Deoxycytidine (BioDeep_00000001206)
Secondary id: BioDeep_00000398681, BioDeep_00000399893
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C9H13N3O4 (227.0906)
中文名称: 2'-脱氧胞苷
谱图信息:
最多检出来源 Homo sapiens(blood) 20.08%
Last reviewed on 2024-08-21.
Cite this Page
Deoxycytidine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/deoxycytidine (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001206). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1C(C(OC1N2C=CC(=NC2=O)N)CO)O
InChI: InChI=1S/C9H13N3O4/c10-7-1-2-12(9(15)11-7)8-3-5(14)6(4-13)16-8/h1-2,5-6,8,13-14H,3-4H2,(H2,10,11,15)
描述信息
Deoxycytidine, also known as dC, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxycytidine is also classified as a deoxyribonucleoside, a component of deoxyribonucleic acid (DNA). Deoxycytidine is similar to the ribonucleoside cytidine, but with one hydroxyl group removed from the 2 position. Deoxycytidine exists in all living species, ranging from bacteria to plants to humans. Degradation of DNA through apoptosis or cell death produces deoxycytidine. Within humans, deoxycytidine participates in a number of enzymatic reactions. In particular, deoxycytidine can be biosynthesized from dCMP through the action of the enzyme cytosolic purine 5-nucleotidase. In addition, deoxycytidine can be converted into dCMP; which is mediated by the enzyme uridine-cytidine kinase-like 1. Deoxycytidine can be phosphorylated at the C-5 position by the enzyme deoxycytidine kinase to produce deoxycytidine monophosphate (dCMP), and to a lesser extent, deoxycytidine diphosphate (dCDP), and deoxycytidine triphosphate (dCTP). Deoxycytidine can also be phosphorylated by thymidine kinase 2 (TK2). Deoxycytidine can potentially be used for the treatment of the metabolic disorder known as thymidine kinase 2 deficiency (TK2 deficiency). TK2 deficiency has three disease subtypes: i) infantile-onset myopathy with rapid progression to early death ii) childhood-onset myopathy, which resembles spinal muscular atrophy (SMA) type III, begins between ages 1 and 12 years with progression to loss of ambulation within few years and iii) late-onset myopathy starting at age 12 year or later with moderate to severe myopathy manifesting as either isolated chronic progressive external ophthalmoplegia (CPEO) or a generalized myopathy with CPEO plus facial and limb weakness, gradual progression, and, in some cases, respiratory failure and loss of ability to walk in adulthood (PMID: 28318037). In mouse models of TK2, dC was shown to delay disease onset, prolong life span and restore mtDNA copy number as well as respiratory chain enzyme activities (PMID: 28318037).
One of the principal nucleosides of DNA composed of cytosine and deoxyribose. A nucleoside consists of only a pentose sugar linked to a purine or pyrimidine base, without a phosphate group. When N1 is linked to the C1 of deoxyribose, deoxynucleosides and nucleotides are formed from cytosine and deoxyribose; deoxycytidine monophosphate (dCMP), deoxycytidine diphosphate (dCDP), deoxycytidine triphosphate (dCTP). CTP is the source of the cytidine in RNA (ribonucleic acid) and deoxycytidine triphosphate (dCTP) is the source of the deoxycytidine in DNA (deoxyribonucleic acid). [HMDB]. Deoxycytidine is found in many foods, some of which are japanese pumpkin, turmeric, prairie turnip, and kai-lan.
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite
Acquisition and generation of the data is financially supported in part by CREST/JST.
C26170 - Protective Agent > C2459 - Chemoprotective Agent
COVID info from COVID-19 Disease Map
KEIO_ID D055; [MS2] KO008940
Corona-virus
KEIO_ID D055
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2].
2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).
同义名列表
26 个代谢物同义名
4-Amino-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidin-2(1H)-one; 4-amino-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2-dihydropyrimidin-2-one; 4-Amino-1-(2-deoxy-beta-delta-erythro-pentofuranosyl)-2(1H)-pyrimidinone; 4-Amino-1-(2-deoxy-beta-D-erythro-pentofuranosyl)-2(1H)-pyrimidinone; 4-Amino-1-(2-deoxy-b-D-erythro-pentofuranosyl)-2(1H)-pyrimidinone; 1-(2-Deoxy-beta-delta-erythro-pentofuranosyl)-cytosine; 1-(2-Deoxy-beta-D-erythro-pentofuranosyl)-cytosine; 1-(2-Deoxy-beta-delta-ribofuranosyl)cytosine; 1-(2-Deoxy-beta-D-ribofuranosyl)cytosine; 1-(2-Deoxy-b-D-ribofuranosyl)cytosine; Deoxyribonucleoside, cytosine; Cytosine deoxyribonucleoside; 2-Deoxycytidine monohydrate; Deoxyriboside, cytosine; Cytosine deoxyriboside; Deoxyribose cytidine; 2-Deoxy-cytidine; 2-Deoxycytidine; Desoxycytidine; Deoxy-cytidine; Deoxycytidine; DCYD; dC; Deoxycytidine; 2'-Deoxycytidine; Deoxycytidine
数据库引用编号
44 个数据库交叉引用编号
- ChEBI: CHEBI:15698
- KEGG: C00881
- PubChem: 13711
- HMDB: HMDB0000014
- Metlin: METLIN3367
- DrugBank: DB02594
- ChEMBL: CHEMBL280428
- ChEMBL: CHEMBL66115
- Wikipedia: Deoxycytidine
- MeSH: Deoxycytidine
- MetaCyc: DEOXYCYTIDINE
- foodb: FDB021871
- chemspider: 13117
- CAS: 951-77-9
- MoNA: KO002699
- MoNA: PS014404
- MoNA: KO002700
- MoNA: PS014403
- MoNA: KO000612
- MoNA: PS014405
- MoNA: PS014402
- MoNA: KO000611
- MoNA: PR100522
- MoNA: PS014407
- MoNA: KO000613
- MoNA: KO008940
- MoNA: KO008941
- MoNA: PS014401
- MoNA: KO000610
- MoNA: PR100086
- MoNA: PR100085
- MoNA: KO002697
- MoNA: KO000609
- MoNA: KO002698
- PMhub: MS000000121
- PDB-CCD: DCZ
- 3DMET: B01347
- NIKKAJI: J14.406A
- RefMet: Deoxycytidine
- medchemexpress: HY-D0184
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-99
- PubChem: 4137
- KNApSAcK: 15698
- LOTUS: LTS0169907
分类词条
相关代谢途径
Reactome(0)
BioCyc(5)
PlantCyc(0)
代谢反应
371 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(95)
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleoside salvage:
ATP + thymidine ⟶ ADP + H+ + dTMP
- pyrimidine deoxyribonucleosides salvage:
ATP + thymidine ⟶ ADP + H+ + dTMP
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- salvage pathways of pyrimidine deoxyribonucleotides:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- superpathway of ribose and deoxyribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- (deoxy)ribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- (deoxy)ribose phosphate degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- superpathway of ribose and deoxyribose phosphate degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- salvage pathways of pyrimidine deoxyribonucleotides:
ATP + deoxyuridine ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- (deoxy)ribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + a nucleoside triphosphate ⟶ H+ + a nucleoside diphosphate + dCMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + a nucleoside triphosphate ⟶ H+ + a nucleoside diphosphate + dCMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- (deoxy)ribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- pyrimidine deoxyribonucleosides degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- salvage pathways of pyrimidine deoxyribonucleotides:
ATP + deoxyuridine ⟶ ADP + H+ + dUMP
- salvage pathways of pyrimidine deoxyribonucleotides:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- pyrimidine deoxyribonucleosides degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- superpathway of ribose and deoxyribose phosphate degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- (deoxy)ribose phosphate degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- salvage pathways of pyrimidine deoxyribonucleotides:
ATP + deoxyuridine ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H2O ⟶ 2'-deoxyuridine + ammonia
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H2O ⟶ 2'-deoxyuridine + ammonia
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
WikiPathways(0)
Plant Reactome(0)
INOH(1)
- Pyrimidine Nucleotides and Nucleosides metabolism ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Deoxy-cytidine + H2O ⟶ Deoxy-uridine + NH3
PlantCyc(253)
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + a nucleoside triphosphate ⟶ H+ + a nucleoside diphosphate + dCMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + a nucleoside triphosphate ⟶ H+ + a nucleoside diphosphate + dCMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(21)
- Salvage Pathways of Pyrimidine Deoxyribonucleotides:
Deoxycytidine + Hydrogen Ion + Water ⟶ Ammonium + Deoxyuridine
- Pyrimidine Deoxyribonucleosides Degradation:
Deoxycytidine + Hydrogen Ion + Water ⟶ Ammonium + Deoxyuridine
- Pyrimidine Deoxyribonucleosides Salvage:
Deoxycytidine + Hydrogen Ion + Water ⟶ Ammonium + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
PharmGKB(0)
33 个相关的物种来源信息
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 8296 - Ambystoma mexicanum: 10.3389/FCELL.2020.562940
- 2 - Bacteria: LTS0169907
- 7711 - Chordata: LTS0169907
- 6042 - Demospongiae: LTS0169907
- 543 - Enterobacteriaceae: LTS0169907
- 561 - Escherichia: LTS0169907
- 562 - Escherichia coli: LTS0169907
- 33682 - Euglenozoa: LTS0169907
- 2759 - Eukaryota: LTS0169907
- 1236 - Gammaproteobacteria: LTS0169907
- 9604 - Hominidae: LTS0169907
- 9605 - Homo: LTS0169907
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0169907
- 1325620 - Isodictya: LTS0169907
- 1658076 - Isodictya erinacea: 10.1021/NP970358H
- 1658076 - Isodictya erinacea: LTS0169907
- 554633 - Isodictyidae: LTS0169907
- 5653 - Kinetoplastea: LTS0169907
- 40674 - Mammalia: LTS0169907
- 33208 - Metazoa: LTS0169907
- 10066 - Muridae: LTS0169907
- 10088 - Mus: LTS0169907
- 10090 - Mus musculus: LTS0169907
- 10090 - Mus musculus: NA
- 6040 - Porifera: LTS0169907
- 5690 - Trypanosoma: LTS0169907
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: LTS0169907
- 5654 - Trypanosomatidae: LTS0169907
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Binbin Luo, Linyi Song, Limiao Chen, Yue Cai, Mingwei Zhang, Shenyi Wang. Ganoderic acid D attenuates gemcitabine resistance of triple-negative breast cancer cells by inhibiting glycolysis via HIF-1α destabilization.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155675. doi:
10.1016/j.phymed.2024.155675
. [PMID: 38678954] - Qiqi Wang, Mengyuan Gong, Rujuan Liu, Jiantao Mo, Ruiping Bai, Rui An, Xueni Wang, Liang Han, Zheng Wang, Qingyong Ma, Zheng Wu, Cancan Zhou. Huaier enhances the tumor-killing effect and reverses gemcitabine-induced stemness by suppressing FoxM1.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155656. doi:
10.1016/j.phymed.2024.155656
. [PMID: 38723529] - Su-Li Zhu, Ming Qi, Mei-Ting Chen, Jia-Peng Lin, Hai-Fu Huang, Li-Juan Deng, Xing-Wang Zhou. A novel DDIT3 activator dehydroevodiamine effectively inhibits tumor growth and tumor cell stemness in pancreatic cancer.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jun; 128(?):155377. doi:
10.1016/j.phymed.2024.155377
. [PMID: 38503154] - Sofia Sturm, Günter Niegisch, Joachim Windolf, Christoph V Suschek. Exposure of Bladder Cancer Cells to Blue Light (λ = 453 nm) in the Presence of Riboflavin Synergistically Enhances the Cytotoxic Efficiency of Gemcitabine.
International journal of molecular sciences.
2024 Apr; 25(9):. doi:
10.3390/ijms25094868
. [PMID: 38732087] - Jingcheng Zhang, Yutong Wang, Lejunzi Wang, Lei You, Taiping Zhang. Pancreatic ductal adenocarcinoma chemoresistance: From metabolism reprogramming to novel treatment.
Chinese medical journal.
2024 Feb; 137(4):408-420. doi:
10.1097/cm9.0000000000002758
. [PMID: 37545027] - Xiaowei Wang, Hongwei Lu, Fang Luo, Dan Wang, Apeng Wang, Xuelei Wang, Wenkai Feng, Xiaobo Wang, Jiayi Su, Mingliang Liu, Guimin Xia. Lipid-like gemcitabine diester-loaded liposomes for improved chemotherapy of pancreatic cancer.
Journal of controlled release : official journal of the Controlled Release Society.
2024 Jan; 365(?):112-131. doi:
10.1016/j.jconrel.2023.11.028
. [PMID: 37981050] - Ji He, Piyush Bugde, Jiawei Li, Riya Biswas, Siting Li, Xuewei Yang, Fang Tian, Zimei Wu, Yan Li. Multidrug resistance protein 5 affects cell proliferation, migration and gemcitabine sensitivity in pancreatic cancer MIA Paca‑2 and PANC‑1 cells.
Oncology reports.
2024 Jan; 51(1):. doi:
10.3892/or.2023.8666
. [PMID: 37975256] - Shukui Qin, Jin Li, Yuxian Bai, Zishu Wang, Zhendong Chen, Ruihua Xu, Jianming Xu, Hongmei Zhang, Jia Chen, Ying Yuan, Tianshu Liu, Lin Yang, Haijun Zhong, Donghui Chen, Lin Shen, Chunyi Hao, Deliang Fu, Ying Cheng, Jianwei Yang, Qiong Wang, Baoli Qin, Hongming Pan, Jun Zhang, Xianhong Bai, Qingshan Zheng. Nimotuzumab Plus Gemcitabine for K-Ras Wild-Type Locally Advanced or Metastatic Pancreatic Cancer.
Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
2023 Nov; 41(33):5163-5173. doi:
10.1200/jco.22.02630
. [PMID: 37647576] - Xuena Dong, Yuhan Wang, Shuhui Wang, Cong Li, Min Zhang, Fanglin Hou. Clinical Effect of the Combination of Compound Kushen Injection and Gemcitabine on Postoperative Patients with Non-Muscle Invasive Bladder Cancer and Its Influence on Serum-Related Factors.
Archivos espanoles de urologia.
2023 Nov; 76(9):657-665. doi:
10.56434/j.arch.esp.urol.20237609.80
. [PMID: 38053420] - Myeong Jin Kim, Hyung Sun Kim, Hyeon Woong Kang, Da Eun Lee, Woosol Chris Hong, Ju Hyun Kim, Minsoo Kim, Jae-Ho Cheong, Hyo Jung Kim, Joon Seong Park. SLC38A5 Modulates Ferroptosis to Overcome Gemcitabine Resistance in Pancreatic Cancer.
Cells.
2023 10; 12(20):. doi:
10.3390/cells12202509
. [PMID: 37887353] - Epiphane K Silli, Mengfei Li, Yuting Shao, Yiran Zhang, Guilin Hou, Jiaqian Du, Jingdan Liang, Ying Wang. Liposomal Nanostructures for Gemcitabine and Paclitaxel Delivery in Pancreatic Cancer.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2023 Sep; ?(?):. doi:
10.1016/j.ejpb.2023.09.014
. [PMID: 37758121] - Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu. Synergistic antitumor efficacy of gemcitabine and cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via Sp1-SAT1-polyamine metabolism pathway.
Cellular oncology (Dordrecht).
2023 Sep; ?(?):. doi:
10.1007/s13402-023-00870-1
. [PMID: 37684512] - Andriana Inkoom, Nkafu Bechem Ndemazie, Taylor Smith, Esther Frimpong, Raviteja Bulusu, Rosemary Poku, Xue Zhu, Bo Han, Jose Trevino, Edward Agyare. Biological evaluation of novel gemcitabine analog in patient-derived xenograft models of pancreatic cancer.
BMC cancer.
2023 May; 23(1):435. doi:
10.1186/s12885-023-10928-w
. [PMID: 37179357] - Ran Qi, Yixuan Bai, Kun Li, Nanbin Liu, Yan Xu, Emre Dal, Yufeng Wang, Rui Lin, Hui Wang, Zhongyan Liu, Xinbo Li, Xiuyan Wang, Baomin Shi. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs.
Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.
2023 Mar; 68(?):100960. doi:
10.1016/j.drup.2023.100960
. [PMID: 37003125] - Shruti Gupta, Hemanth Naick Banavath, Kiran Kumar Tejavath. Pharmacoinformatic screening of phytoconstituent and evaluation of its anti-PDAC effect using in vitro studies.
Journal of biomolecular structure & dynamics.
2022 Dec; ?(?):1-15. doi:
10.1080/07391102.2022.2155701
. [PMID: 36510680] - San-Hua Su, Navaneethan Sundhar, Wei-Wen Kuo, Shang-Chih Lai, Chia-Hua Kuo, Tsung-Jung Ho, Pi-Yu Lin, Shinn-Zong Lin, Cheng Yen Shih, Yu-Jung Lin, Chih-Yang Huang. Artemisia argyi extract induces apoptosis in human gemcitabine-resistant lung cancer cells via the PI3K/MAPK signaling pathway.
Journal of ethnopharmacology.
2022 Dec; 299(?):115658. doi:
10.1016/j.jep.2022.115658
. [PMID: 36075273] - Tingting Luo, Luhua Bai, Yi Zhang, Leidan Huang, Hui Li, Shunji Gao, Xiaoxiao Dong, Ningshan Li, Zheng Liu. Optimal treatment occasion for ultrasound stimulated microbubbles in promoting gemcitabine delivery to VX2 tumors.
Drug delivery.
2022 Dec; 29(1):2796-2804. doi:
10.1080/10717544.2022.2115163
. [PMID: 36047064] - Ashwaq A Al-Mutairi, Mayson H Alkhatib. Antitumour effects of a solid lipid nanoparticle loaded with gemcitabine and oxaliplatin on the viability, apoptosis, autophagy, and Hsp90 of ovarian cancer cells.
Journal of microencapsulation.
2022 Aug; 39(5):467-480. doi:
10.1080/02652048.2022.2109218
. [PMID: 35916335] - Taro Horino, Satoshi Inotani, Masayuki Ishihara, Yoshio Terada. Gemcitabine-induced renal thrombotic microangiopathy.
Nephrology (Carlton, Vic.).
2022 08; 27(8):724-725. doi:
10.1111/nep.14043
. [PMID: 35429056] - Xiang Dong, Zewu Zhang, Qin Zhang, Lu Chen, Guangtai Cao, Chen Liu, Tianqiang Song, Wei Lu, Wei Zhang. Triple therapy in biliary tract cancers: GemOX plus immune checkpoint inhibitor in combination with lenvatinib or NGS-guided targeted therapy.
Journal of cancer research and clinical oncology.
2022 Jul; ?(?):. doi:
10.1007/s00432-022-04166-z
. [PMID: 35802197] - Lin Zhu, Rui Chen, Qianyu Yang, Hongxia Liu, Qingshan Zheng, Lujin Li. Modelling an evaluation of the efficacy and safety of gemcitabine combined with platinum in the treatment of non-small cell lung cancer.
Journal of clinical pharmacy and therapeutics.
2022 Jul; 47(7):986-994. doi:
10.1111/jcpt.13632
. [PMID: 35246996] - Concetta Panebianco, Annacandida Villani, Federica Pisati, Fabrizio Orsenigo, Marynka Ulaszewska, Tiziana Pia Latiano, Adele Potenza, Annapaola Andolfo, Fulvia Terracciano, Claudio Tripodo, Francesco Perri, Valerio Pazienza. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Jul; 151(?):113163. doi:
10.1016/j.biopha.2022.113163
. [PMID: 35617803] - Siamak Daneshmand, Iris S G Brummelhuis, Kamal S Pohar, Gary D Steinberg, Manju Aron, Christopher J Cutie, Kirk A Keegan, John C Maffeo, Donald L Reynolds, Bradley Raybold, Albert Chau, J Alfred Witjes. The safety, tolerability, and efficacy of a neoadjuvant gemcitabine intravesical drug delivery system (TAR-200) in muscle-invasive bladder cancer patients: a phase I trial.
Urologic oncology.
2022 07; 40(7):344.e1-344.e9. doi:
10.1016/j.urolonc.2022.02.009
. [PMID: 35431132] - Wenyue Zhou, Lu Ni, Manxi Luo, Xinyao Shu, Peng Cao, Meng Qiu. Rare capecitabine-induced acute hypertriglyceridemia with angina: a case report and review of the literature.
Annals of palliative medicine.
2022 Jun; 11(6):2152-2156. doi:
10.21037/apm-21-1109
. [PMID: 34498471] - Jia Huo, Lijun Fu, Mengyuan Jin, Zhaoming Li, Mingzhi Zhang. IL-10 contributes to gemcitabine resistance in extranodal NK/T-cell lymphoma cells via ABCC4.
Investigational new drugs.
2022 06; 40(3):537-545. doi:
10.1007/s10637-022-01224-8
. [PMID: 35226228] - Seung Soo Hong, Sena Lee, Sung Hwan Lee, Seonhowa Kim, Doyoung Kim, Hanseul Park, Jongook Lee, Jung Hwan Lee, Chang Moo Kang. Anticancer effect of locally applicable aptamer-conjugated gemcitabine-loaded atelocollagen patch in pancreatic cancer patient-derived xenograft models.
Cancer science.
2022 May; 113(5):1752-1762. doi:
10.1111/cas.15318
. [PMID: 35243724] - Goro Ueno, Yoshifumi Iwagami, Shogo Kobayashi, Suguru Mitsufuji, Daisaku Yamada, Yoshito Tomimaru, Hirofumi Akita, Tadafumi Asaoka, Takehiro Noda, Kunihito Gotoh, Masaki Mori, Yuichiro Doki, Hidetoshi Eguchi. ACAT-1-Regulated Cholesteryl Ester Accumulation Modulates Gemcitabine Resistance in Biliary Tract Cancer.
Annals of surgical oncology.
2022 May; 29(5):2899-2909. doi:
10.1245/s10434-021-11152-1
. [PMID: 34994902] - Richard Blake Ross, Rachel A Rabinovitch. Radiation recall after COVID-19 infection.
The Lancet. Oncology.
2022 04; 23(4):e197. doi:
10.1016/s1470-2045(22)00038-9
. [PMID: 35358468] - Juan Zhang, Hong-Xi Xu, William Chi Shing Cho, Wah Cheuk, Yang Li, Qiong-Hui Huang, Wen Yang, Yan-Fang Xian, Zhi-Xiu Lin. Brucein D augments the chemosensitivity of gemcitabine in pancreatic cancer via inhibiting the Nrf2 pathway.
Journal of experimental & clinical cancer research : CR.
2022 Mar; 41(1):90. doi:
10.1186/s13046-022-02270-z
. [PMID: 35272669] - Aleksandra Skalska-Bugala, Marta Starczak, Łukasz Szukalski, Maciej Gawronski, Agnieszka Siomek-Gorecka, Justyna Szpotan, Anna Labejszo, Ewelina Zarakowska, Anna Szpila, Anna Jachalska, Adriana Szukalska, Marcin Kruszewski, Anna Sadowska, Aleksandra Wasilow, Patrycja Baginska, Jaroslaw Czyz, Ryszard Olinski, Rafal Rozalski, Daniel Gackowski. Diagnostic and Prognostic Power of Active DNA Demethylation Pathway Intermediates in Acute Myelogenous Leukemia and Myelodysplastic Syndromes.
Cells.
2022 03; 11(5):. doi:
10.3390/cells11050888
. [PMID: 35269510] - Rocio Garcia-Carbonero, Miriam Bazan-Peregrino, Marta Gil-Martín, Rafael Álvarez, Teresa Macarulla, Maria C Riesco-Martinez, Helena Verdaguer, Carmen Guillén-Ponce, Martí Farrera-Sal, Rafael Moreno, Ana Mato-Berciano, Maria Victoria Maliandi, Silvia Torres-Manjon, Marcel Costa, Natalia Del Pozo, Jaime Martínez de Villarreal, Francisco X Real, Noemí Vidal, Gabriel Capella, Ramon Alemany, Emma Blasi, Carmen Blasco, Manel Cascalló, Ramon Salazar. Phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors.
Journal for immunotherapy of cancer.
2022 03; 10(3):. doi:
10.1136/jitc-2021-003255
. [PMID: 35338084] - Yangyang Guo, Hengyue Zhu, Yanyi Xiao, Hangcheng Guo, Miaomiao Lin, Ziwei Yuan, Xuejia Yang, Youze Huang, Qiyu Zhang, Yongheng Bai. The anthelmintic drug niclosamide induces GSK-β-mediated β-catenin degradation to potentiate gemcitabine activity, reduce immune evasion ability and suppress pancreatic cancer progression.
Cell death & disease.
2022 02; 13(2):112. doi:
10.1038/s41419-022-04573-7
. [PMID: 35115509] - Jochen Rutz, Sebastian Maxeiner, Eva Juengel, Felix K-H Chun, Igor Tsaur, Roman A Blaheta. Olive Mill Wastewater Inhibits Growth and Proliferation of Cisplatin- and Gemcitabine-Resistant Bladder Cancer Cells In Vitro by Down-Regulating the Akt/mTOR-Signaling Pathway.
Nutrients.
2022 Jan; 14(2):. doi:
10.3390/nu14020369
. [PMID: 35057550] - Theodora Chatzisideri, George Leonidis, Theodoros Karampelas, Eleni Skavatsou, Angeliki Velentza-Almpani, Francesca Bianchini, Constantin Tamvakopoulos, Vasiliki Sarli. Integrin-Mediated Targeted Cancer Therapy Using c(RGDyK)-Based Conjugates of Gemcitabine.
Journal of medicinal chemistry.
2022 01; 65(1):271-284. doi:
10.1021/acs.jmedchem.1c01468
. [PMID: 34967607] - Taro Shibuki, Toshihiko Mizuta, Mototsugu Shimokawa, Futa Koga, Yujiro Ueda, Junichi Nakazawa, Azusa Komori, Satoshi Otsu, Shiho Arima, Masaru Fukahori, Akitaka Makiyama, Hiroki Taguchi, Takuya Honda, Kenji Mitsugi, Kenta Nio, Yasushi Ide, Norio Ureshino, Tsuyoshi Shirakawa, Taiga Otsuka. Prognostic nomogram for patients with unresectable pancreatic cancer treated with gemcitabine plus nab-paclitaxel or FOLFIRINOX: A post-hoc analysis of a multicenter retrospective study in Japan (NAPOLEON study).
BMC cancer.
2022 Jan; 22(1):19. doi:
10.1186/s12885-021-09139-y
. [PMID: 34980029] - Shatha Abd Al-Jabbar, Vesen Atiroğlu, Rana M Hameed, Gamze Guney Eskiler, Atheer Atiroğlu, Asuman Deveci Ozkan, Mahmut Özacar. Fabrication of dopamine conjugated with protein @metal organic framework for targeted drug delivery: A biocompatible pH-Responsive nanocarrier for gemcitabine release on MCF‑7 human breast cancer cells.
Bioorganic chemistry.
2022 01; 118(?):105467. doi:
10.1016/j.bioorg.2021.105467
. [PMID: 34781115] - Shuxia Han, Qing Liu, ZhiJuan Yang, JingWen Ma, Dan Liu, Caiping Yan, Duoxian Liang. Identification of Ferroptosis-Related Gene Prognostic Signature and HSF1 for Reversing Doxorubicin and Gemcitabine Resistance in Uterine Carcinosarcoma.
Disease markers.
2022; 2022(?):6400227. doi:
10.1155/2022/6400227
. [PMID: 35069934] - Hirotaka Kashima, Ryuki Minami, Tomomi Ozawa, Atsushi Matsumoto, Yuto Kimura, Yasuhiro Takeda, Taro Ueo, Akihiro Okano, Fusako Kusumi, Masaya Ohana. [A case of thrombotic microangiopathy during chemotherapy with gemcitabine in a patient with pancreatic cancer].
Nihon Shokakibyo Gakkai zasshi = The Japanese journal of gastro-enterology.
2022; 119(3):259-266. doi:
10.11405/nisshoshi.119.259
. [PMID: 35264490] - Jie Zhang, Yueyin Pan, Qin Shi, Guojun Zhang, Liyan Jiang, Xiaorong Dong, Kangsheng Gu, Huijuan Wang, Xiaochun Zhang, Nong Yang, Yuping Li, Jianping Xiong, Tienan Yi, Min Peng, Yong Song, Yun Fan, Jiuwei Cui, Gongyan Chen, Wei Tan, Aimin Zang, Qisen Guo, Guangqiang Zhao, Ziping Wang, Jianxing He, Wenxiu Yao, Xiaohong Wu, Kai Chen, Xiaohua Hu, Chunhong Hu, Lu Yue, Da Jiang, Guangfa Wang, Junfeng Liu, Guohua Yu, Junling Li, Jianling Bai, Wenmin Xie, Weihong Zhao, Lihong Wu, Caicun Zhou. Paclitaxel liposome for injection (Lipusu) plus cisplatin versus gemcitabine plus cisplatin in the first-line treatment of locally advanced or metastatic lung squamous cell carcinoma: A multicenter, randomized, open-label, parallel controlled clinical study.
Cancer communications (London, England).
2022 01; 42(1):3-16. doi:
10.1002/cac2.12225
. [PMID: 34699693] - Christos Fountzilas, Alex Adjei, Mateusz Opyrchal, Rachel Evans, Mohammad Ghasemi, Kristopher Attwood, Adrienne Groman, Wiam Bshara, Andrew Goey, John Wilton, Wen Wee Ma, Renuka Iyer. A phase I study of the anaplastic lymphoma kinase inhibitor ceritinib in combination with gemcitabine-based chemotherapy in patients with advanced solid tumors.
International journal of cancer.
2021 12; 149(12):2063-2074. doi:
10.1002/ijc.33754
. [PMID: 34319586] - Abigail Ferreira, Rui Lapa, Nuno Vale. Permeability of Gemcitabine and PBPK Modeling to Assess Oral Administration.
Current issues in molecular biology.
2021 Dec; 43(3):2189-2198. doi:
10.3390/cimb43030153
. [PMID: 34940127] - Jin-Lan Zhang, Yu-Huan Li, Lu-Lu Wang, Hong-Qi Liu, Shuai-Yao Lu, Yong Liu, Ke Li, Bin Liu, Su-Yun Li, Feng-Min Shao, Kun Wang, Ning Sheng, Rui Li, Jin-Jin Cui, Pei-Chun Sun, Chun-Xia Ma, Bo Zhu, Zhe Wang, Yuan-Hao Wan, Shi-Shan Yu, Yongsheng Che, Chao-Yang Wang, Chen Wang, Qiangqian Zhang, Li-Min Zhao, Xiao-Zhong Peng, Zhenshun Cheng, Jun-Biao Chang, Jian-Dong Jiang. Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients.
Signal transduction and targeted therapy.
2021 12; 6(1):414. doi:
10.1038/s41392-021-00835-6
. [PMID: 34873151] - Zahra Shekarbeygi, Changiz Karami, Esmaeil Esmaeili, Sajad Moradi, Mohsen Shahlaei. Development of Ag nanoparticle-carbon quantum dot nanocomplex as fluorescence sensor for determination of gemcitabine.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2021 Dec; 262(?):120148. doi:
10.1016/j.saa.2021.120148
. [PMID: 34247037] - Fumihiro Nishimura, Tomoko Ushijima, Shinsuke Hamada, Daisuke Kadowaki, Shigeyuki Miyamura, Kentaro Oniki, Junji Saruwatari. Evaluation of renal function using cystatin C-based estimated glomerular filtration rate in patients with urothelial carcinoma treated with gemcitabine and cisplatin chemotherapy.
Journal of clinical pharmacy and therapeutics.
2021 Dec; 46(6):1622-1628. doi:
10.1111/jcpt.13501
. [PMID: 34339546] - Ashwaq H S Yehya, Muhammad Asif, Amin M S Abdul Majid, Chern E Oon. Complementary effects of Orthosiphon stamineus standardized ethanolic extract and rosmarinic acid in combination with gemcitabine on pancreatic cancer.
Biomedical journal.
2021 12; 44(6):694-708. doi:
10.1016/j.bj.2020.05.015
. [PMID: 35166208] - Nathaniel R Wilson, Andrew J Wiele, Devaki Shilpa Surasi, Priya Rao, Kanishka Sircar, Pheroze Tamboli, Amishi Y Shah, Giannicola Genovese, Jose A Karam, Christopher G Wood, Nizar M Tannir, Pavlos Msaouel. Efficacy and safety of gemcitabine plus doxorubicin in patients with renal medullary carcinoma.
Clinical genitourinary cancer.
2021 12; 19(6):e401-e408. doi:
10.1016/j.clgc.2021.08.007
. [PMID: 34625389] - Eleonore Coppens, Didier Desmaële, Timothée Naret, Sébastien Garcia-Argote, Sophie Feuillastre, Grégory Pieters, Catherine Cailleau, Jean-Louis Paul, Bastien Prost, Audrey Solgadi, Jean-Philippe Michel, Magali Noiray, Patrick Couvreur, Simona Mura. Gemcitabine lipid prodrug nanoparticles: Switching the lipid moiety and changing the fate in the bloodstream.
International journal of pharmaceutics.
2021 Nov; 609(?):121076. doi:
10.1016/j.ijpharm.2021.121076
. [PMID: 34481886] - Ling Zhou, Chen Yang, Weilan Zhong, Qiaoyun Wang, Daolai Zhang, Jiayu Zhang, Shuyang Xie, Maolei Xu. Chrysin induces autophagy-dependent ferroptosis to increase chemosensitivity to gemcitabine by targeting CBR1 in pancreatic cancer cells.
Biochemical pharmacology.
2021 11; 193(?):114813. doi:
10.1016/j.bcp.2021.114813
. [PMID: 34673014] - Miriam Bazan-Peregrino, Rocio Garcia-Carbonero, Berta Laquente, Rafael Álvarez, Ana Mato-Berciano, Marta Gimenez-Alejandre, Sara Morgado, Alba Rodríguez-García, Maria V Maliandi, M Carmen Riesco, Rafael Moreno, Mireia M Ginestà, Mercedes Perez-Carreras, Joan B Gornals, Susana Prados, Sofía Perea, Gabriel Capella, Ramon Alemany, Ramon Salazar, Emma Blasi, Carmen Blasco, Manel Cascallo, Manuel Hidalgo. VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects.
Journal for immunotherapy of cancer.
2021 11; 9(11):. doi:
10.1136/jitc-2021-003254
. [PMID: 35149591] - Jianhui Yang, Jin Xu, Bo Zhang, Zhen Tan, Qingcai Meng, Jie Hua, Jiang Liu, Wei Wang, Si Shi, Xianjun Yu, Chen Liang. Ferroptosis: At the Crossroad of Gemcitabine Resistance and Tumorigenesis in Pancreatic Cancer.
International journal of molecular sciences.
2021 Oct; 22(20):. doi:
10.3390/ijms222010944
. [PMID: 34681603] - Hongzhe Shi, Wen Zhang, Xingang Bi, Dong Wang, Zejun Xiao, Youyan Guan, Kaopeng Guan, Jun Tian, Hongsong Bai, Linjun Hu, Chuanzhen Cao, Weixing Jiang, Zhilong Hu, Jin Zhang, Yan Chen, Shan Zheng, Xiaoli Feng, Changling Li, Yexiong Li, Jianhui Ma, Yueping Liu, Aiping Zhou, Jianzhong Shou. Neoadjuvant Chemotherapy-Guided Bladder-Sparing Treatment for Muscle-Invasive Bladder Cancer: Results of a Pilot Phase II Study.
Cancer research and treatment.
2021 Oct; 53(4):1156-1165. doi:
10.4143/crt.2020.1356
. [PMID: 33592141] - Ryotaro Matsumoto, Shin Hamada, Yu Tanaka, Keiko Taguchi, Masayuki Yamamoto, Atsushi Masamune. Nuclear Factor Erythroid 2-Related Factor 2 Depletion Sensitizes Pancreatic Cancer Cells to Gemcitabine via Aldehyde Dehydrogenase 3a1 Repression.
The Journal of pharmacology and experimental therapeutics.
2021 10; 379(1):33-40. doi:
10.1124/jpet.121.000744
. [PMID: 34321315] - Samer S AlMasri, Mazen S Zenati, Annissa Desilva, Ibrahim Nassour, Brian A Boone, Aatur D Singhi, David L Bartlett, Lance A Liotta, Virginia Espina, Patricia Loughran, Michael T Lotze, Alessandro Paniccia, Herbert J Zeh, Amer H Zureikat, Nathan Bahary. Encouraging long-term survival following autophagy inhibition using neoadjuvant hydroxychloroquine and gemcitabine for high-risk patients with resectable pancreatic carcinoma.
Cancer medicine.
2021 10; 10(20):7233-7241. doi:
10.1002/cam4.4211
. [PMID: 34559451] - Hyung-Don Kim, Hyeon-Su Im, Jwa Hoon Kim, Hyehyun Jeong, Shin Kyo Yoon, Inkeun Park, Jae Lyun Lee. Use of Gemcitabine plus Carboplatin is Associated with Poor Outcomes in Urothelial Carcinoma Patients with Chronic Kidney Disease Stage 4-5.
Cancer research and treatment.
2021 Oct; 53(4):1166-1173. doi:
10.4143/crt.2021.091
. [PMID: 33677847] - Lei Wang, Rongrong Bi, Lei Li, Kun Zhou, Hang Yin. lncRNA ANRIL aggravates the chemoresistance of pancreatic cancer cells to gemcitabine by targeting inhibition of miR-181a and targeting HMGB1-induced autophagy.
Aging.
2021 08; 13(15):19272-19281. doi:
10.18632/aging.203251
. [PMID: 34374662] - Keiran A Logan, Heather Nesbitt, Bridgeen Callan, Jinhui Gao, Thomas McKaig, Mark Taylor, Mark Love, Anthony P McHale, John F Callan. Synthesis of a gemcitabine-modified phospholipid and its subsequent incorporation into a single microbubble formulation loaded with paclitaxel for the treatment of pancreatic cancer using ultrasound-targeted microbubble destruction.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2021 Aug; 165(?):374-382. doi:
10.1016/j.ejpb.2021.05.018
. [PMID: 34038797] - Maximilien Grall, Florence Daviet, Noémie Jourde Chiche, François Provot, Claire Presne, Jean-Philippe Coindre, Claire Pouteil-Noble, Alexandre Karras, Dominique Guerrot, Arnaud François, Ygal Benhamou, Agnès Veyradier, Véronique Frémeaux-Bacchi, Paul Coppo, Steven Grangé. Eculizumab in gemcitabine-induced thrombotic microangiopathy: experience of the French thrombotic microangiopathies reference centre.
BMC nephrology.
2021 07; 22(1):267. doi:
10.1186/s12882-021-02470-3
. [PMID: 34284729] - Jason M Farrow, Sean Q Kern, Gustavo M Gryzinski, Chandru P Sundaram. Nephron-sparing management of upper tract urothelial carcinoma.
Investigative and clinical urology.
2021 07; 62(4):389-398. doi:
10.4111/icu.20210113
. [PMID: 34190434] - L Gao, T Shao, W Zheng, J Ding. Curcumin suppresses tumor growth of gemcitabine-resistant non-small cell lung cancer by regulating lncRNA-MEG3 and PTEN signaling.
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico.
2021 Jul; 23(7):1386-1393. doi:
10.1007/s12094-020-02531-3
. [PMID: 33566305] - Hongtao Xu, Yan Li, James W Paxton, Zimei Wu. Co-Delivery Using pH-Sensitive Liposomes to Pancreatic Cancer Cells: the Effects of Curcumin on Cellular Concentration and Pharmacokinetics of Gemcitabine.
Pharmaceutical research.
2021 Jul; 38(7):1209-1219. doi:
10.1007/s11095-021-03072-2
. [PMID: 34189639] - Makoto Ueno, Chigusa Morizane, Takuji Okusaka, Junki Mizusawa, Tomoko Kataoka, Masafumi Ikeda, Masato Ozaka, Naohiro Okano, Kazuya Sugimori, Akiko Todaka, Satoshi Shimizu, Nobumasa Mizuno, Tomohisa Yamamoto, Keiji Sano, Kazutoshi Tobimatsu, Akio Katanuma, Atsushi Miyamoto, Hironori Yamaguchi, Tomohiro Nishina, Hirofumi Shirakawa, Yasushi Kojima, Takamasa Oono, Yasuyuki Kawamoto, Masayuki Furukawa, Tomohisa Iwai, Kentaro Sudo, Hiroyuki Miyakawa, Tatsuya Yamashita, Ichirou Yasuda, Hidenori Takahashi, Naoya Kato, Kazuhiko Shioji, Kyoko Shimizu, Toshio Nakagohri, Ken Kamata, Hiroshi Ishii, Junji Furuse. Comparison of gemcitabine-based chemotherapies for advanced biliary tract cancers by renal function: an exploratory analysis of JCOG1113.
Scientific reports.
2021 06; 11(1):12885. doi:
10.1038/s41598-021-92166-3
. [PMID: 34145336] - Yan Liu, Ming Chang, Zhaoliang Hu, Xin Xu, Wei Wu, Manru Ning, Taijun Hang, Min Song. Danggui Buxue Decoction enhances the anticancer activity of gemcitabine and alleviates gemcitabine-induced myelosuppression.
Journal of ethnopharmacology.
2021 Jun; 273(?):113965. doi:
10.1016/j.jep.2021.113965
. [PMID: 33639205] - Inken Salewski, Julia Henne, Leonie Engster, Bjoern Schneider, Heiko Lemcke, Anna Skorska, Peggy Berlin, Larissa Henze, Christian Junghanss, Claudia Maletzki. Combined Gemcitabine and Immune-Checkpoint Inhibition Conquers Anti-PD-L1 Resistance in Low-Immunogenic Mismatch Repair-Deficient Tumors.
International journal of molecular sciences.
2021 Jun; 22(11):. doi:
10.3390/ijms22115990
. [PMID: 34206051] - Takeshi Matsumoto, Takashi Komori, Yuta Yoshino, Tadaaki Ioroi, Tsukasa Kitahashi, Hiromu Kitahara, Kohei Ono, Tamami Higuchi, Masayo Sakabe, Hiroshi Kori, Masahiro Kano, Ritsuko Hori, Yukio Kato, Shinji Hagiwara. A Liposomal Gemcitabine, FF-10832, Improves Plasma Stability, Tumor Targeting, and Antitumor Efficacy of Gemcitabine in Pancreatic Cancer Xenograft Models.
Pharmaceutical research.
2021 Jun; 38(6):1093-1106. doi:
10.1007/s11095-021-03045-5
. [PMID: 33961188] - Mingtan Tang, Lina Lozano Hernandez, Joy N Reginald-Opara, Darren Svirskis, Euphemia Leung, Hongbo Wang, Zimei Wu. Zebularine suppressed gemcitabine-induced senescence and improved the cellular and plasma pharmacokinetics of gemcitabine, augmented by liposomal co-delivery.
International journal of pharmaceutics.
2021 Jun; 602(?):120659. doi:
10.1016/j.ijpharm.2021.120659
. [PMID: 33933647] - Jia-Ling Ruan, Richard J Browning, Yesna O Yildiz, Luca Bau, Sukanta Kamila, Michael D Gray, Lisa Folkes, Alix Hampson, Anthony P McHale, John F Callan, Borivoj Vojnovic, Anne E Kiltie, Eleanor Stride. Evaluation of Loading Strategies to Improve Tumor Uptake of Gemcitabine in a Murine Orthotopic Bladder Cancer Model Using Ultrasound and Microbubbles.
Ultrasound in medicine & biology.
2021 06; 47(6):1596-1615. doi:
10.1016/j.ultrasmedbio.2021.02.001
. [PMID: 33707089] - Sherry X Yang, Melinda Hollingshead, Larry Rubinstein, Dat Nguyen, Angelo B A Larenjeira, Robert J Kinders, Michael Difilippantonio, James H Doroshow. TET2 and DNMT3A mutations and exceptional response to 4'-thio-2'-deoxycytidine in human solid tumor models.
Journal of hematology & oncology.
2021 05; 14(1):83. doi:
10.1186/s13045-021-01091-5
. [PMID: 34039392] - Masashi Nishikubo, Yoshimitsu Shimomura, Nobuhiro Hiramoto, Naohiko Sawamura, Takako Yamaguchi, Shigeo Hara, Takayuki Ishikawa. Reversible renal-limited thrombotic microangiopathy due to gemcitabine-dexamethasone-cisplatin therapy: a case report.
BMC nephrology.
2021 05; 22(1):175. doi:
10.1186/s12882-021-02386-y
. [PMID: 33980166] - Bo Zhong, Elizabeth G Gibson, Abi Davis, Martine F Roussel, Clinton F Stewart. LC-MS/MS method for quantitation of gemcitabine and its metabolite 2',2'-difluoro-2'-deoxyuridine in mouse plasma and brain tissue: Application to a preclinical pharmacokinetic study.
Journal of pharmaceutical and biomedical analysis.
2021 May; 198(?):114025. doi:
10.1016/j.jpba.2021.114025
. [PMID: 33744463] - Franscois Runau, Ali Arshad, John D Isherwood, Jatinderpal K Sandhu, Leong L Ng, Ashley R Dennison, Donald J L Jones. Proteomic Characterization of Circulating Molecular Perturbations Associated With Pancreatic Adenocarcinoma Following Intravenous ω-3 Fatty Acid and Gemcitabine Administration: A Pilot Study.
JPEN. Journal of parenteral and enteral nutrition.
2021 05; 45(4):738-750. doi:
10.1002/jpen.1952
. [PMID: 32716569] - Shozo Mori, Taku Aoki, Yuhki Sakuraoka, Takayuki Shimizu, Takamune Yamaguchi, Kyung-Hwa Park, Takatsugu Matsumoto, Takayuki Shiraki, Yukihiro Iso, Keiichi Kubota. Predictors of Poor Pathological Response to Neoadjuvant Gemcitabine Plus S-1 Chemotherapy in Patients With Pancreatic Ductal Adenocarcinoma.
Pancreas.
2021 May; 50(5):744-750. doi:
10.1097/mpa.0000000000001826
. [PMID: 34016892] - David D'Andrea, Surena Matin, Peter C Black, Firas G Petros, Homayoun Zargar, Colin P Dinney, Michael S Cookson, Wassim Kassouf, Marc A Dall'Era, John S McGrath, Jonathan L Wright, Andrew C Thorpe, Todd M Morgan, Jeffrey M Holzbeierlein, Trinity J Bivalacqua, Srikala S Sridhar, Scott North, Daniel A Barocas, Yair Lotan, Andrew J Stephenson, Bas W van Rhijn, Philippe E Spiess, Siamak Daneshmand, Shahrokh F Shariat. Comparative effectiveness of neoadjuvant chemotherapy in bladder and upper urinary tract urothelial carcinoma.
BJU international.
2021 05; 127(5):528-537. doi:
10.1111/bju.15253
. [PMID: 32981193] - Pyo June Pak, Dong Gun Lee, Ji Hyun Sung, Seung Hyun Jung, Tae-Young Han, Sung Hyo Park, Namhyun Chung. Synergistic effect of the herbal mixture C5E on gemcitabine treatment in PANC‑1 cells.
Molecular medicine reports.
2021 05; 23(5):. doi:
10.3892/mmr.2021.11954
. [PMID: 33760105] - Eleonore Coppens, Didier Desmaële, Julie Mougin, Sandrine Tusseau-Nenez, Patrick Couvreur, Simona Mura. Gemcitabine Lipid Prodrugs: The Key Role of the Lipid Moiety on the Self-Assembly into Nanoparticles.
Bioconjugate chemistry.
2021 04; 32(4):782-793. doi:
10.1021/acs.bioconjchem.1c00051
. [PMID: 33797231] - Alex Cazes, Oscar Betancourt, Edgar Esparza, Evangeline S Mose, Dawn Jaquish, Eric Wong, Alexis A Wascher, Hervé Tiriac, Marco Gymnopoulos, Andrew M Lowy. A MET Targeting Antibody-Drug Conjugate Overcomes Gemcitabine Resistance in Pancreatic Cancer.
Clinical cancer research : an official journal of the American Association for Cancer Research.
2021 04; 27(7):2100-2110. doi:
10.1158/1078-0432.ccr-20-3210
. [PMID: 33451980] - Kohei Matsubara, Kai Yamasaki, Kazuki Tanimura, Kota Hira, Yuki Okuhiro, Yuko Ishii, Chika Nitani, Keiko Okada, Hiroyuki Fujisaki, Junichi Hara. [Gemcitabine and Docetaxel for the Treatment of Relapsed and Refractory Malignant Rhabdoid Tumor of Kidney and Atypical Teratoid Rhabdoid Tumor].
Gan to kagaku ryoho. Cancer & chemotherapy.
2021 Apr; 48(4):537-540. doi:
NULL
. [PMID: 33976041] - Sawsan M A El-Sheikh, Mohamed H Khairy, Eman Osama, Mohamed M M Metwally, Azza A A Galal. Nanotechnology improves the therapeutic efficacy of gemcitabine against a human hepatocellular carcinoma cell line and minimizes its in vivo side effects.
Naunyn-Schmiedeberg's archives of pharmacology.
2021 04; 394(4):631-643. doi:
10.1007/s00210-020-02004-y
. [PMID: 33104848] - Max M Wattenberg, Veronica M Herrera, Michael A Giannone, Whitney L Gladney, Erica L Carpenter, Gregory L Beatty. Systemic inflammation is a determinant of outcomes of CD40 agonist-based therapy in pancreatic cancer patients.
JCI insight.
2021 03; 6(5):. doi:
10.1172/jci.insight.145389
. [PMID: 33497362] - Anthony A Stephenson, Sheng Cao, David J Taggart, Vinod P Vyavahare, Zucai Suo. Design, synthesis, and evaluation of liver-specific gemcitabine prodrugs for potential treatment of hepatitis C virus infection and hepatocellular carcinoma.
European journal of medicinal chemistry.
2021 Mar; 213(?):113135. doi:
10.1016/j.ejmech.2020.113135
. [PMID: 33454548] - Rodolfo Hurle, Roberto Contieri, Paolo Casale, Emanuela Morenghi, Alberto Saita, Nicolòmaria Buffi, Giovanni Lughezzani, Piergiuseppe Colombo, Nicola Frego, Vittorio Fasulo, Marco Paciotti, Giorgio Guazzoni, Massimo Lazzeri. Midterm follow-up (3 years) confirms and extends short-term results of intravesical gemcitabine as bladder-preserving treatment for non-muscle-invasive bladder cancer after BCG failure.
Urologic oncology.
2021 03; 39(3):195.e7-195.e13. doi:
10.1016/j.urolonc.2020.09.017
. [PMID: 33268275] - Marina Sáez-Belló, Víctor Mangas-Sanjuán, Mª Amparo Martínez-Gómez, Mª Ángeles López-Montenegro Soria, Mónica Climente-Martí, Matilde Merino-Sanjuán. Evaluation of ABC gene polymorphisms on the pharmacokinetics and pharmacodynamics of capecitabine in colorectal patients: Implications for dosing recommendations.
British journal of clinical pharmacology.
2021 03; 87(3):905-915. doi:
10.1111/bcp.14441
. [PMID: 32559325] - Kenji Zennami, Makoto Sumitomo, Kiyoshi Takahara, Takuhisa Nukaya, Masashi Takenaka, Kosuke Fukaya, Manabu Ichino, Naohiko Fukami, Hitomi Sasaki, Mamoru Kusaka, Ryoichi Shiroki. Two cycles of neoadjuvant chemotherapy improves survival in patients with high-risk upper tract urothelial carcinoma.
BJU international.
2021 03; 127(3):332-339. doi:
10.1111/bju.15230
. [PMID: 32896105] - Claudia Kesch, Veronika Schmitt, Samir Bidnur, Marisa Thi, Eliana Beraldi, Igor Moskalev, Virginia Yago, Mary Bowden, Hans Adomat, Ladan Fazli, John K Jackson, Martin E Gleave. A polymeric paste-drug formulation for local treatment of upper tract urothelial carcinoma.
Urologic oncology.
2021 03; 39(3):194.e1-194.e7. doi:
10.1016/j.urolonc.2020.07.028
. [PMID: 33250343] - Elise Y Cai, Jose Garcia, Yuzhen Liu, Funda Vakar-Lopez, Sonali Arora, Holly M Nguyen, Bryce Lakely, Lisha Brown, Alicia Wong, Bruce Montgomery, John K Lee, Eva Corey, Jonathan L Wright, Andrew C Hsieh, Hung-Ming Lam. A bladder cancer patient-derived xenograft displays aggressive growth dynamics in vivo and in organoid culture.
Scientific reports.
2021 02; 11(1):4609. doi:
10.1038/s41598-021-83662-7
. [PMID: 33633154] - Eirinaios I Vrettos, Theodoros Karampelas, Nisar Sayyad, Anastasia Kougioumtzi, Nelofer Syed, Timothy Crook, Carol Murphy, Constantin Tamvakopoulos, Andreas G Tzakos. Development of programmable gemcitabine-GnRH pro-drugs bearing linker controllable 'click' oxime bond tethers and preclinical evaluation against prostate cancer.
European journal of medicinal chemistry.
2021 Feb; 211(?):113018. doi:
10.1016/j.ejmech.2020.113018
. [PMID: 33223264] - Yejin Jang, Jin Soo Shin, Myoung Kyu Lee, Eunhye Jung, Timothy An, Uk-Il Kim, Kyungjin Kim, Meehyein Kim. Comparison of Antiviral Activity of Gemcitabine with 2'-Fluoro-2'-Deoxycytidine and Combination Therapy with Remdesivir against SARS-CoV-2.
International journal of molecular sciences.
2021 Feb; 22(4):. doi:
10.3390/ijms22041581
. [PMID: 33557278] - Frances Willenbrock, Catrin M Cox, Eileen E Parkes, Charlotte S Wilhelm-Benartzi, Aswin G Abraham, Robert Owens, Ahmad Sabbagh, Christopher M Jones, Daniel L I Hughes, Tim Maughan, Christopher N Hurt, Eric E O'Neill, Somnath Mukherjee. Circulating biomarkers and outcomes from a randomised phase 2 trial of gemcitabine versus capecitabine-based chemoradiotherapy for pancreatic cancer.
British journal of cancer.
2021 02; 124(3):581-586. doi:
10.1038/s41416-020-01120-z
. [PMID: 33100327] - Brenna Weadick, Debasis Nayak, Avinash K Persaud, Sau Wai Hung, Radhika Raj, Moray J Campbell, Wei Chen, Junan Li, Terence M Williams, Rajgopal Govindarajan. EMT-Induced Gemcitabine Resistance in Pancreatic Cancer Involves the Functional Loss of Equilibrative Nucleoside Transporter 1.
Molecular cancer therapeutics.
2021 02; 20(2):410-422. doi:
10.1158/1535-7163.mct-20-0316
. [PMID: 33298588] - Nastja Lunar, Marie-Christine Etienne-Grimaldi, Pauline Macaire, Fabienne Thomas, Florence Dalenc, Jean-Marc Ferrero, Xavier Pivot, Gérard Milano, Bernard Royer, Antonin Schmitt. Population pharmacokinetic and pharmacodynamic modeling of capecitabine and its metabolites in breast cancer patients.
Cancer chemotherapy and pharmacology.
2021 02; 87(2):229-239. doi:
10.1007/s00280-020-04208-8
. [PMID: 33386926] - Aleksandra Hawryłkiewicz, Natalia Ptaszyńska. Gemcitabine Peptide-Based Conjugates and Their Application in Targeted Tumor Therapy.
Molecules (Basel, Switzerland).
2021 Jan; 26(2):. doi:
10.3390/molecules26020364
. [PMID: 33445797] - Shweta Paroha, Juhi Verma, Ravindra Dhar Dubey, Rikeshwer Prasad Dewangan, Nagashekhara Molugulu, Ranjeet A Bapat, Pravat Kumar Sahoo, Prashant Kesharwani. Recent advances and prospects in gemcitabine drug delivery systems.
International journal of pharmaceutics.
2021 Jan; 592(?):120043. doi:
10.1016/j.ijpharm.2020.120043
. [PMID: 33152476] - Gao Zhang, Hu Gong, Hanqiao Xu. Analysis of the Mechanism and Safety of Bisphosphonates in Patients with Lung Cancer and Bone Metastases.
Computational and mathematical methods in medicine.
2021; 2021(?):5343104. doi:
10.1155/2021/5343104
. [PMID: 34938354] - Xin Li, Wenkai Jiang, Yu Gan, Wence Zhou. The Application of Exosomal MicroRNAs in the Treatment of Pancreatic Cancer and Its Research Progress.
Pancreas.
2021 01; 50(1):12-16. doi:
10.1097/mpa.0000000000001713
. [PMID: 33370018] - Taku Naiki, Takashi Nagai, Yosuke Sugiyama, Toshiki Etani, Satoshi Nozaki, Keitaro Iida, Yusuke Noda, Nobuhiko Shimizu, Teruki Isobe, Daisuke Matsumoto, Hiroki Kubota, Shuzo Hamamoto, Ryosuke Ando, Noriyasu Kawai, Takahiro Yasui. First Report of Oncological Outcome and Prognostic Analysis in a First-Line Setting of Short Hydration Gemcitabine and Cisplatin Chemotherapy for Patients with Metastatic Urothelial Carcinoma.
Oncology.
2021; 99(10):622-631. doi:
10.1159/000517326
. [PMID: 34284409] - Annette A van Zweeden, Roza C M Opperman, Richard J Honeywell, Godefridus J Peters, Henk M W Verheul, Hans J van der Vliet, Dennis Poel. The prognostic impact of circulating miRNAs in patients with advanced esophagogastric cancer during palliative chemotherapy.
Cancer treatment and research communications.
2021; 27(?):100371. doi:
10.1016/j.ctarc.2021.100371
. [PMID: 33866108] - Zhuangzhuang Jiang, Yang Zhao, Yang Zhao, Yanqing Liu, Li Tao. Pristimerin synergizes with gemcitabine through abrogating Chk1/53BP1-mediated DNA repair in pancreatic cancer cells.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2021 Jan; 147(?):111919. doi:
10.1016/j.fct.2020.111919
. [PMID: 33301843] - Xiaoxiao Chen, Yuan Tao, Manmin He, Miao Deng, Rong Guo, Qinglin Sheng, Xuhui Wang, Kebai Ren, Ting Li, Xuan He, Shuya Zang, Zhirong Zhang, Man Li, Qin He. Co-delivery of autophagy inhibitor and gemcitabine using a pH-activatable core-shell nanobomb inhibits pancreatic cancer progression and metastasis.
Theranostics.
2021; 11(18):8692-8705. doi:
10.7150/thno.60437
. [PMID: 34522207] - Yuanke Li, Zhen Zhao, Chien-Yu Lin, Yanli Liu, Kevin F Staveley-OCarroll, Guangfu Li, Kun Cheng. Silencing PCBP2 normalizes desmoplastic stroma and improves the antitumor activity of chemotherapy in pancreatic cancer.
Theranostics.
2021; 11(5):2182-2200. doi:
10.7150/thno.53102
. [PMID: 33500719] - Benay Özbay, Ecem Gürses, Hatice S Kemal, Evrim Şimşek, Hakan Kültürsay. Takotsubo syndrome early after treatment due to non cardiotoxic chemotherapy agents.
Turk Kardiyoloji Dernegi arsivi : Turk Kardiyoloji Derneginin yayin organidir.
2021 01; 49(1):72-75. doi:
10.5543/tkda.2020.25590
. [PMID: 33390577]