Trp-P-2 (BioDeep_00001874447)

Main id: BioDeep_00000009893

 


代谢物信息卡片


3-Amino-1-methyl-5H-pyrido[4,3-b]indole

化学式: C12H11N3 (197.0953)
中文名称: 3-氨基-1-甲基-5H-吡啶[4,3-B]吲哚
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1=C2C3=CC=CC=C3NC2=CC(=N1)N
InChI: InChI=1S/C12H11N3/c1-7-12-8-4-2-3-5-9(8)15-10(12)6-11(13)14-7/h2-6,15H,1H3,(H2,13,14)

描述信息

D009676 - Noxae > D002273 - Carcinogens
D009676 - Noxae > D009153 - Mutagens

同义名列表

4 个代谢物同义名

3-Amino-1-methyl-5H-pyrido[4,3-b]indole; 1-methyl-5H-pyrido[4,3-b]indol-3-amine; Trp-P-2; Trp-P-2



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AHR, ALB, APRT, CAT, CYP2B6, CYP2E1, DDC, HPGDS, NAT2, NQO1, TH, XDH
Peripheral membrane protein 2 CYP2B6, CYP2E1
Endoplasmic reticulum membrane 3 CYP1A2, CYP2B6, CYP2E1
Nucleus 6 AHR, ALB, MPO, NAT2, NQO1, TH
cytosol 11 AHR, ALB, APRT, CAT, DDC, HPGDS, NAT1, NAT2, NQO1, TH, XDH
dendrite 3 DRD2, NQO1, TH
centrosome 1 ALB
nucleoplasm 4 AHR, APRT, HPGDS, MPO
Cell membrane 3 DRD2, NAT1, NAT2
Cell projection, axon 1 TH
Multi-pass membrane protein 4 DRD2, NAT1, NAT2, SLC45A2
Golgi apparatus membrane 1 DRD2
Synapse 3 DRD2, NAT1, NQO1
cell surface 1 NAT1
glutamatergic synapse 1 DRD2
Golgi apparatus 1 ALB
Golgi membrane 1 DRD2
mitochondrial inner membrane 1 CYP2E1
neuronal cell body 2 NAT2, NQO1
presynaptic membrane 2 DRD2, NAT1
smooth endoplasmic reticulum 1 TH
synaptic vesicle 1 TH
Cytoplasm, cytosol 1 NQO1
Lysosome 1 MPO
acrosomal vesicle 1 DRD2
plasma membrane 4 C8G, DRD2, NAT1, NAT2
synaptic vesicle membrane 2 DRD2, NAT1
terminal bouton 1 TH
Membrane 5 CAT, NAT1, NAT2, NQO1, SLC45A2
apical plasma membrane 1 NAT1
axon 4 DRD2, NAT1, NAT2, TH
basolateral plasma membrane 2 NAT1, NAT2
extracellular exosome 9 ALB, APRT, BMP3, C8G, CAT, DDC, LYZ, MPO, NAT2
endoplasmic reticulum 1 ALB
extracellular space 5 ALB, BMP3, LYZ, MPO, XDH
perinuclear region of cytoplasm 1 TH
mitochondrion 2 CAT, TH
protein-containing complex 3 AHR, ALB, CAT
intracellular membrane-bounded organelle 6 CAT, CYP1A2, CYP2B6, CYP2E1, HPGDS, MPO
Microsome membrane 3 CYP1A2, CYP2B6, CYP2E1
Secreted 2 ALB, BMP3
extracellular region 7 ALB, APRT, BMP3, C8G, CAT, LYZ, MPO
cytoplasmic side of plasma membrane 1 TH
neuronal cell body membrane 1 NAT1
mitochondrial matrix 1 CAT
anchoring junction 1 ALB
transcription regulator complex 2 AHR, NAT2
ciliary membrane 1 DRD2
dendritic spine 1 DRD2
perikaryon 2 DRD2, TH
cytoplasmic vesicle 1 TH
Melanosome membrane 2 SLC45A2, TH
postsynaptic membrane 1 DRD2
Cytoplasm, perinuclear region 1 TH
Mitochondrion inner membrane 1 CYP2E1
focal adhesion 1 CAT
GABA-ergic synapse 1 DRD2
Peroxisome 2 CAT, XDH
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
secretory granule 1 MPO
lateral plasma membrane 1 DRD2
neuron projection 1 TH
ciliary basal body 1 ALB
cilium 1 DRD2
chromatin 1 AHR
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 2 ALB, C8G
non-motile cilium 1 DRD2
Basolateral cell membrane 1 NAT1
sperm flagellum 1 DRD2
aryl hydrocarbon receptor complex 1 AHR
azurophil granule 1 MPO
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 APRT, CAT
endoplasmic reticulum lumen 1 ALB
platelet alpha granule lumen 1 ALB
axon terminus 1 DRD2
specific granule lumen 1 LYZ
tertiary granule lumen 1 LYZ
endocytic vesicle 1 DRD2
azurophil granule lumen 2 LYZ, MPO
phagocytic vesicle lumen 1 MPO
external side of apical plasma membrane 1 NAT2
dopaminergic synapse 1 DRD2
membrane attack complex 1 C8G
catalase complex 1 CAT
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 TH
G protein-coupled receptor complex 1 DRD2
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
NatA complex 1 NAT2
ciliary transition fiber 1 ALB


文献列表

  • Katia Sayyed, Marc Le Vee, Ziad Abdel-Razzak, Olivier Fardel. Inhibition of organic anion transporter (OAT) activity by cigarette smoke condensate. Toxicology in vitro : an international journal published in association with BIBRA. 2017 Oct; 44(?):27-35. doi: 10.1016/j.tiv.2017.06.014. [PMID: 28629854]
  • Fernando De Andrés, Mohammed Zougagh, Gregorio Castañeda, José Luis Sánchez-Rojas, Angel Ríos. Screening of non-polar heterocyclic amines in urine by microextraction in packed sorbent-fluorimetric detection and confirmation by capillary liquid chromatography. Talanta. 2011 Feb; 83(5):1562-7. doi: 10.1016/j.talanta.2010.11.060. [PMID: 21238752]
  • Hironori Tsuchiya. Comparative Effects of α-, β-, and γ-Carbolines on Platelet Aggregation and Lipid Membranes. Journal of toxicology. 2011; 2011(?):151596. doi: 10.1155/2011/151596. [PMID: 21876689]
  • Junichiro Saito, Hiroko Fukushima, Hisamitsu Nagase. Inhibitory effect of magnolol on Trp-P-2-induced DNA damage in various organs in mice. Phytotherapy research : PTR. 2009 Jul; 23(7):901-5. doi: 10.1002/ptr.2748. [PMID: 19140158]
  • Veronika A Ehrlich, Armen K Nersesyan, Kambis Atefie, Christine Hoelzl, Franziska Ferk, Julia Bichler, Eva Valic, Andreas Schaffer, Rolf Schulte-Hermann, Michael Fenech, Karl-Heinz Wagner, Siegfried Knasmüller. Inhalative exposure to vanadium pentoxide causes DNA damage in workers: results of a multiple end point study. Environmental health perspectives. 2008 Dec; 116(12):1689-93. doi: 10.1289/ehp.11438. [PMID: 19079721]
  • Christine Hoelzl, Hansruedi Glatt, Walter Meinl, Gerhard Sontag, Gerald Haidinger, Michael Kundi, Tatjana Simic, Asima Chakraborty, Julia Bichler, Franziska Ferk, Karel Angelis, Armen Nersesyan, Siegfried Knasmüller. Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Molecular nutrition & food research. 2008 Mar; 52(3):330-41. doi: 10.1002/mnfr.200700406. [PMID: 18293303]
  • Sakae Arimoto-Kobayashi, Jun Takata, Namiko Nakandakari, Rie Fujioka, Keinosuke Okamoto, Toshimitsu Konuma. Inhibitory effects of heterocyclic amine-induced DNA adduct formation in mouse liver and lungs by beer. Journal of agricultural and food chemistry. 2005 Feb; 53(3):812-5. doi: 10.1021/jf049208k. [PMID: 15686438]
  • P Baranczewski, J A Gustafsson, L Moller. DNA adduct formation of 14 heterocyclic aromatic amines in mouse tissue after oral administration and characterization of the DNA adduct formed by 2-amino-9H-pyrido[2,3-b]indole (AalphaC), analysed by 32P_HPLC. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals. 2004 May; 9(3):243-57. doi: 10.1080/13547500400010056. [PMID: 15764290]
  • K M Orrhage, A Annas, C E Nord, E B Brittebo, J J Rafter. Effects of lactic acid bacteria on the uptake and distribution of the food mutagen Trp-P-2 in mice. Scandinavian journal of gastroenterology. 2002 Feb; 37(2):215-21. doi: 10.1080/003655202753416902. [PMID: 11843060]
  • Mingzhou Sun, Ryo Yamauchi, Hitoshi Ashida, Kazuki Kanazawa. Subsequent products after antioxidant actions of beta-carotene and alpha-tocopherol have no Salmonella mutagenicity. Bioscience, biotechnology, and biochemistry. 2002 Feb; 66(2):363-72. doi: 10.1271/bbb.66.363. [PMID: 11999410]
  • Yaowarate Intiyot, Takemi Kinouchi, Keiko Kataoka, Hideki Arimochi, Tomomi Kuwahara, Usanee Vinitketkumnuen, Yoshinari Ohnishi. Antimutagenicity of Murdannia loriformis in the Salmonella mutation assay and its inhibitory effects on azoxymethane-induced DNA methylation and aberrant crypt focus formation in male F344 rats. The journal of medical investigation : JMI. 2002 Feb; 49(1-2):25-34. doi: ". [PMID: 11901756]
  • K Nakahara, M Onishi-Kameyama, H Ono, M Yoshida, G Trakoontivakorn. Antimutagenic activity against trp-P-1 of the edible Thai plant, Oroxylum indicum vent. Bioscience, biotechnology, and biochemistry. 2001 Oct; 65(10):2358-60. doi: 10.1271/bbb.65.2358. [PMID: 11758941]
  • H Ren, H Endo, T Hayashi. The superiority of organically cultivated vegetables to general ones regarding antimutagenic activities. Mutation research. 2001 Sep; 496(1-2):83-8. doi: 10.1016/s1383-5718(01)00229-7. [PMID: 11551483]
  • G Trakoontivakorn, K Nakahara, H Shinmoto, M Takenaka, M Onishi-Kameyama, H Ono, M Yoshida, T Nagata, T Tsushida. Structural analysis of a novel antimutagenic compound, 4-Hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. Journal of agricultural and food chemistry. 2001 Jun; 49(6):3046-50. doi: 10.1021/jf010016o. [PMID: 11410007]
  • M Sun, H Sakakibara, H Ashida, G Danno, K Kanazawa. Cytochrome P4501A1-inhibitory action of antimutagenic anthraquinones in medicinal plants and the structure-activity relationship. Bioscience, biotechnology, and biochemistry. 2000 Jul; 64(7):1373-8. doi: 10.1271/bbb.64.1373. [PMID: 10945253]
  • T Marczylo, S Arimoto-Kobayashi, H Hayatsu. Protection against Trp-P-2 mutagenicity by purpurin: mechanism of in vitro antimutagenesis. Mutagenesis. 2000 May; 15(3):223-8. doi: 10.1093/mutage/15.3.223. [PMID: 10792014]
  • H Yoshino, K Urano. Mutagenic activities of exhaust gas and ash from sludge incineration plants. The Science of the total environment. 1998 Apr; 215(1-2):41-9. doi: 10.1016/s0048-9697(98)00120-x. [PMID: 9599455]
  • Y F Sasaki, A Saga, M Akasaka, E Nishidate, M Watanabe-Akanuma, T Ohta, N Matsusaka, S Tsuda. In vivo genotoxicity of heterocyclic amines detected by a modified alkaline single cell gel electrophoresis assay in a multiple organ study in the mouse. Mutation research. 1997 Dec; 395(1):57-73. doi: 10.1016/s1383-5718(97)00142-3. [PMID: 9465914]
  • K Wakabayashi, Y Totsuka, K Fukutome, A Oguri, H Ushiyama, T Sugimura. Human exposure to mutagenic/carcinogenic heterocyclic amines and comutagenic beta-carbolines. Mutation research. 1997 May; 376(1-2):253-9. doi: 10.1016/s0027-5107(97)00050-x. [PMID: 9202762]
  • K Yoshikawa, K Inagaki, T Terashita, J Shishiyama, S Kuo, D M Shankel. Antimutagenic activity of extracts from Japanese eggplant. Mutation research. 1996 Nov; 371(1-2):65-71. doi: 10.1016/s0165-1218(96)90095-6. [PMID: 8950351]
  • T Aji, H Matsuoka, A Ishii, S Arimoto, H Hayatsu. Retention of a mutagen, 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), in the liver of mice infected with Schistosoma japonicum. Mutation research. 1994 Mar; 305(2):265-72. doi: 10.1016/0027-5107(94)90246-1. [PMID: 7510037]
  • S Manabe, M Suzuki, E Kusano, O Wada, Y Asano. Elevation of levels of carcinogenic tryptophan pyrolysis products in plasma and red blood cells of patients with uremia. Clinical nephrology. 1992 Jan; 37(1):28-33. doi: NULL. [PMID: 1541061]
  • H Ushiyama, K Wakabayashi, M Hirose, H Itoh, T Sugimura, M Nagao. Presence of carcinogenic heterocyclic amines in urine of healthy volunteers eating normal diet, but not of inpatients receiving parenteral alimentation. Carcinogenesis. 1991 Aug; 12(8):1417-22. doi: 10.1093/carcin/12.8.1417. [PMID: 1907222]
  • M Niikawa, Y Sakai, Y Ose, T Sato, H Nagase, H Kito, M Sato, M Mizuno. Enhancement of the mutagenicity of Trp-P-1, Trp-P-2 and benzo[a]pyrene by bupleuri radix extract. Chemical & pharmaceutical bulletin. 1990 Jul; 38(7):2035-9. doi: 10.1248/cpb.38.2035. [PMID: 2268909]
  • S Manabe, O Wada. Identification of carcinogenic tryptophan pyrolysis products in human bile by high-performance liquid chromatography. Environmental and molecular mutagenesis. 1990; 15(4):229-35. doi: 10.1002/em.2850150410. [PMID: 2357976]
  • T Kato, T Takahashi, K Kikugawa. Inactivation of mutagenic heterocyclic and aryl amines by linoleic acid 13-monohydroperoxide and methemoglobin. Basic life sciences. 1990; 52(?):407-10. doi: 10.1007/978-1-4615-9561-8_41. [PMID: 2183778]
  • S Manabe, O Wada. Analysis of human plasma as an exposure level monitor for carcinogenic tryptophan pyrolysis products. Mutation research. 1988 Sep; 209(1-2):33-8. doi: 10.1016/0165-7992(88)90107-8. [PMID: 3173401]
  • S Sato, C Negishi, A Umemoto, T Sugimura. Metabolic aspects of pyrolysis mutagens in food. Environmental health perspectives. 1986 Aug; 67(?):105-9. doi: 10.1289/ehp.8667105. [PMID: 3757943]
  • M Morotomi, M Mutai. In vitro binding of potent mutagenic pyrolysates to intestinal bacteria. Journal of the National Cancer Institute. 1986 Jul; 77(1):195-201. doi: . [PMID: 3014197]
  • K Saito, Y Yamazoe, T Kamataki, R Kato. Interactions between the active metabolite of tryptophan pyrolysate mutagen, N-hydroxy-Trp-P-2, and lipids: the role of lipid peroxides in the conversion of N-hydroxy-Trp-P-2 to non-reactive forms. Chemico-biological interactions. 1983 Aug; 45(3):295-304. doi: 10.1016/0009-2797(83)90076-5. [PMID: 6411369]
  • F Kurosaki, K Shudo, T Okamoto, Y Isogai. Induction of cytokinin-autonomous tobacco callus. Transformation of cultured tobacco callus by mutagenic heteroaromatic amines. Biochemical and biophysical research communications. 1981 Oct; 102(4):1130-5. doi: 10.1016/s0006-291x(81)80129-5. [PMID: 7317043]
  • M Yamada, M Mori, T Sugimura. Myeloperoxidase-catalyzed binding of 3-amino-1-methyl-5H-pyrido[4,3-b]indole, a tryptophan pyrolysis product, to protein. Chemico-biological interactions. 1980 Dec; 33(1):19-33. doi: 10.1016/0009-2797(80)90041-1. [PMID: 6254679]