1,7-dimethylurate (BioDeep_00000001125)

 

Secondary id: BioDeep_00000405642

human metabolite Endogenous blood metabolite natural product


代谢物信息卡片


2,8-dihydroxy-1,7-dimethyl-6,7-dihydro-1H-purin-6-one

化学式: C7H8N4O3 (196.0596)
中文名称: 1,7-二甲基-2,6,8-三羟基嘌呤, 1,7-二甲基尿酸
谱图信息: 最多检出来源 Homo sapiens(blood) 26.32%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

1,7-dimethylurate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/1,7-dimethylurate (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000001125). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CN1C(=O)NC2=C1C(=O)N(C)C(=O)N2
InChI: InChI=1S/C7H8N4O3/c1-10-3-4(8-6(10)13)9-7(14)11(2)5(3)12/h1-2H3,(H,8,13)(H,9,14)

描述信息

1,7 dimethyluric acid is the major urinary caffeine metabolites that is produced in the human body. 1,7 dimethyluric acid is formed during metabolism of caffeine and the process is catalyzed primarily by CYP2A6. (PMID: 18715882) [HMDB]
1,7-Dimethyluric acid is the major urinary caffeine metabolite that is produced in the human body. 1,7-Dimethyluric acid is formed during caffeine metabolism and the process is catalyzed primarily by CYP2A6 (PMID: 18715882).

同义名列表

7 个代谢物同义名

2,8-dihydroxy-1,7-dimethyl-6,7-dihydro-1H-purin-6-one; 7,9-Dihydro-1,7-dimethyl-1H-purine-2,6,8(3H)-trione; 1,7-Dimethyluric acid; 1,7-Dimethylic acid; 1,7-Dimethylurate; 1,7-Dimethylate; 1,7-Dimethyluric acid



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

8 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(5)

  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide

PharmGKB(1)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 AHR, CYP2A6, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, GSTM1, GSTM3, NAT2, XDH
Peripheral membrane protein 2 CYP2B6, CYP2E1
Endoplasmic reticulum membrane 10 CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP3A5
Nucleus 3 AHR, GSTM3, NAT2
cytosol 6 AHR, GSTA1, GSTM1, GSTM3, NAT2, XDH
dendrite 1 SLC1A1
nucleoplasm 1 AHR
Cell membrane 2 NAT2, SLC1A1
Early endosome membrane 1 SLC1A1
Multi-pass membrane protein 3 NAT2, SLC1A1, SLC22A6
Synapse 1 SLC1A1
dendritic shaft 1 SLC1A1
mitochondrial inner membrane 1 CYP2E1
neuronal cell body 2 NAT2, SLC1A1
Presynapse 1 SLC1A1
plasma membrane 6 CYP2C19, CYP2C8, CYP2C9, NAT2, SLC1A1, SLC22A6
Membrane 7 CYP2A6, CYP2D6, CYP3A4, CYP3A5, NAT2, SLC1A1, SLC22A6
apical plasma membrane 1 SLC1A1
axon 2 NAT2, SLC1A1
basolateral plasma membrane 2 NAT2, SLC22A6
caveola 1 SLC22A6
extracellular exosome 5 GSTA1, GSTM3, NAT2, SLC1A1, SLC22A6
endoplasmic reticulum 2 CYP2D6, SLC1A1
extracellular space 2 CRP, XDH
Schaffer collateral - CA1 synapse 1 SLC1A1
mitochondrion 1 CYP2D6
protein-containing complex 2 AHR, SLC22A6
intracellular membrane-bounded organelle 10 CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP3A5
Microsome membrane 7 CYP1A2, CYP2B6, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP3A5
Secreted 1 CRP
extracellular region 1 CRP
Single-pass membrane protein 1 CYP2D6
transcription regulator complex 2 AHR, NAT2
external side of plasma membrane 1 SLC1A1
dendritic spine 1 SLC1A1
perikaryon 1 SLC1A1
Apical cell membrane 1 SLC1A1
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 1 SLC1A1
Peroxisome 1 XDH
sarcoplasmic reticulum 1 XDH
neuron projection 1 SLC1A1
chromatin 1 AHR
Late endosome membrane 1 SLC1A1
cell periphery 1 SLC1A1
Basolateral cell membrane 1 SLC22A6
intercellular bridge 2 GSTM1, GSTM3
Recycling endosome membrane 1 SLC1A1
aryl hydrocarbon receptor complex 1 AHR
basal plasma membrane 1 SLC22A6
axon terminus 1 SLC1A1
cytoplasmic microtubule 1 CYP2A6
Synapse, synaptosome 1 SLC1A1
synaptic cleft 1 SLC1A1
Basal cell membrane 1 SLC22A6
external side of apical plasma membrane 1 NAT2
apical dendrite 1 SLC1A1
sperm fibrous sheath 1 GSTM3
glial cell projection 1 SLC1A1
asymmetric synapse 1 SLC1A1
distal dendrite 1 SLC1A1
proximal dendrite 1 SLC1A1
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
NatA complex 1 NAT2
perisynaptic space 1 SLC1A1


文献列表

  • Norie Murayama, Makiko Shimizu, Kenta Kobayashi, Izumi Kishimoto, Hiroshi Yamazaki. Cytochrome P450 2A6 Phenotyping Using Dietary Caffeine Salivary Metabolite Ratios and Genotyping Using Blood on Storage Cards in Non-smoking Japanese Volunteers. Drug metabolism letters. 2017; 10(4):240-243. doi: 10.2174/1872312810666161114144008. [PMID: 27842485]
  • Ayorinde Adehin, Oluseye O Bolaji. Polymorphisms of CYP1A2 and CYP2A6 activity: phenotypes and the effect of age and sex in a Nigerian population. Drug metabolism and personalized therapy. 2015 Sep; 30(3):203-10. doi: 10.1515/dmpt-2015-0001. [PMID: 26098700]
  • Michael E Rybak, Maya R Sternberg, Ching-I Pao, Namanjeet Ahluwalia, Christine M Pfeiffer. Urine excretion of caffeine and select caffeine metabolites is common in the U.S. population and associated with caffeine intake. The Journal of nutrition. 2015 Apr; 145(4):766-74. doi: 10.3945/jn.114.205476. [PMID: 25833779]
  • Miyuki Kimura, Makiko Shimizu, Kazuma Kiyotani, Kazuko Nakagawa, Tetsuya Kamataki, Hiroshi Yamazaki. Cytochrome P450 2A6 phenotyping based on dietary caffeine intake in a Japanese population of non-smokers. Drug metabolism letters. 2012 Jun; 6(2):67-72. doi: . [PMID: 22849705]
  • Yao Chen, Wen-Hui Liu, Bi-Lian Chen, Lan Fan, Yang Han, Guo Wang, Dong-Li Hu, Zhi-Rong Tan, Gan Zhou, Shan Cao, Hong-Hao Zhou. Plant polyphenol curcumin significantly affects CYP1A2 and CYP2A6 activity in healthy, male Chinese volunteers. The Annals of pharmacotherapy. 2010 Jun; 44(6):1038-45. doi: 10.1345/aph.1m533. [PMID: 20484172]
  • Yao Chen, Peng Xiao, Dong-Sheng Ou-Yang, Lan Fan, Dong Guo, Yi-Nan Wang, Yang Han, Jiang-Hua Tu, Gan Zhou, Yuan-Fei Huang, Hong-Hao Zhou. Simultaneous action of the flavonoid quercetin on cytochrome P450 (CYP) 1A2, CYP2A6, N-acetyltransferase and xanthine oxidase activity in healthy volunteers. Clinical and experimental pharmacology & physiology. 2009 Aug; 36(8):828-33. doi: 10.1111/j.1440-1681.2009.05158.x. [PMID: 19215233]
  • B Sinues, A Fanlo, E Mayayo, C Carcas, J Vicente, I Arenaz, A Cebollada. CYP2A6 activity in a healthy Spanish population: effect of age, sex, smoking, and oral contraceptives. Human & experimental toxicology. 2008 May; 27(5):367-72. doi: 10.1177/0960327107082224. [PMID: 18715882]
  • Blanca Sinués, Ana Fanlo, Jorge Vicente, Esteban Mayayo-Sinués, Esteban Mayayo, Jose I Labarta, Angel Ferrandez-Longás. Growth hormone does not alter CYP2A6 activity in growth hormone-deficient children. Basic & clinical pharmacology & toxicology. 2008 Jan; 102(1):45-9. doi: 10.1111/j.1742-7843.2007.00139.x. [PMID: 17927692]
  • Hans-Peter Rihs, Andrea John, Michael Scherenberg, Albrecht Seidel, Thomas Brüning. Concordance between the deduced acetylation status generated by high-speed: real-time PCR based NAT2 genotyping of seven single nucleotide polymorphisms and human NAT2 phenotypes determined by a caffeine assay. Clinica chimica acta; international journal of clinical chemistry. 2007 Feb; 376(1-2):240-3. doi: 10.1016/j.cca.2006.08.010. [PMID: 17011540]
  • Jun Li, Xiang-qian Peng, Jian Zhang, Ji-ping Xu. [Determination of the activity of cytochrome P-450 CYP2A6 by HPLC method with caffeine as metabolizing probe]. Yao xue xue bao = Acta pharmaceutica Sinica. 2006 Mar; 41(3):282-4. doi: . [PMID: 16759004]
  • Allan Weimann, Mads Sabroe, Henrik E Poulsen. Measurement of caffeine and five of the major metabolites in urine by high-performance liquid chromatography/tandem mass spectrometry. Journal of mass spectrometry : JMS. 2005 Mar; 40(3):307-16. doi: 10.1002/jms.785. [PMID: 15685651]
  • Mirosława Zydroń, Jacek Baranowski, Irena Baranowska. Separation, pre-concentration, and HPLC analysis of methylxanthines in urine samples. Journal of separation science. 2004 Oct; 27(14):1166-72. doi: 10.1002/jssc.200401841. [PMID: 15537072]
  • Chi-Chen Hong, Bing-Kou Tang, Venketeshwer Rao, Sanjiv Agarwal, Lisa Martin, David Tritchler, Martin Yaffe, Norman F Boyd. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study. Breast cancer research : BCR. 2004; 6(4):R338-51. doi: 10.1186/bcr797. [PMID: 15217501]
  • Fatima Vrtic, Walter E Haefeli, Jürgen Drewe, Stephan Krähenbühl, Markus Wenk. Interaction of ibuprofen and probenecid with drug metabolizing enzyme phenotyping procedures using caffeine as the probe drug. British journal of clinical pharmacology. 2003 Feb; 55(2):191-8. doi: 10.1046/j.1365-2125.2003.01725.x. [PMID: 12580991]
  • Klaus Abraham, Alexandra Geusau, Yalcin Tosun, Hans Helge, Steffen Bauer, Jürgen Brockmöller. Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: insights into the measurement of hepatic cytochrome P450 1A2 induction. Clinical pharmacology and therapeutics. 2002 Aug; 72(2):163-74. doi: 10.1067/mcp.2002.126408. [PMID: 12189363]
  • Junji Saruwatari, Kazuko Nakagawa, Junichi Shindo, Takahiro Tajiri, Masaki Fujieda, Hiroshi Yamazaki, Tetsuya Kamataki, Takashi Ishizaki. A population phenotyping study of three drug-metabolizing enzymes in Kyushu, Japan, with use of the caffeine test. Clinical pharmacology and therapeutics. 2002 Aug; 72(2):200-8. doi: 10.1067/mcp.2002.126173. [PMID: 12189367]
  • Susan Nowell, Carol Sweeney, George Hammons, Fred F Kadlubar, Nicholas P Lang. CYP2A6 activity determined by caffeine phenotyping: association with colorectal cancer risk. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2002 Apr; 11(4):377-83. doi: . [PMID: 11927498]
  • H M Crews, L Olivier, L A Wilson. Urinary biomarkers for assessing dietary exposure to caffeine. Food additives and contaminants. 2001 Dec; 18(12):1075-87. doi: 10.1080/02652030110056630. [PMID: 11761118]
  • K A Georgia, V F Samanidou, I N Papadoyannis. Use of novel solid-phase extraction sorbent materials for high-performance liquid chromatography quantitation of caffeine metabolism products methylxanthines and methyluric acids in samples of biological origin. Journal of chromatography. B, Biomedical sciences and applications. 2001 Aug; 759(2):209-18. doi: 10.1016/s0378-4347(01)00251-1. [PMID: 11499474]
  • K Tsutsumi, T Kotegawa, S Matsuki, Y Tanaka, Y Ishii, Y Kodama, M Kuranari, I Miyakawa, S Nakano. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clinical pharmacology and therapeutics. 2001 Aug; 70(2):121-5. doi: 10.1067/mcp.2001.116495. [PMID: 11503005]
  • A Nyéki, J Biollaz, U W Kesselring, L A Décosterd. Extractionless method for the simultaneous high-performance liquid chromatographic determination of urinary caffeine metabolites for N-acetyltransferase 2, cytochrome P450 1A2 and xanthine oxidase activity assessment. Journal of chromatography. B, Biomedical sciences and applications. 2001 May; 755(1-2):73-84. doi: 10.1016/s0378-4347(00)00616-2. [PMID: 11393735]
  • Y C Bechtel, H Lelouët, S Hrusovsky, M P Brientini, G Mantion, G Paintaud, J P Miguet, P R Bechtel. Caffeine metabolism before and after liver transplantation. International journal of clinical pharmacology and therapeutics. 2001 Feb; 39(2):53-60. doi: 10.5414/cpp39053. [PMID: 11270802]
  • B Sinués, M A Sáenz, J Lanuza, M L Bernal, A Fanlo, J L Juste, E Mayayo. Five caffeine metabolite ratios to measure tobacco-induced CYP1A2 activity and their relationships with urinary mutagenicity and urine flow. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1999 Feb; 8(2):159-66. doi: . [PMID: 10067814]
  • J F Lu, T Yi, X M Cao, H T Zhuo, S S Ling. [Determination of caffeine metabolite for the evaluation of N-acetyltransferase, CYP1A2 and xanthine oxidase activities]. Yao xue xue bao = Acta pharmaceutica Sinica. 1997 Nov; 32(11):813-8. doi: NULL. [PMID: 11596199]
  • M T Landi, C Zocchetti, I Bernucci, F F Kadlubar, S Tannenbaum, P Skipper, H Bartsch, C Malaveille, P Shields, N E Caporaso, P Vineis. Cytochrome P4501A2: enzyme induction and genetic control in determining 4-aminobiphenyl-hemoglobin adduct levels. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1996 Sep; 5(9):693-8. doi: . [PMID: 8877060]
  • K L Rost, I Roots. Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios: coincidence with plasma clearance and breath test. Clinical pharmacology and therapeutics. 1994 Apr; 55(4):402-11. doi: 10.1038/clpt.1994.49. [PMID: 8162667]
  • M Vincent-Viry, Z B Pontes, R Gueguen, M M Galteau, G Siest. Segregation analyses of four urinary caffeine metabolite ratios implicated in the determination of human acetylation phenotypes. Genetic epidemiology. 1994; 11(2):115-29. doi: 10.1002/gepi.1370110203. [PMID: 8013893]
  • L Fraisse, J B Verlhac, B Roche, M C Rascle, A Rabion, J L Seris. Long-chain-substituted uric acid and 5,6-diaminouracil derivatives as novel agents against free radical processes: synthesis and in vitro activity. Journal of medicinal chemistry. 1993 May; 36(10):1465-73. doi: 10.1021/jm00062a020. [PMID: 8496914]
  • M E Campbell, S P Spielberg, W Kalow. A urinary metabolite ratio that reflects systemic caffeine clearance. Clinical pharmacology and therapeutics. 1987 Aug; 42(2):157-65. doi: 10.1038/clpt.1987.126. [PMID: 3608349]
  • . . . . doi: . [PMID: 14977550]
  • . . . . doi: . [PMID: 17221922]