suckling, Kathleen M Botham. Oxidation of chylomicron remnant-like particles inhibits their uptake by THP-1 macrophages by apolipoprotein E-dependent processes.
Biochimica et biophysica acta.
2007 Jul; 1771(7):901-10. doi:
10.1016/j.bbalip.2007.04.013
. [PMID: 17540618] - Justin G Julander, Venkatraman Siddharthan, Lawrence M Blatt, Kristiina Schafer, Robert W Sidwell, John D Morrey. Effect of exogenous interferon and an interferon inducer on western equine encephalitis virus disease in a hamster model.
Virology.
2007 Apr; 360(2):454-60. doi:
10.1016/j.virol.2006.10.031
. [PMID: 17118420] - Susumu Nagayama, Ken-ichi Ogawara, Keiko Minato, Yoshiko Fukuoka, Yoshinobu Takakura, Mitsuru Hashida, Kazutaka Higaki, Toshikiro Kimura. Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor.
International journal of pharmaceutics.
2007 Feb; 329(1-2):192-8. doi:
10.1016/j.ijpharm.2006.08.025
. [PMID: 17005341] - Makoto Okada, Kimihiro Suzuki, Masahiro Nakashima, Takashi Nakanishi, Noriyasu Fujioka. The nucleotide derivatives inosine and inosinic acid inhibit intestinal absorption of mizoribine in rats.
European journal of pharmacology.
2006 Feb; 531(1-3):140-4. doi:
10.1016/j.ejphar.2005.12.013
. [PMID: 16438959] - Glenn K McConell, Joanna Shinewell, Terry J Stephens, Christos G Stathis, Benedict J Canny, Rodney J Snow. Creatine supplementation reduces muscle inosine monophosphate during endurance exercise in humans.
Medicine and science in sports and exercise.
2005 Dec; 37(12):2054-61. doi:
10.1249/01.mss.0000179096.03129.a4
. [PMID: 16331129] - Roichi Itoh, Kayoko Kimura. IMP-GMP 5'-nucleotidase in reptiles: occurrence and tissue distribution in a crocodile and three species of lizards.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2005 Sep; 142(1):107-12. doi:
10.1016/j.cbpc.2005.06.005
. [PMID: 15996884] - Donna K Mahnke, Richard L Sabina. Calcium activates erythrocyte AMP deaminase [isoform E (AMPD3)] through a protein-protein interaction between calmodulin and the N-terminal domain of the AMPD3 polypeptide.
Biochemistry.
2005 Apr; 44(14):5551-9. doi:
10.1021/bi048121p
. [PMID: 15807549] - Walter Gottlieb Land. Ageing and immunosuppression in kidney transplantation.
Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation.
2004 Dec; 2(2):229-37. doi:
NULL
. [PMID: 15859933] - Xianfeng Gu, Zhenjun Yang, Liangren Zhang, Svenja Kunerth, Ralf Fliegert, Karin Weber, Andreas H Guse, Lihe Zhang. Synthesis and biological evaluation of novel membrane-permeant cyclic ADP-ribose mimics: N1-[(5''-O-phosphorylethoxy)methyl]-5'-O-phosphorylinosine 5',5''-cyclicpyrophosphate (cIDPRE) and 8-substituted derivatives.
Journal of medicinal chemistry.
2004 Nov; 47(23):5674-82. doi:
10.1021/jm040092t
. [PMID: 15509166] - Hong-Yu Yuan, Li-Li Zhu, Ming Tang, Guang-Cun He. [Isolation of rice genes down-regulated by brown planthopper infestation by suppression subtractive hybridization].
Zhi wu sheng li yu fen zi sheng wu xue xue bao = Journal of plant physiology and molecular biology.
2004 Jun; 30(3):305-10. doi:
"
. [PMID: 15599027] - Kentaro Furumoto, Susumu Nagayama, Ken-Ichi Ogawara, Yoshinobu Takakura, Mitsuru Hashida, Kazutaka Higaki, Toshikiro Kimura. Hepatic uptake of negatively charged particles in rats: possible involvement of serum proteins in recognition by scavenger receptor.
Journal of controlled release : official journal of the Controlled Release Society.
2004 May; 97(1):133-41. doi:
10.1016/j.jconrel.2004.03.004
. [PMID: 15147811] - Mohammad Alamgir Hossain, Osamu Yamato, Masahiro Yamasaki, Yoshimitsu Maede. Inhibitory effect of pyrimidine and purine nucleotides on the multiplication of Babesia gibsoni: possible cause of low parasitemia and simultaneous reticulocytosis in canine babesiosis.
The Journal of veterinary medical science.
2004 Apr; 66(4):389-95. doi:
10.1292/jvms.66.389
. [PMID: 15133268] - Elisa Messina, Paola Gazzaniga, Vanna Micheli, Maria Rosaria Guaglianone, Silvia Barbato, Stefania Morrone, Luigi Frati, Anna Maria Aglianò, Alessandro Giacomello. Guanine nucleotide depletion triggers cell cycle arrest and apoptosis in human neuroblastoma cell lines.
International journal of cancer.
2004 Mar; 108(6):812-7. doi:
10.1002/ijc.11642
. [PMID: 14712481] - John D Morrey, Craig W Day, Justin G Julander, Lawrence M Blatt, Donald F Smee, Robert W Sidwell. Effect of interferon-alpha and interferon-inducers on West Nile virus in mouse and hamster animal models.
Antiviral chemistry & chemotherapy.
2004 Mar; 15(2):101-9. doi:
10.1177/095632020401500202
. [PMID: 15185728] - Razieh Yazdanparast, Heibatollah Sadeghi. Nucleic acid synthesis in cancerous cells under the effect of gnidilatimonoein from Daphne mucronata.
Life sciences.
2004 Feb; 74(15):1869-76. doi:
10.1016/j.lfs.2003.08.039
. [PMID: 14761668] - Y Hellsten, L Skadhauge, J Bangsbo. Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans.
American journal of physiology. Regulatory, integrative and comparative physiology.
2004 Jan; 286(1):R182-8. doi:
10.1152/ajpregu.00286.2003
. [PMID: 14660478] - Vladimir Ermolayev, Winfriede Weschke, Renate Manteuffel. Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars.
Journal of experimental botany.
2003 Dec; 54(393):2745-56. doi:
10.1093/jxb/erg302
. [PMID: 14623943] - Chaman Ara Keya, Alan Crozier, Hiroshi Ashihara. Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffea arabica) plants by ribavirin.
FEBS letters.
2003 Nov; 554(3):473-7. doi:
10.1016/s0014-5793(03)01213-4
. [PMID: 14623114] - Roberto J Firpi, David R Nelson, Gary L Davis. Lack of antiviral effect of a short course of mycophenolate mofetil in patients with chronic hepatitis C virus infection.
Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society.
2003 Jan; 9(1):57-61. doi:
10.1053/jlts.2003.50003
. [PMID: 12514774] - Gwen S Scott, Sergei V Spitsin, Rhonda B Kean, Tatiana Mikheeva, Hilary Koprowski, D Craig Hooper. Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors.
Proceedings of the National Academy of Sciences of the United States of America.
2002 Dec; 99(25):16303-8. doi:
10.1073/pnas.212645999
. [PMID: 12451183] - Roichi Itoh, Kayoko Kimura. Occurrence of IMP-GMP 5'-nucleotidase in three fish species: a comparative study on Trachurus japonicus, Oncorhynchus masou masou and Triakis scyllium.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2002 Jun; 132(2):401-8. doi:
10.1016/s1096-4959(02)00049-0
. [PMID: 12031466] - K Noel Masihi, John W Hadden. Protection by methyl inosine monophosphate (MIMP) against aerosol influenza virus infection in mice.
International immunopharmacology.
2002 May; 2(6):835-41. doi:
10.1016/s1567-5769(02)00026-7
. [PMID: 12095174] - D R Laver, G K Lenz, G D Lamb. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine.
The Journal of physiology.
2001 Dec; 537(Pt 3):763-78. doi:
10.1111/j.1469-7793.2001.00763.x
. [PMID: 11744753] - Y Hellsten, M Svensson, B Sjödin, S Smith, A Christensen, E A Richter, J Bangsbo. Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise.
Free radical biology & medicine.
2001 Dec; 31(11):1313-22. doi:
10.1016/s0891-5849(01)00631-1
. [PMID: 11728802] - B Norman, R L Sabina, E Jansson. Regulation of skeletal muscle ATP catabolism by AMPD1 genotype during sprint exercise in asymptomatic subjects.
Journal of applied physiology (Bethesda, Md. : 1985).
2001 Jul; 91(1):258-64. doi:
10.1152/jappl.2001.91.1.258
. [PMID: 11408438] - S Metz, S Holland, L Johnson, E Espling, M Rabaglia, V Segu, J S Brockenbrough, P O Tran. Inosine-5'-monophosphate dehydrogenase is required for mitogenic competence of transformed pancreatic beta cells.
Endocrinology.
2001 Jan; 142(1):193-204. doi:
10.1210/endo.142.1.7869
. [PMID: 11145582] - C J Decker, A D Heiser, P R Chaturvedi, T J Faust, G Ku, S Moseley, E Nimmesgern. The novel IMPDH inhibitor VX-497 prolongs skin graft survival and improves graft versus host disease in mice.
Drugs under experimental and clinical research.
2001; 27(3):89-95. doi:
NULL
. [PMID: 11447770] - G K McConell, B J Canny, M C Daddo, M J Nance, R J Snow. Effect of carbohydrate ingestion on glucose kinetics and muscle metabolism during intense endurance exercise.
Journal of applied physiology (Bethesda, Md. : 1985).
2000 Nov; 89(5):1690-8. doi:
10.1152/jappl.2000.89.5.1690
. [PMID: 11053315] - J L Van Houten, W Q Yang, A Bergeron. Chemosensory signal transduction in paramecium.
The Journal of nutrition.
2000 04; 130(4S Suppl):946S-9S. doi:
10.1093/jn/130.4.946s
. [PMID: 10736358] - L Prade, S W Cowan-Jacob, P Chemla, S Potter, E Ward, R Fonne-Pfister. Structures of adenylosuccinate synthetase from Triticum aestivum and Arabidopsis thaliana.
Journal of molecular biology.
2000 Feb; 296(2):569-77. doi:
10.1006/jmbi.1999.3473
. [PMID: 10669609] - B Tavazzi, D Di Pierro, A M Amorini, G Fazzina, M Tuttobene, B Giardina, G Lazzarino. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress.
European journal of biochemistry.
2000 Feb; 267(3):684-9. doi:
10.1046/j.1432-1327.2000.01042.x
. [PMID: 10651804] - T Mikami, Y Yoshino, A Ito. Does a relationship exist between the urate pool in the body and lipid peroxidation during exercise?.
Free radical research.
2000 Jan; 32(1):31-9. doi:
10.1080/10715760000300041
. [PMID: 10625215] - K Sahlin, M Tonkonogi, K Söderlund. Plasma hypoxanthine and ammonia in humans during prolonged exercise.
European journal of applied physiology and occupational physiology.
1999 Oct; 80(5):417-22. doi:
10.1007/s004210050613
. [PMID: 10502075] - X Lei, J Wang, R Cong. [Preparation and evaluation of new ion-exchange chromatographic stationary phase for the use in high performance liquid chromatography].
Se pu = Chinese journal of chromatography.
1999 Sep; 17(5):431-4. doi:
. [PMID: 12552875]
- G McConell, R J Snow, J Proietto, M Hargreaves. Muscle metabolism during prolonged exercise in humans: influence of carbohydrate availability.
Journal of applied physiology (Bethesda, Md. : 1985).
1999 Sep; 87(3):1083-6. doi:
10.1152/jappl.1999.87.3.1083
. [PMID: 10484580] - B Essén-Gustavsson, M Gottlieb-Vedi, A Lindholm. Muscle adenine nucleotide degradation during submaximal treadmill exercise to fatigue.
Equine veterinary journal. Supplement.
1999 Jul; ?(30):298-302. doi:
10.1111/j.2042-3306.1999.tb05238.x
. [PMID: 10659272] - M Esbjörnsson-Liljedahl, E Jansson. Sex difference in plasma ammonia but not in muscle inosine monophosphate accumulation following sprint exercise in humans.
European journal of applied physiology and occupational physiology.
1999 Apr; 79(5):404-8. doi:
10.1007/s004210050529
. [PMID: 10208248] - J M Parkin, M F Carey, S Zhao, M A Febbraio. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise.
Journal of applied physiology (Bethesda, Md. : 1985).
1999 Mar; 86(3):902-8. doi:
10.1152/jappl.1999.86.3.902
. [PMID: 10066703] - A Minelli, M Moroni, I Mezzasoma, A C Skladanowski. Activity of IMP- and AMP-preferring isoforms of 5'-nucleotidase from human seminal plasma with AMP analogues.
Molecular genetics and metabolism.
1999 Jan; 66(1):49-55. doi:
10.1006/mgme.1998.2769
. [PMID: 9973547] - K Schuback, B Essén-Gustavsson. Muscle anaerobic response to a maximal treadmill exercise test in Standardbred trotters.
Equine veterinary journal.
1998 Nov; 30(6):504-10. doi:
10.1111/j.2042-3306.1998.tb04526.x
. [PMID: 9844969] - H J Green, S M Grant, S M Phillips, D L Enns, M A Tarnopolsky, J R Sutton. Reduced muscle lactate during prolonged exercise following induced plasma volume expansion.
Canadian journal of physiology and pharmacology.
1997 Dec; 75(12):1280-6. doi:
. [PMID: 9534937]
- M L Skyllouriotis, M Marx, R E Bittner, P Skyllouriotis, M Gross, M Wimmer. Myoadenylate deaminase deficiency, hypertrophic cardiomyopathy and gigantism syndrome.
Pediatric neurology.
1997 Jul; 17(1):61-6. doi:
10.1016/s0887-8994(97)00076-3
. [PMID: 9308979] - B Essén-Gustavsson, N Ronéus, A R Pösö. Metabolic response in skeletal muscle fibres of standardbred trotters after racing.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
1997 Jul; 117(3):431-6. doi:
10.1016/s0305-0491(97)00140-5
. [PMID: 9253181]