Oxygen (BioDeep_00001867613)
Main id: BioDeep_00000004363
代谢物信息卡片
化学式: O2 (31.9898)
中文名称: 氧
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: O=O
InChI: InChI=1S/O2/c1-2
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:15379
- ChEBI: CHEBI:26689
- ChEBI: CHEBI:27140
- KEGG: C00007
- KEGGdrug: D00003
- PubChem: 977
- DrugBank: DB09140
- ChEMBL: CHEMBL1234886
- MeSH: Oxygen
- CAS: 7782-44-7
- MetaboLights: MTBLC15379
- PubChem: 3309
- PDB-CCD: OXY
- 3DMET: B00001
- NIKKAJI: J44.420K
- KNApSAcK: 15379
分类词条
相关代谢途径
Reactome(210)
- Metabolism
- Biological oxidations
- Aflatoxin activation and detoxification
- Phase I - Functionalization of compounds
- Metabolism of vitamins and cofactors
- Metabolism of fat-soluble vitamins
- Retinoid metabolism and transport
- Visual phototransduction
- Sensory Perception
- Metabolism of proteins
- Post-translational protein modification
- Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins
- Gamma-carboxylation of protein precursors
- Disease
- Diseases of hemostasis
- Defects of Formation of Fibrin Clot (Clotting Cascade)
- Defective factor IX causes hemophilia B
- Defective gamma-carboxylation of F9
- Phase II - Conjugation of compounds
- Amino acid and derivative metabolism
- Glyoxylate metabolism and glycine degradation
- Diseases of signal transduction by growth factor receptors and second messengers
- FLT3 signaling in disease
- Drug ADME
- Aspirin ADME
- Metabolism of lipids
- Metabolism of steroids
- Cholesterol biosynthesis
- Metabolism of cofactors
- Ubiquinol biosynthesis
- Diseases of metabolism
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism
- Transport of small molecules
- Metabolism of polyamines
- DNA replication and repair
- DNA repair
- Developmental Biology
- Cytochrome P450 - arranged by substrate type
- Xenobiotics
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2
- Methylation
- DNA Repair
- DNA Damage Reversal
- Reversal of alkylation damage by DNA dioxygenases
- ALKBH2 mediated reversal of alkylation damage
- ALKBH3 mediated reversal of alkylation damage
- Signaling Pathways
- Signaling by Rho GTPases
- RHO GTPase Effectors
- RHO GTPases activate PKNs
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3
- Cell Cycle
- Cell Cycle, Mitotic
- M Phase
- Mitotic Prophase
- Condensation of Prophase Chromosomes
- Chromatin organization
- Chromatin modifying enzymes
- HDMs demethylate histones
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3
- Maternal to zygotic transition (MZT)
- Chromatin modifications during the maternal to zygotic transition (MZT)
- Immune System
- Innate Immune System
- ROS and RNS production in phagocytes
- Nucleotide metabolism
- Nucleotide catabolism
- Purine catabolism
- Disorders of transmembrane transporters
- SLC transporter disorders
- Biosynthesis of specialized proresolving mediators (SPMs)
- Biosynthesis of EPA-derived SPMs
- Biosynthesis of E-series 18(R)-resolvins
- Fatty acid metabolism
- Metabolism of water-soluble vitamins and cofactors
- Vitamin B6 activation to pyridoxal phosphate
- Tryptophan catabolism
- Bile acid and bile salt metabolism
- Synthesis of bile acids and bile salts
- Synthesis of bile acids and bile salts via 27-hydroxycholesterol
- Endogenous sterols
- Sterols are 12-hydroxylated by CYP8B1
- Metabolism of nitric oxide: NOS3 activation and regulation
- eNOS activation and regulation
- eNOS activation
- Signaling by Receptor Tyrosine Kinases
- Signaling by VEGF
- VEGFA-VEGFR2 Pathway
- RHO GTPases Activate NADPH Oxidases
- Cellular responses to stimuli
- Cellular responses to stress
- Detoxification of Reactive Oxygen Species
- Infectious disease
- Latent infection of Homo sapiens with Mycobacterium tuberculosis
- Latent infection - Other responses of Mtb to phagocytosis
- Tolerance of reactive oxygen produced by macrophages
- Gene expression (Transcription)
- RNA Polymerase II Transcription
- Generic Transcription Pathway
- Transcriptional Regulation by TP53
- TP53 Regulates Transcription of Cell Death Genes
- TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain
- Adaptive Immune System
- Class I MHC mediated antigen processing & presentation
- Antigen processing-Cross presentation
- Cross-presentation of particulate exogenous antigens (phagosomes)
- Infection with Mycobacterium tuberculosis
- Leishmania infection
- Killing mechanisms
- WNT5:FZD7-mediated leishmania damping
- Cellular response to chemical stress
- Cytoprotection by HMOX1
- Bacterial Infection Pathways
- Parasitic Infection Pathways
- Arachidonic acid metabolism
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX)
- CYP2E1 reactions
- Peroxisomal lipid metabolism
- Beta-oxidation of pristanoyl-CoA
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives
- Iron uptake and transport
- Fatty acyl-CoA biosynthesis
- The citric acid (TCA) cycle and respiratory electron transport
- Lysine catabolism
- Heme synthesis
- Extracellular matrix organization
- Collagen formation
- Assembly of collagen fibrils and other multimeric structures
- Crosslinking of collagen fibrils
- Phenylalanine and tyrosine catabolism
- Sulfur amino acid metabolism
- Degradation of cysteine and homocysteine
- Amine Oxidase reactions
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB
- Neuronal System
- Transmission across Chemical Synapses
- Neurotransmitter release cycle
- Norepinephrine Neurotransmitter Release Cycle
- Neurotransmitter clearance
- Clearance of dopamine
- Enzymatic degradation of dopamine by COMT
- Enzymatic degradation of Dopamine by monoamine oxidase
- Tolerance by Mtb to nitric oxide produced by macrophages
- Metabolism of RNA
- tRNA processing
- tRNA modification in the nucleus and cytosol
- Phenylalanine and tyrosine metabolism
- Phenylalanine metabolism
- Porphyrin metabolism
- Heme biosynthesis
- Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol
- Clearance of seratonin
- Metabolism of serotonin
- Hemostasis
- Sphingolipid metabolism
- APAP ADME
- Inositol phosphate metabolism
- Synthesis of IP2, IP, and Ins in the cytosol
- Vitamin D (calciferol) metabolism
- Vitamins
- Metabolic disorders of biological oxidation enzymes
- Defective CYP27B1 causes VDDR1A
- Nicotinate metabolism
- Fatty acids
- Metabolism of amine-derived hormones
- Thyroxine biosynthesis
- Sphingolipid de novo biosynthesis
- Lipid metabolism
- Digestion and absorption
- Digestion
- Platelet homeostasis
- Nitric oxide stimulates guanylate cyclase
- VEGFR2 mediated vascular permeability
- Signaling by Nuclear Receptors
- ESR-mediated signaling
- Extra-nuclear estrogen signaling
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET)
- Interconversion of polyamines
- PAOs oxidise polyamines to amines
- Tyrosine catabolism
- Cellular response to hypoxia
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha
- Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE)
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism
- alpha-linolenic acid (ALA) metabolism
- Linoleic acid (LA) metabolism
- Alpha-oxidation of phytanate
- Beta-oxidation of very long chain fatty acids
- Synthesis of bile acids and bile salts via 24-hydroxycholesterol
- Metabolism of steroid hormones
- Pregnenolone biosynthesis
- Glucocorticoid biosynthesis
- Mineralocorticoid biosynthesis
- Estrogen biosynthesis
- Nicotinamide salvaging
- Heme degradation
- Eicosanoids
- Miscellaneous substrates
- FMO oxidises nucleophiles
- Signaling by Retinoic Acid
- RA biosynthesis pathway
- Defective CYP11A1 causes AICSR
- Defective CYP11B1 causes AH4
- Defective CYP11B2 causes CMO-1 deficiency
- Defective CYP24A1 causes HCAI
- Defective CYP26B1 causes RHFCA
- Defective CYP27A1 causes CTX
- Defective CYP2U1 causes SPG56
- Defective FMO3 causes TMAU
BioCyc(440)
- creatinine degradation II
- diphenylamine degradation
- echinenone and zeaxanthin biosynthesis (Synechocystis)
- staphyloxanthin biosynthesis
- 4-hydroxyacetophenone degradation
- 4-aminophenol degradation
- 4-nitrophenol degradation I
- alkylnitronates degradation
- firefly bioluminescence
- superpathway of b heme biosynthesis from glycine
- patulin biosynthesis
- superpathway of N-acetylneuraminate degradation
- superpathway of hyoscyamine and scopolamine biosynthesis
- superpathway of chorismate metabolism
- aspartate superpathway
- betacyanin biosynthesis
- superpathway of betalain biosynthesis
- hyoscyamine and scopolamine biosynthesis
- p-cymene degradation
- p-cymene degradation to p-cumate
- kauralexin biosynthesis
- oryzalide A biosynthesis
- Amaryllidacea alkaloids biosynthesis
- plant sterol biosynthesis
- vitamin K degradation
- glucosinolate biosynthesis from tyrosine
- superpathway of tryptophan utilization
- superpathway of melatonin degradation
- abietic acid biosynthesis
- superpathway of diterpene resin acids biosynthesis
- brassinosteroids inactivation
- superpathway of C28 brassinosteroid biosynthesis
- brassinosteroid biosynthesis I
- heme b biosynthesis I (aerobic)
- protocatechuate degradation I (meta-cleavage pathway)
- trans-4-hydroxy-L-proline degradation II
- gossypol biosynthesis
- theophylline degradation
- cyclooctatin biosynthesis
- 2-methylpropene degradation
- heme degradation IV
- glucosinolate biosynthesis from hexahomomethionine
- ubiquinone (coenzyme Q) biosynthesis
- superpathway of sterol biosynthesis
- nicotine degradation I (pyridine pathway)
- clavulanate biosynthesis
- superpathway of L-citrulline metabolism
- L-arginine degradation VIII (arginine oxidase pathway)
- superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation
- L-arginine degradation X (arginine monooxygenase pathway)
- superpathway of L-arginine and L-ornithine degradation
- creatinine degradation I
- superpathway of purines degradation in plants
- superpathway of citrulline metabolism
- superpathway of arginine and ornithine degradation
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation
- arginine degradation X (arginine monooxygenase pathway)
- superpathway of aromatic compound degradation
- nicotine degradation II
- vanillin and vanillate degradation II
- morphine biosynthesis
- methanol oxidation to formaldehyde IV
- pterocarpan phytoalexins modification (maackiain, medicarpin, pisatin, phaseollin)
- superpathway of C1 compounds oxidation to CO2
- 12-epi-hapalindole biosynthesis
- paerucumarin biosynthesis
- superpathway of trimethylamine degradation
- trimethylamine degradation
- proline betaine degradation
- rhabduscin biosynthesis
- hapalindole H biosynthesis
- melatonin degradation I
- superpathway of dimethylsulfone degradation
- methanesulfonate degradation
- 12-epi-fischerindole biosynthesis
- heme degradation VI
- propane degradation II
- 5,5'-dehydrodivanillate degradation
- glycine betaine degradation I
- nicotine degradation IV
- nevadensin biosynthesis
- caffeine degradation IV (bacteria, via demethylation and oxidation)
- caffeine degradation III (bacteria, via demethylation)
- 3-[(E)-2-isocyanoethenyl]-1H-indole biosynthesis
- dimethyl sulfide degradation I
- dimethyl sulfide degradation II (oxidation)
- rutin degradation
- colchicine biosynthesis
- glycine betaine degradation
- linamarin biosynthesis
- superpathway of linamarin and lotaustralin biosynthesis
- matairesinol biosynthesis
- justicidin B biosynthesis
- sesamin biosynthesis
- glucosinolate biosynthesis from dihomomethionine
- aurone biosynthesis
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium)
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- isoflavonoid biosynthesis II
- aflatoxins B1 and G1 biosynthesis
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- pulcherrimin biosynthesis
- aurachin A, B, C and D biosynthesis
- decaprenoxanthin and decaprenoxanthin diglucoside biosynthesis
- pentachlorophenol degradation
- formate to dimethyl sulfoxide electron transfer
- ginsenosides biosynthesis
- 2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis
- superpathway of quinolone and alkylquinolone biosynthesis
- chitin degradation III (Serratia)
- tryptophan degradation via kynurenine
- NAD biosynthesis (from tryptophan)
- choline degradation IV
- glycine betaine biosynthesis III (plants)
- 2,6-dinitrotoluene degradation
- glyceollin biosynthesis
- superpathway of pterocarpan biosynthesis (via daidzein)
- meleagrin biosynthesis
- superpathway of roquefortine, meleagrin and neoxaline biosynthesis
- ubiquinol-10 biosynthesis
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (prokaryotic)
- ubiquinone-10 biosynthesis (eukaryotic)
- superpathway of nicotine biosynthesis
- superpathay of heme b biosynthesis from glutamate
- berberine biosynthesis
- L-tryptophan degradation I (via anthranilate)
- γ-butyrobetaine degradation
- aromatic biogenic amine degradation (bacteria)
- D-carnitine degradation I
- L-carnitine degradation II
- mixed acid fermentation
- 2-aminophenol degradation
- 2-hydroxybiphenyl degradation
- N-methyl-Δ1-pyrrolinium cation biosynthesis
- nicotine degradation II (pyrrolidine pathway)
- nicotinate degradation I
- superpathway of CMP-sialic acids biosynthesis
- superpathway of proto- and siroheme biosynthesis
- (-)-dehydrodiconiferyl alcohol degradation
- superpathway of tetracycline and oxytetracycline biosynthesis
- vindoline and vinblastine biosynthesis
- superpathway of testosterone and androsterone degradation
- nitrite-dependent anaerobic methane oxidation
- methane oxidation to methanol II
- methane oxidation to methanol I
- dibenzo-p-dioxin degradation
- lolitrem B biosynthesis
- plant sterol biosynthesis II
- phenazine-1-carboxylate biosynthesis
- 3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
- 3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
- polyamine degradation (N-acetyl pathway)
- aromatic compound degradation
- fatty acid oxidation pathway
- phenylacetate degradation
- abscisic acid biosynthesis
- diadinoxanthin and fucoxanthin biosynthesis
- superpathway of carotenoid biosynthesis in plants
- spheroidene and spheroidenone biosynthesis
- superpathway of carotenoid biosynthesis
- jasmonic acid biosynthesis
- IAA biosynthesis I
- NAD biosynthesis II (from tryptophan)
- tryptophan degradation I (via anthranilate)
- γ-hexachlorocyclohexane degradation
- 1,2,4-trichlorobenzene degradation
- superpathway of L-lysine degradation
- L-phenylalanine degradation IV (mammalian, via side chain)
- superpathway of ergotamine biosynthesis
- ergotamine biosynthesis
- jasmonoyl-L-isoleucine inactivation
- NADH to cytochrome bo oxidase electron transfer I
- NADH to cytochrome bd oxidase electron transfer I
- capsanthin and capsorubin biosynthesis
- acetone degradation III (to propane-1,2-diol)
- acetone degradation I (to methylglyoxal)
- linear furanocoumarin biosynthesis
- atrazine degradation II
- propane degradation I
- ammonia oxidation I (aerobic)
- caffeine degradation V (bacteria, via trimethylurate)
- scopoletin biosynthesis
- coumarins biosynthesis (engineered)
- superpathway of scopolin and esculin biosynthesis
- simple coumarins biosynthesis
- aflatoxins B2 and G2 biosynthesis
- 2,4-dichlorophenoxyacetate degradation
- (-)-maackiain biosynthesis
- tetrahydroxyxanthone biosynthesis (from benzoate)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- plumbagin biosynthesis
- superpathway of pterocarpan biosynthesis (via formononetin)
- superpathway of tetrahydroxyxanthone biosynthesis
- superpathway of formononetin derivative biosynthesis
- salvigenin biosynthesis
- protein S-nitrosylation and denitrosylation
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- superoxide radicals degradation
- reactive oxygen species degradation
- ethylene biosynthesis III (microbes)
- ethylene biosynthesis
- 1,8-cineole degradation
- oleandomycin biosynthesis
- menthol biosynthesis
- carotenoid cleavage
- validamycin biosynthesis
- 3,4,6-trichlorocatechol degradation
- eupatolitin 3-O-glucoside biosynthesis
- phenol degradation I (aerobic)
- diphenyl ethers degradation
- nivalenol biosynthesis
- T-2 toxin biosynthesis
- superpathway of trichothecene biosynthesis
- glucosinolate biosynthesis from pentahomomethionine
- juvenile hormone III biosynthesis I
- juvenile hormone III biosynthesis II
- brassinosteroid biosynthesis II
- spirilloxanthin and 2,2'-diketo-spirilloxanthin biosynthesis
- zerumbone biosynthesis
- styrene degradation
- lactucaxanthin biosynthesis
- cysteine degradation
- superpathway of histidine, purine and pyrimidine biosynthesis
- riboflavin and FMN and FAD biosynthesis
- polyamine degradation (oxidative deamination pathway)
- pyridoxal 5'-phosphate (vitamin B6) biosynthesis
- tryptophan degradation III (eukaryotic)
- heme biosynthesis II
- ammonia oxidation III
- ammonia oxidation IV (autotrophic ammonia oxidizers)
- nitrifier denitrification
- suberin biosynthesis
- dimethylsulfoniopropionate biosynthesis II (Spartina)
- phenylalanine degradation IV (mammalian, via side chain)
- heme biosynthesis I
- tryptophan degradation X (mammalian, via tryptamine)
- threonine degradation III (to methylglyoxal)
- superpathway of threonine metabolism
- tetracycline and oxytetracycline biosynthesis
- methanogenesis from H2 and CO2
- ubiquinone-9 biosynthesis (eukaryotic)
- o-diquinones biosynthesis
- superpathway of ergosterol biosynthesis I
- ergosterol biosynthesis I
- superpathway of ergosterol biosynthesis
- ergosterol biosynthesis
- superpathway of cholesterol degradation II (cholesterol dehydrogenase)
- superpathway of cholesterol degradation I (cholesterol oxidase)
- cholesterol degradation to androstenedione I (cholesterol oxidase)
- cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
- limonene degradation II (L-limonene)
- 2,4,6-trichlorophenol degradation
- 5-deoxystrigol biosynthesis
- arabidopyrone biosynthesis
- L-lysine degradation IV
- stephacidin A biosynthesis
- Spodoptera littoralis pheromone biosynthesis
- prunasin and amygdalin biosynthesis
- phenylpropanoid biosynthesis
- diploterol and cycloartenol biosynthesis
- secologanin and strictosidine biosynthesis
- 2-nitrobenzoate degradation I
- procollagen hydroxylation and glycosylation
- rosmarinic acid biosynthesis II
- superpathway of heme b biosynthesis from uroporphyrinogen-III
- sanguinarine and macarpine biosynthesis
- suberin monomers biosynthesis
- vitamin B6 degradation
- crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
- (4S)-carvone biosynthesis
- superpathway of rosmarinic acid biosynthesis
- L-lysine degradation V
- grixazone biosynthesis
- L-tyrosine degradation II
- 3,3'-disulfanediyldipropannoate degradation
- gliotoxin biosynthesis
- L-carnitine degradation III
- methylgallate degradation
- 4-hydroxymandelate degradation
- 4-amino-3-hydroxybenzoate degradation
- orcinol degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- 4-hydroxyphenylacetate degradation
- purine nucleobases degradation I (anaerobic)
- purine nucleobases degradation II (anaerobic)
- superpathway of aromatic compound degradation via 3-oxoadipate
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation
- nitrilotriacetate degradation
- plaunotol biosynthesis
- novobiocin biosynthesis
- superpathway of penicillin, cephalosporin and cephamycin biosynthesis
- L-valine biosynthesis
- deacetylcephalosporin C biosynthesis
- gentisate degradation II
- phosphinothricin tripeptide biosynthesis
- isopenicillin N biosynthesis
- oxalate degradation IV
- L-threonine degradation III (to methylglyoxal)
- meta cleavage pathway of aromatic compounds
- 2-nitrophenol degradation
- artemisinin biosynthesis
- 5-nitroanthranilate degradation
- flaviolin dimer and mompain biosynthesis
- catechol degradation II (meta-cleavage pathway)
- catechol degradation I (meta-cleavage pathway)
- aromatic compounds degradation via β-ketoadipate
- catechol degradation III (ortho-cleavage pathway)
- catechol degradation to β-ketoadipate
- androstenedione degradation
- gallate degradation II
- mandelate degradation to acetyl-CoA
- ubiquinol-8 biosynthesis (prokaryotic)
- L-ascorbate biosynthesis IV
- betalamic acid biosynthesis
- UDP-α-D-glucuronate biosynthesis (from myo-inositol)
- superpathway of ubiquinol-8 biosynthesis (prokaryotic)
- superpathway of L-threonine metabolism
- sphingolipid biosynthesis (plants)
- L-carnitine biosynthesis
- 3-chlorocatechol degradation I (ortho)
- 3-chlorocatechol degradation II (ortho)
- (S)-reticuline biosynthesis I
- superpathway of L-methionine salvage and degradation
- manganese oxidation I
- manganese oxidation II
- L-isoleucine biosynthesis II
- limonene degradation III (to perillate)
- zymosterol biosynthesis
- cholesterol biosynthesis I
- cholesterol biosynthesis III (via desmosterol)
- superpathway of cholesterol biosynthesis
- cis-zeatin biosynthesis
- fenchone biosynthesis
- fenchol biosynthesis I
- isoprene degradation
- fatty acid β-oxidation II (core pathway)
- oxidative ethanol degradation III (microsomal)
- superpathway of glyoxylate cycle
- (+)-pisatin biosynthesis
- pyrrolnitrin biosynthesis
- nitrate reduction III (dissimilatory)
- succinate to cytochrome bo oxidase electron transfer
- NADH to cytochrome bo oxidase electron transfer II
- D-lactate to cytochrome bo oxidase electron transfer
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer
- proline to cytochrome bo oxidase electron transfer
- pyruvate to cytochrome bo oxidase electron transfer
- holomycin biosynthesis
- pyruvate fermentation to ethanol I
- versicolorin B biosynthesis
- isoflavonoid biosynthesis I
- 2,2'-dihydroxybiphenyl degradation
- 2,4-xylenol degradation to protocatechuate
- dhurrin biosynthesis
- taxiphyllin biosynthesis
- sitosterol degradation to androstenedione
- fumitremorgin C biosynthesis
- superpathway of fumitremorgin biosynthesis
- sphingolipid metabolism
- phytocassanes biosynthesis, shared reactions
- polyacyltrehalose biosynthesis
- melatonin degradation II
- resorcinol degradation
- γ-resorcylate degradation II
- γ-resorcylate degradation I
- 4-nitrophenol degradation II
- 2,4,5-trichlorophenoxyacetate degradation
- citrulline-nitric oxide cycle
- nitric oxide biosynthesis
- NADH to cytochrome bd oxidase electron transfer II
- succinate to cytochrome bd oxidase electron transfer
- nitric oxide biosynthesis II (mammals)
- nitric oxide biosynthesis I (plants)
- nitric oxide biosynthesis III (bacteria)
- L-citrulline-nitric oxide cycle
- nitric oxide biosynthesis (plants)
- fumiquinazoline D biosynthesis
- coelimycin P1 biosynthesis
- benzene degradation
- histamine degradation
- fluorene degradation I
- salicortin biosynthesis
- superpathway of benzoxazinoid glucosides biosynthesis
- DIBOA-glucoside biosynthesis
- indole-3-acetate degradation
- nostoxanthin biosynthesis
- 4'-methoxyviridicatin biosynthesis
- stipitatate biosynthesis
- calonectrin biosynthesis
- UDP-D-glucuronate biosynthesis (from myo-inositol)
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
- bisphenol A degradation
- rubber degradation I
- γ-coniciene and coniine biosynthesis
- umbelliferone biosynthesis
- 7-dehydroporiferasterol biosynthesis
- butanol and isobutanol biosynthesis (engineered)
- L-methionine salvage cycle I (bacteria and plants)
- L-methionine salvage cycle II (plants)
- superpathway of bitter acids biosynthesis
- colupulone and cohumulone biosynthesis
- taxol biosynthesis
- tetracenomycin C biosynthesis
- rebeccamycin biosynthesis
- L-ascorbate degradation III
- superpathway of erythromycin biosynthesis
- superpathway of megalomicin A biosynthesis
- erythromycin D biosynthesis
- superpathway of erythromycin biosynthesis (without sugar biosynthesis)
- phaseollin biosynthesis
- marneral biosynthesis
- neurosporaxanthin biosynthesis
- bixin biosynthesis
- flexixanthin biosynthesis
- myxol-2' fucoside biosynthesis
- crocetin biosynthesis
- camptothecin biosynthesis
- superpathway of seleno-compound metabolism
- seleno-amino acid detoxification and volatilization II
- paxilline and diprenylpaxilline biosynthesis
- prodigiosin biosynthesis
- carbon disulfide oxidation II (aerobic)
- carbon disulfide oxidation III (metazoa)
- polybrominated dihydroxylated diphenyl ethers biosynthesis
- spongiadioxin C biosynthesis
- ajmaline and sarpagine biosynthesis
- astaxanthin biosynthesis (bacteria, fungi, algae)
- leucopelargonidin and leucocyanidin biosynthesis
- anthocyanin biosynthesis (pelargonidin 3-O-glucoside)
- glucosinolate biosynthesis from tetrahomomethionine
- androgen biosynthesis
- gibberellin biosynthesis IV (Gibberella fujikuroi)
- GA12 biosynthesis
- superpathway of gibberellin biosynthesis
- superpathway of gibberellin GA12 biosynthesis
- squid bioluminescence
- biopterin metabolism
- ascorbate biosynthesis
- D-carnitine degradation II
PlantCyc(157)
- betacyanin biosynthesis
- superpathway of hyoscyamine and scopolamine biosynthesis
- hyoscyamine and scopolamine biosynthesis
- superpathway of betalain biosynthesis
- wighteone and luteone biosynthesis
- superpathway of isoflavonoids (via naringenin)
- oryzalide A biosynthesis
- kauralexin biosynthesis
- glucosinolate biosynthesis from tyrosine
- abietic acid biosynthesis
- superpathway of diterpene resin acids biosynthesis
- brassinolide biosynthesis II
- brassinolide biosynthesis I
- brassinosteroid biosynthesis I
- brassinosteroids inactivation
- superpathway of C28 brassinosteroid biosynthesis
- gossypol biosynthesis
- orientin and isoorientin biosynthesis I
- leucodelphinidin biosynthesis
- luteolinidin 5-O-glucoside biosynthesis
- luteolin biosynthesis
- flavonoid biosynthesis (in equisetum)
- leucopelargonidin and leucocyanidin biosynthesis
- eriodictyol C-glucosylation
- L-arginine degradation X (arginine monooxygenase pathway)
- superpathway of L-citrulline metabolism
- superpathway of purines degradation in plants
- Organic Nitrogen Assimilation
- superpathway of hyoscyamine (atropine) and scopolamine biosynthesis
- nevadensin biosynthesis
- colchicine biosynthesis
- morphine biosynthesis
- superpathway of linamarin and lotaustralin biosynthesis
- linamarin biosynthesis
- superpathway of pterocarpan biosynthesis (via daidzein)
- glyceollin biosynthesis
- ureide biosynthesis
- aurone biosynthesis
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium)
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- ajmaline and sarpagine biosynthesis
- phytosterol biosynthesis (plants)
- ginsenosides biosynthesis
- superpathway of gibberellin biosynthesis
- gibberellin biosynthesis II (early C-3 hydroxylation)
- urate conversion to allantoin I
- glycine betaine biosynthesis III (plants)
- pinobanksin biosynthesis
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (late decarboxylation)
- superpathway of proto- and siroheme biosynthesis
- N-methyl-Δ1-pyrrolinium cation biosynthesis
- superpathway of nicotine biosynthesis
- berberine biosynthesis
- superpathway of Allium flavor precursors
- alliin metabolism
- 3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
- superpathway of carotenoid biosynthesis in plants
- vindoline, vindorosine and vinblastine biosynthesis
- linear furanocoumarin biosynthesis
- simple coumarins biosynthesis
- simplecoumarins biosynthesis
- scopoletin biosynthesis
- coumarins biosynthesis (engineered)
- superpathway of scopolin and esculin biosynthesis
- gibberellin inactivation I (2β-hydroxylation)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- superpathway of tetrahydroxyxanthone biosynthesis
- (-)-maackiain biosynthesis
- superpathway of pterocarpan biosynthesis (via formononetin)
- plumbagin biosynthesis
- tetrahydroxyxanthone biosynthesis (from benzoate)
- superpathway of formononetin derivative biosynthesis
- salvigenin biosynthesis
- reactive oxygen species degradation
- superoxide radicals degradation
- tropane alkaloids biosynthesis
- 4-hydroxyindole-3-carbonyl nitrile biosynthesis
- superpathway of flavones and derivatives biosynthesis
- menthol biosynthesis
- carotenoid cleavage
- eupatolitin 3-O-glucoside biosynthesis
- glucosinolate biosynthesis from pentahomomethionine
- juvenile hormone III biosynthesis I
- L-lysine degradation I
- superpathway of glyoxylate cycle and fatty acid degradation
- superpathway of photosynthetic hydrogen production
- photosynthesis light reactions
- brassinosteroid biosynthesis II
- zerumbone biosynthesis
- lactucaxanthin biosynthesis
- sulfite oxidation IV (sulfite oxidase)
- sulfide oxidation III (persulfide dioxygenase)
- sulfite oxidation IV
- o-diquinones biosynthesis
- 5-deoxystrigol biosynthesis
- matairesinol biosynthesis
- prunasin and amygdalin biosynthesis
- flavonol biosynthesis
- syringetin biosynthesis
- phenylpropanoid biosynthesis
- oxalate degradation IV
- UDP-α-D-glucuronate biosynthesis (from myo-inositol)
- plaunotol biosynthesis
- (S)-reticuline biosynthesis I
- (4S)-carvone biosynthesis
- suberin monomers biosynthesis
- palmatine biosynthesis
- rosmarinic acid biosynthesis II
- superpathway of rosmarinic acid biosynthesis
- sphingolipid biosynthesis (plants)
- sanguinarine and macarpine biosynthesis
- artemisinin and arteannuin B biosynthesis
- betalamic acid biosynthesis
- jasmonoyl-L-isoleucine inactivation
- perillyl aldehyde biosynthesis
- cholesterol biosynthesis I
- zymosterol biosynthesis
- superpathway of seleno-compound metabolism
- fenchol biosynthesis I
- fenchone biosynthesis
- chrysin biosynthesis
- pinocembrin C-glucosylation
- taxiphyllin biosynthesis
- dhurrin biosynthesis
- phytocassanes biosynthesis, shared reactions
- saponin biosynthesis III
- superpathway of hydrolyzable tannin biosynthesis
- DIBOA-glucoside biosynthesis
- superpathway of benzoxazinoid glucosides biosynthesis
- (-)-glycinol biosynthesis
- jasmonic acid biosynthesis
- nostoxanthin biosynthesis
- Amaryllidacea alkaloids biosynthesis
- L-ascorbate biosynthesis VI (plants, myo-inositol pathway)
- cholesterol biosynthesis (plants)
- cholesterol biosynthesis (plants, early side-chain reductase)
- abscisic acid biosynthesis
- umbelliferone biosynthesis
- L-methionine salvage cycle II (plants)
- L-methionine salvage cycle I (bacteria and plants)
- taxol biosynthesis
- L-ascorbate degradation III
- isoflavonoid biosynthesis I
- marneral biosynthesis
- bixin biosynthesis
- crocetin biosynthesis
- camptothecin biosynthesis
- seleno-amino acid detoxification and volatilization II
- justicidin B biosynthesis
- proanthocyanidins biosynthesis from flavanols
- astaxanthin biosynthesis (bacteria, fungi, algae)
- glucosinolate biosynthesis from tetrahomomethionine
- gibberellin A12 biosynthesis
- GA12 biosynthesis
- superpathway of gibberellin GA12 biosynthesis
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
3 个相关的物种来源信息
- 455045 - Abelmoschus esculentus: 10.1055/S-0028-1097710
- 1120459 - Acacia kempeana: 10.1016/0031-9422(88)83112-1
- 408194 - Euonymus hamiltonianus: 10.1016/0305-1978(86)90021-9
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Vajiheh Safavi-Rizi, Tina Uhlig, Felix Lutter, Hamid Safavi-Rizi, Franziska Krajinski-Barth, Severin Sasso. Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of Arabidopsis thaliana.
Plant signaling & behavior.
2024 Dec; 19(1):2300228. doi:
10.1080/15592324.2023.2300228
. [PMID: 38165809] - Xuelian He, Lihong Wang, Jiejie Tao, Lichun Han, Hongwei Wang, Xiaoyan Zhao, Jinhua Zuo, Yanyan Zheng. High‑oxygen-modified atmospheric packaging delays flavor and quality deterioration in fresh-cut broccoli.
Food chemistry.
2024 Aug; 450(?):139517. doi:
10.1016/j.foodchem.2024.139517
. [PMID: 38703670] - Zhigang Ke, Zhe Ding, Yadan Zheng, Peng Yang, Shulai Liu, Xuxia Zhou, Yuting Ding. Combined effect of cold plasma-activated oxygen (CPAO) and microwave on microbial decontamination and quality of milkshake powder.
Food chemistry.
2024 Aug; 450(?):139276. doi:
10.1016/j.foodchem.2024.139276
. [PMID: 38626711] - Filip Gregar, Jakub Grepl, David Milde, Tomáš Pluháček. Direct elemental analysis of plant oils by inductively coupled plasma mass spectrometry: Simple sample dilution combined with oxygen introduction into the plasma.
Food chemistry.
2024 Jul; 447(?):139010. doi:
10.1016/j.foodchem.2024.139010
. [PMID: 38513487] - Geunmuk Im, Dongsu Choi. Molecular and physiological characterization of AIP1, encoding the acetolactate synthase regulatory subunit in rice.
Biochemical and biophysical research communications.
2024 Jul; 718(?):150087. doi:
10.1016/j.bbrc.2024.150087
. [PMID: 38735139] - Govindjee Govindjee, Bas Amesz, Győző Garab, Alexandrina Stirbet. Remembering Jan Amesz (1934-2001): a great gentleman, a major discoverer, and an internationally renowned biophysicist of both oxygenic and anoxygenic photosynthesisa.
Photosynthesis research.
2024 Jun; 160(2-3):125-142. doi:
10.1007/s11120-024-01102-9
. [PMID: 38687462] - Xuantong Chen, Janak Raj Khatiwada, Chonlong Chio, Sarita Shrestha, Aristide Laurel Mokale Kognou, Lu Fan, Wensheng Qin. Low-cost cultivation of Nannochloropsis oceanica in newly designed photobioreactors and its productivity trends in semi-continuous cultivation under inland outdoor conditions.
Bioresource technology.
2024 Jun; 402(?):130829. doi:
10.1016/j.biortech.2024.130829
. [PMID: 38734261] - Yuzhen Fan, Guillaume Tcherkez, Andrew P Scafaro, Nicolas L Taylor, Robert T Furbank, Susanne von Caemmerer, Owen K Atkin. Variation in leaf dark respiration among C3 and C4 grasses is associated with use of different substrates.
Plant physiology.
2024 May; 195(2):1475-1490. doi:
10.1093/plphys/kiae064
. [PMID: 38324704] - Antonia Ahme, Anika Happe, Maren Striebel, Marco J Cabrerizo, Markus Olsson, Jakob Giesler, Ruben Schulte-Hillen, Alexander Sentimenti, Nancy Kühne, Uwe John. Warming increases the compositional and functional variability of a temperate protist community.
The Science of the total environment.
2024 May; 926(?):171971. doi:
10.1016/j.scitotenv.2024.171971
. [PMID: 38547992] - Ole Pedersen, Juan de la Cruz Jiménez. Function and induction of the root barrier to radial O2 loss. A commentary on 'Exogenous abscisic acid induces the formation of a suberized barrier to radial oxygen loss in adventitious roots of barley (Hordeum vulgare)'.
Annals of botany.
2024 May; 133(7):i-iv. doi:
10.1093/aob/mcae036
. [PMID: 38547328] - Katsuhiro Shiono, Haruka Matsuura. Exogenous abscisic acid induces the formation of a suberized barrier to radial oxygen loss in adventitious roots of barley (Hordeum vulgare).
Annals of botany.
2024 May; 133(7):931-940. doi:
10.1093/aob/mcae010
. [PMID: 38448365] - Xingping Dai, Yanyi Chen, Mingyue Xia, Min Yi, Xia Xu, Dongsheng Wang, Edwin M Nemoto. Placement of a Catheter into the Transverse Sinus in Monitoring Intracranial Lesions: A Technical Note.
Journal of neurological surgery. Part A, Central European neurosurgery.
2024 May; 85(3):302-306. doi:
10.1055/s-0042-1759826
. [PMID: 36796416] - Yonghui Pan, Fang Li, Wen Lin, Youping Zhou, Xin Song. Quantifying isotope parameters associated with carbonyl-water oxygen exchange during sucrose translocation in tree phloem.
The New phytologist.
2024 May; 242(3):975-987. doi:
10.1111/nph.19654
. [PMID: 38439696] - Carsten Riechelmann, Mahmoud M Habashy, Eldon R Rene, Moustafa S Moussa, Hadeel Hosney. Assessment of hybrid fixed and moving bed biofilm applications for wastewater treatment capacity increase - In situ tests in El-Gouna WWTP, Egypt.
Chemosphere.
2024 May; 355(?):139783. doi:
10.1016/j.chemosphere.2023.139783
. [PMID: 37574084] - Guanwei Peng, Yanyu Xie, Hui Chen, Jin Zou, Li Li, Chuanfa Luo, Limin Lu, Guojiang Mao. Frustrated Lewis pairs created by Ce-doped Bi2MoO6: A universal strategy to promote efficient utilization of H2O2 for Fenton-like photodegradation.
Chemosphere.
2024 May; 356(?):141952. doi:
10.1016/j.chemosphere.2024.141952
. [PMID: 38599329] - Juan de la Cruz Jiménez, William Armstrong, Timothy D Colmer, Ole Pedersen. Overcoming constraints to measuring O2 diffusivity and consumption of intact roots.
Plant physiology.
2024 Apr; 195(1):283-286. doi:
10.1093/plphys/kiae046
. [PMID: 38366585] - Zsófia Bognár, Maria Mosshammer, Kasper E Brodersen, Elena Bollati, Róbert E Gyurcsányi, Michael Kühl. Multiparameter Sensing of Oxygen and pH at Biological Interfaces via Hyperspectral Imaging of Luminescent Sensor Nanoparticles.
ACS sensors.
2024 Apr; 9(4):1763-1774. doi:
10.1021/acssensors.3c01941
. [PMID: 38607997] - Jiankun Cui, Xin Wang, Lingling Dong, Qinwen Wang. Curcumin reduces myocardial ischemia-reperfusion injury, by increasing endogenous H2S levels and further modulating m6A.
Molecular biology reports.
2024 Apr; 51(1):558. doi:
10.1007/s11033-024-09478-6
. [PMID: 38643323] - Richard Simon Machado, Khiany Mathias, Larissa Joaquim, Rafaella Willig de Quadros, Gislaine Tezza Rezin, Fabricia Petronilho. Hyperoxia and brain: the link between necessity and injury from a molecular perspective.
Neurotoxicity research.
2024 Apr; 42(2):25. doi:
10.1007/s12640-024-00702-6
. [PMID: 38619632] - Hamid Reza Roosta. The responses of pepper plants to nitrogen form and dissolved oxygen concentration of nutrient solution in hydroponics.
BMC plant biology.
2024 Apr; 24(1):281. doi:
10.1186/s12870-024-04943-7
. [PMID: 38614965] - Hui-Xin Meng, Yu-Ze Wang, Xin-Li Yao, Xin-Ran Xie, Shuqi Dong, Xiangyang Yuan, Xiaorui Li, Lulu Gao, Guanghui Yang, Xiaoqian Chu, Jia-Gang Wang. Reactive oxygen species (ROS) modulate nitrogen signaling using temporal transcriptome analysis in foxtail millet.
Plant molecular biology.
2024 Apr; 114(3):37. doi:
10.1007/s11103-024-01435-y
. [PMID: 38602592] - Viktoria Pai, Andrea Bileck, Nikolaus Hommer, Patrick Janku, Theresa Lindner, Victoria Kauer, Benedikt Rumpf, Helmuth Haslacher, Gerhard Hagn, Samuel M Meier-Menches, Leopold Schmetterer, Doreen Schmidl, Christopher Gerner, Gerhard Garhöfer. Impaired retinal oxygen metabolism and perfusion are accompanied by plasma protein and lipid alterations in recovered COVID-19 patients.
Scientific reports.
2024 04; 14(1):8395. doi:
10.1038/s41598-024-56834-4
. [PMID: 38600099] - Taro Yamanashi, Shouki Takeshi, Shota Sasaki, Keisuke Takashima, Toshiro Kaneko, Yasuhiro Ishimaru, Nobuyuki Uozumi. Utilizing plasma-generated N2O5 gas from atmospheric air as a novel gaseous nitrogen source for plants.
Plant molecular biology.
2024 Apr; 114(2):35. doi:
10.1007/s11103-024-01438-9
. [PMID: 38587705] - Thiago C Genaro-Mattos, Zeljka Korade, Namood-E Sahar, Jose Pedro Friedmann Angeli, Károly Mirnics, Eric S Peeples. Enhancing 7-dehydrocholesterol suppresses brain ferroptosis and tissue injury after neonatal hypoxia-ischemia.
Scientific reports.
2024 04; 14(1):7924. doi:
10.1038/s41598-024-58579-6
. [PMID: 38575644] - Y U Zhengqiu, Y U Liuda, Chen Ye, L I Mingjing, Cai Wanru. Effectiveness and safety of Qidong Huoxue decoction in treatment of acute lung injury and acute respiratory distress syndrome: a randomized, controlled trial.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2024 Apr; 44(2):381-387. doi:
10.19852/j.cnki.jtcm.2024.02.003
. [PMID: 38504544] - Wei Wei, Yufeng Zhang, Langen Li, Jia Yang. SOX9 depletion attenuates retinal ganglion cell ferroptosis through blocking ERK/p38 signaling.
Tissue & cell.
2024 Apr; 87(?):102315. doi:
10.1016/j.tice.2024.102315
. [PMID: 38335885] - ". Self-Propelled nanojets an interfacial Schottky junctions modulated oxygen vacancies enriched for enhanced photo-Fenton degradation of organic contaminant: Improving H2O2 generation, Fe3+/Fe2+ cycle and enhancing plant metabolism (Chemosphere, Volume 314, February 2023, 137516).
Chemosphere.
2024 Apr; 353(?):141623. doi:
10.1016/j.chemosphere.2024.141623
. [PMID: 38528416] - Yadong Yu, Lingxia Lu, Jie Xu, Laiyou Wang, Shuxian Guo. Microbial lipid synthesis based on visible light-driven oxygen doped-graphitic carbon nitride /oleaginous yeast hybrid system.
Bioresource technology.
2024 Apr; 397(?):130476. doi:
10.1016/j.biortech.2024.130476
. [PMID: 38387842] - Benedikt Fuchs, Sinan Mert, Constanze Kuhlmann, Sara Taha, Alexandra Birt, Jörg Nickelsen, Thilo Ludwig Schenck, Riccardo Enzo Giunta, Paul Severin Wiggenhauser, Nicholas Moellhoff. Biocompatibility of Synechococcus sp. PCC 7002 with Human Dermal Cells In Vitro.
International journal of molecular sciences.
2024 Mar; 25(7):. doi:
10.3390/ijms25073922
. [PMID: 38612734] - Eralp Bulutlar, Ali Yilmaz, Gizem Berfin Uluutku Bulutlar, Yavuz Aslan, Hale Nur Bozdağ, Zafer Küçükodaci. Effect of hyperbaric oxygen treatment on ischaemia-reperfusion injury in rats detorsioned after experimental ovarian torsion.
Diving and hyperbaric medicine.
2024 Mar; 54(1):16-22. doi:
10.28920/dhm54.1.16-22
. [PMID: 38507906] - Jelena Nesovic Ostojic, Sanjin Kovacevic, Milan Ivanov, Predrag Brkic, Maja Zivotic, Nevena Mihailovic-Stanojevic, Danijela Karanovic, Una Jovana Vajic, Rada Jeremic, Djurdjica Jovovic, Zoran Miloradovic. Hyperbaric Oxygen Reduces Oxidative Stress Impairment and DNA Damage and Simultaneously Increases HIF-1α in Ischemia-Reperfusion Acute Kidney Injury.
International journal of molecular sciences.
2024 Mar; 25(7):. doi:
10.3390/ijms25073870
. [PMID: 38612680] - Tomasz Maciag, Edmund Kozieł, Katarzyna Otulak-Kozieł, Sylwia Jafra, Robert Czajkowski. Looking for Resistance to Soft Rot Disease of Potatoes Facing Environmental Hypoxia.
International journal of molecular sciences.
2024 Mar; 25(7):. doi:
10.3390/ijms25073757
. [PMID: 38612570] - Katayoun Kazemzadeh Ferizhendi, Philippe Simon, Ludovic Pelosi, Emmanuel Séchet, Roache Arulanandam, Mahmoud Hajj Chehade, Martial Rey, Deniz Onal, Laura Flandrin, Rouba Chreim, Bruno Faivre, Samuel Chau-Duy-Tam Vo, Rodrigo Arias-Cartin, Frédéric Barras, Marc Fontecave, Emmanuelle Bouveret, Murielle Lombard, Fabien Pierrel. An organic O donor for biological hydroxylation reactions.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Mar; 121(13):e2321242121. doi:
10.1073/pnas.2321242121
. [PMID: 38507448] - Rehana Kausar, Takumi Nishiuchi, Setsuko Komatsu. Proteomic and molecular analyses to understand the promotive effect of safranal on soybean growth under salt stress.
Journal of proteomics.
2024 Mar; 294(?):105072. doi:
10.1016/j.jprot.2024.105072
. [PMID: 38218428] - Yuanxiao Jin, Jiang Yu, Jie Yu, Yuerong Wu, Siwei Deng, Yinying Jiang, Zhi Huang, Donghai Wu, Weiwei Zhu. Ce/N @BC prepared based on plant metallurgy strategy: A novel activator of peroxymonosulfate for the degradation of sulfamethoxazole.
Environmental pollution (Barking, Essex : 1987).
2024 Mar; 345(?):123558. doi:
10.1016/j.envpol.2024.123558
. [PMID: 38355088] - Xiuping Xu, Shuang Liu, Jin Ye, Qiang Wang, Mengting Liu, Yunlong Li, Hang Shangguan, Kefen Zhang, Yujie Fu, Jiating Xu. Optimized silicate nanozymes with atomically incorporated iron and manganese for intratumoral coordination-enhanced once-for-all catalytic therapy.
Journal of materials chemistry. B.
2024 Mar; 12(10):2594-2609. doi:
10.1039/d3tb02840b
. [PMID: 38372142] - Akansha Jain, Bo Ram Kim, Wenjie Yu, Thomas O Moninger, Philip H Karp, Brett A Wagner, Michael J Welsh. Mitochondrial uncoupling proteins protect human airway epithelial ciliated cells from oxidative damage.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Mar; 121(10):e2318771121. doi:
10.1073/pnas.2318771121
. [PMID: 38416686] - Dohee Koo, Hong Gil Lee, Soon Hyung Bae, Kyounghee Lee, Pil Joon Seo. Callus proliferation-induced hypoxic microenvironment decreases shoot regeneration competence in Arabidopsis.
Molecular plant.
2024 03; 17(3):395-408. doi:
10.1016/j.molp.2024.01.009
. [PMID: 38297841] - Paolo M Triozzi, Luca Brunello, Giacomo Novi, Gianmarco Ferri, Francesco Cardarelli, Elena Loreti, Mariano Perales, Pierdomenico Perata. Spatiotemporal oxygen dynamics in young leaves reveal cyclic hypoxia in plants.
Molecular plant.
2024 03; 17(3):377-394. doi:
10.1016/j.molp.2024.01.006
. [PMID: 38243593] - John E Cronan. Unsaturated fatty acid synthesis in bacteria: Mechanisms and regulation of canonical and remarkably noncanonical pathways.
Biochimie.
2024 Mar; 218(?):137-151. doi:
10.1016/j.biochi.2023.09.007
. [PMID: 37683993] - Meiling Yang, Guozhang Chang, Weiwei Cui, Peng Ni, Qiujie Yi, Laishun Yang, Cuiping Wang. In situ hydrodeoxygenation of heavy bio-oil using a Ce/Fe-based oxygen carrier in methanol-zero valent aluminum media.
Chemosphere.
2024 Mar; 352(?):141338. doi:
10.1016/j.chemosphere.2024.141338
. [PMID: 38331260] - Luca Brunello, Ester Polverini, Giulia Lauria, Marco Landi, Lucia Guidi, Elena Loreti, Pierdomenico Perata. Root photosynthesis prevents hypoxia in the epiphytic orchid Phalaenopsis.
Functional plant biology : FPB.
2024 03; 51(?):. doi:
10.1071/fp23227
. [PMID: 38442921] - Charles R Hammond, Frank J Loge. Wastewater treatment with microalgal-bacterial aggregates: The tradeoff between energy savings and footprint requirements.
Bioresource technology.
2024 Mar; 395(?):130270. doi:
10.1016/j.biortech.2023.130270
. [PMID: 38158093] - Xie Li, Yuzhao Yang, Dongdong Tang, Yuan Liu, Qi Wang. Electrostatic self-assembly endows cellulose paper with durable efficient flame retardancy and mechanical performance improvement.
International journal of biological macromolecules.
2024 Mar; 260(Pt 1):129292. doi:
10.1016/j.ijbiomac.2024.129292
. [PMID: 38199554] - Júlio de Andrade Oliveira Marques, José Luiz Francisco Alves, Gislane Pinho de Oliveira, Dulce Maria de Araújo Melo, Graco Aurelio Camara de Melo Viana, Renata Martins Braga. Catalytic flash pyrolysis of Scenedesmus sp. post-extraction residue using low-cost HZSM-5 catalyst with the perspective to produce renewable aromatic hydrocarbons.
Environmental science and pollution research international.
2024 Mar; 31(12):18785-18796. doi:
10.1007/s11356-024-32336-8
. [PMID: 38349495] - Antoni Mateu Vera-Vives, Tim Michelberger, Tomas Morosinotto, Giorgio Perin. Assessment of photosynthetic activity in dense microalgae cultures using oxygen production.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108510. doi:
10.1016/j.plaphy.2024.108510
. [PMID: 38471244] - Jagannath Swain, Vinay Shukla, Francesco Licausi, Kapuganti Jagadis Gupta. Unearthing the secrets of ERFVIIs: new insights into hypoxia signaling.
Trends in plant science.
2024 03; 29(3):275-277. doi:
10.1016/j.tplants.2023.10.015
. [PMID: 37951810] - Yaxin Zhu, Dong Yang, Jieyu Liu, Chenguo Zheng, Na Li, Dejun Yang, Xingxing Zhang, Chun Jin. Doping proanthocyanidins into gel/zirconium hybrid hydrogel to reshape the microenvironment of diabetic wounds for healing acceleration.
International journal of biological macromolecules.
2024 Mar; 260(Pt 2):129353. doi:
10.1016/j.ijbiomac.2024.129353
. [PMID: 38242386] - Qinyang Zhou, Ji Ma, Qiuyan Liu, Changyue Wu, Ziwei Yang, Tingting Yang, Qimeng Chen, Yunyun Yue, Jing Shang. Traditional Chinese Medicine formula, Sanwujiao granule, attenuates ischemic stroke by promoting angiogenesis through early administration.
Journal of ethnopharmacology.
2024 Mar; 321(?):117418. doi:
10.1016/j.jep.2023.117418
. [PMID: 37979814] - Alice Diot, Georg Groth, Simon Blanchet, Christian Chervin. Responses of animals and plants to physiological doses of ethanol: a molecular messenger of hypoxia?.
The FEBS journal.
2024 Mar; 291(6):1102-1110. doi:
10.1111/febs.17056
. [PMID: 38232057] - Helen J Knowles, Alexandra Vasilyeva, Mihir Sheth, Oliver Pattinson, Jonathan May, Robin M H Rumney, Philippa A Hulley, Duncan B Richards, Dario Carugo, Nicholas D Evans, Eleanor Stride. Use of oxygen-loaded nanobubbles to improve tissue oxygenation: Bone-relevant mechanisms of action and effects on osteoclast differentiation.
Biomaterials.
2024 Mar; 305(?):122448. doi:
10.1016/j.biomaterials.2023.122448
. [PMID: 38218121] - Takaki Yamauchi, Kurumi Sumi, Hiromitsu Morishita, Yasuyuki Nomura. Root anatomical plasticity contributes to the different adaptive responses of two Phragmites species to water-deficit and low-oxygen conditions.
Functional plant biology : FPB.
2024 03; 51(?):. doi:
10.1071/fp23231
. [PMID: 38479793] - R Abi Hanna, K E Borne, Y Andrès, C Gerente. Effect of floating treatment wetland coverage ratio and operating parameters on nitrogen removal: toward design optimization.
Water science and technology : a journal of the International Association on Water Pollution Research.
2024 Mar; 89(6):1466-1481. doi:
10.2166/wst.2024.064
. [PMID: 38557712] - Kurt V Fagerstedt, Chiara Pucciariello, Ole Pedersen, Pierdomenico Perata. Recent progress in understanding the cellular and genetic basis of plant responses to low oxygen holds promise for developing flood-resilient crops.
Journal of experimental botany.
2024 Feb; 75(5):1217-1233. doi:
10.1093/jxb/erad457
. [PMID: 37991267] - Érika M L Sousa, Marta Otero, María V Gil, Paula Ferreira, Valdemar I Esteves, Vânia Calisto. Evaluation of different functionalization methodologies for improving the removal of three target antibiotics from wastewater by a brewery waste activated carbon.
The Science of the total environment.
2024 Feb; 912(?):169437. doi:
10.1016/j.scitotenv.2023.169437
. [PMID: 38128671] - Rafael López-Sánchez, Eria A Rebollar, Rosa María Gutiérrez-Ríos, Alejandro Garciarrubio, Katy Juarez, Lorenzo Segovia. Metagenomic analysis of carbohydrate-active enzymes and their contribution to marine sediment biodiversity.
World journal of microbiology & biotechnology.
2024 Feb; 40(3):95. doi:
10.1007/s11274-024-03884-5
. [PMID: 38349445] - Muhammad Abdul Majid, Hafeez Ullah, Ali Mohammad Alshehri, Rukhsana Tabassum, Abdul Aleem, Asad Ur Rehman Khan, Zahida Batool, Aalia Nazir, Ismat Bibi. Development of novel polymer haemoglobin based particles as an antioxidant, antibacterial and an oxygen carrier agents.
Scientific reports.
2024 02; 14(1):3031. doi:
10.1038/s41598-024-53548-5
. [PMID: 38321082] - Imants G Priede, Alan J Jamieson, Todd Bond, Hiroshi Kitazato. In situ observation of a macrourid fish at 7259 m in the Japan Trench: swimbladder buoyancy at extreme depth.
The Journal of experimental biology.
2024 Feb; 227(3):. doi:
10.1242/jeb.246522
. [PMID: 38230425] - Angelina Jordine, Julia Retzlaff, Lina Gens, Brigitta Ehrt, Lisa Fürtauer, Joost T van Dongen. Introducing the halophyte Salicornia europaea to investigate combined impact of salt and tidal submergence conditions.
Functional plant biology : FPB.
2024 02; 51(?):. doi:
10.1071/fp23228
. [PMID: 38388483] - Xi-Yuan Li, Su-Qing Li, Yi-Fan Jiang, Qiong Yang, Jian-Chao Zhang, Yakov Kuzyakov, H Henry Teng, Dong-Xing Guan. Multi-imaging platform for rhizosphere studies: Phosphorus and oxygen fluxes.
Journal of environmental management.
2024 Feb; 351(?):119763. doi:
10.1016/j.jenvman.2023.119763
. [PMID: 38071921] - Yaoxing Chen, Yuxiao Ma, Kexin Shi, Huan Chen, Xiao Han, Chenxuan Wei, Yingqi Lyu, Yukun Huang, Renhe Yu, Yun Song, Qingxiang Song, Jiyao Jiang, Junfeng Feng, Yingying Lin, Jun Chen, Hongzhuan Chen, Gang Zheng, Xiaoling Gao, Gan Jiang. Self-Disassembling and Oxygen-Generating Porphyrin-Lipoprotein Nanoparticle for Targeted Glioblastoma Resection and Enhanced Photodynamic Therapy.
Advanced materials (Deerfield Beach, Fla.).
2024 Feb; ?(?):e2307454. doi:
10.1002/adma.202307454
. [PMID: 38299428] - Bahareh Nowruzi, Samaneh Jafari Porzani. Study of pesticidal activity of bioactive compounds of Neowestiellopsis persica strain A1387 in improving the antioxidative and antimicrobial activity of wheat to sunn pest.
Microbial pathogenesis.
2024 Feb; 187(?):106500. doi:
10.1016/j.micpath.2023.106500
. [PMID: 38104674] - Yan-Guang Li, Jiang-Hong Li, Hai-Qin Wang, Junhua Liao, Xiao-Ya Du. Cinnamaldehyde protects cardiomyocytes from oxygen-glucose deprivation/reoxygenation-induced lipid peroxidation and DNA damage via activating the Nrf2 pathway.
Chemical biology & drug design.
2024 02; 103(2):e14489. doi:
10.1111/cbdd.14489
. [PMID: 38404216] - Sarah J Young, Giulia S Rossi, Nicholas J Bernier, Patricia A Wright. Cortisol enhances aerobic metabolism and locomotor performance during the transition to land in an amphibious fish.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
2024 Feb; 288(?):111558. doi:
10.1016/j.cbpa.2023.111558
. [PMID: 38043639] - Jinyan Lin, Cailin Huang, Peiyuan Wang, Yueyang He, Qiang Luo, Xiaolong Liu, Yang Li. Tumor-Microenvironment-Responsive Cerium-Enriched Copper Nanozyme with O2 Supply and Oxidative Stress Amplification for In Situ Disulfiram Chemotherapy and Chemodynamic Therapy Intensification.
Advanced healthcare materials.
2024 Jan; ?(?):e2303955. doi:
10.1002/adhm.202303955
. [PMID: 38271271] - Changxuan Li, Yu Liu. Puerarin reduces cell damage from cerebral ischemia-reperfusion by inhibiting ferroptosis.
Biochemical and biophysical research communications.
2024 Jan; 693(?):149324. doi:
10.1016/j.bbrc.2023.149324
. [PMID: 38101001] - Md Mahamudul Hasan Mredul, Eugene P Sokolov, Hui Kong, Inna M Sokolova. Spawning acts as a metabolic stressor enhanced by hypoxia and independent of sex in a broadcast marine spawner.
The Science of the total environment.
2024 Jan; 909(?):168419. doi:
10.1016/j.scitotenv.2023.168419
. [PMID: 37979860] - Ichiro Koshiishi. [What is the Initiating Reaction for the Lipid Radical Chain Reaction System That can Induce Ferroptotic Cell Death at the Lower Oxygen Content?].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2024 Jan; ?(?):. doi:
10.1248/yakushi.23-00207
. [PMID: 38246655] - Nannan Liu, Yuanhao Du, Shijuan Yan, Wei Chen, Min Deng, Shutu Xu, Hong Wang, Wei Zhan, Wenjie Huang, Yan Yin, Xiaohong Yang, Qiao Zhao, Alisdair R Fernie, Jianbing Yan. The light and hypoxia induced gene ZmPORB1 determines tocopherol content in the maize kernel.
Science China. Life sciences.
2024 Jan; ?(?):. doi:
10.1007/s11427-023-2489-2
. [PMID: 38289421] - Shuang Liu, Yu Sun, Jin Ye, Chunsheng Li, Qiang Wang, Mengting Liu, Yujie Cui, Chen Wang, Guanqiao Jin, Yujie Fu, Jiating Xu, Xinqiang Liang. Targeted Delivery of Active Sites by Oxygen Vacancy-Engineered Bimetal Silicate Nanozymes for Intratumoral Aggregation-Potentiated Catalytic Therapy.
ACS nano.
2024 Jan; 18(2):1516-1530. doi:
10.1021/acsnano.3c08780
. [PMID: 38172073] - Muhammad Rizwan, Ghulam Murtaza, Faisal Zulfiqar, Anam Moosa, Rashid Iqbal, Zeeshan Ahmed, Imran Khan, Kadambot H M Siddique, Lijian Leng, Hailong Li. Tuning active sites on biochars for remediation of mercury-contaminated soil: A comprehensive review.
Ecotoxicology and environmental safety.
2024 Jan; 270(?):115916. doi:
10.1016/j.ecoenv.2023.115916
. [PMID: 38171108] - Ruirui Zhang, Andrew R Zimmerman, Ruiling Zhang, Penghui Li, Yue Zheng, Bin Gao. Persistent free radicals generated from a range of biochars and their physiological effects on wheat seedlings.
The Science of the total environment.
2024 Jan; 908(?):168260. doi:
10.1016/j.scitotenv.2023.168260
. [PMID: 37918750] - Yongli Pan, Wenqiang Xin, Wei Wei, Lars Tatenhorst, Irina Graf, Aurel Popa-Wagner, Stefan T Gerner, Sabine E Huber, Ertugrul Kilic, Dirk M Hermann, Mathias Bähr, Hagen B Huttner, Thorsten R Doeppner. Knockdown of NEAT1 prevents post-stroke lipid droplet agglomeration in microglia by regulating autophagy.
Cellular and molecular life sciences : CMLS.
2024 Jan; 81(1):30. doi:
10.1007/s00018-023-05045-7
. [PMID: 38212456] - Yu Sun, Haiyan Jin, Jia He, Jinyu Lai, Hao Lin, Xiangyu Liu. Melatonin alleviates ischemic stroke by inhibiting ferroptosis through the CYP1B1/ACSL4 pathway.
Environmental toxicology.
2024 Jan; ?(?):. doi:
10.1002/tox.24136
. [PMID: 38205686] - Yuan Cai, Hongfeng Tu, Cimei Wu, Tong Liu, Shuangshuang Chen, Linlin Shen, Qinwen Xiao, Sumin Zhao, Shaoying Xu, Weiwei Lin, Pengcheng Yan, Jianyong Dong. Therapeutic potential of elema-1,3,7(11),8-tetraen-8,12-lactam from Curcuma wenyujin on diabetic retinopathy via anti-inflammatory and anti-angiogenic pathways.
Journal of ethnopharmacology.
2024 Jan; 318(Pt A):116843. doi:
10.1016/j.jep.2023.116843
. [PMID: 37414197] - Nguyen Le Hanh Tran, Thien Quang Lam, Phuong Vu Quynh Duong, Linh Hai Doan, Mai Phuong Vu, Khang Huy Phuc Nguyen, Khoi Tan Nguyen. Review on the Significant Interactions between Ultrafine Gas Bubbles and Biological Systems.
Langmuir : the ACS journal of surfaces and colloids.
2024 01; 40(1):984-996. doi:
10.1021/acs.langmuir.3c03223
. [PMID: 38153335] - Fan-Li Meng, Xin Zhang, Yi Hu, Guo-Ping Sheng. New Barrier Role of Iron Plaque: Producing Interfacial Hydroxyl Radicals to Degrade Rhizosphere Pollutants.
Environmental science & technology.
2024 Jan; 58(1):795-804. doi:
10.1021/acs.est.3c08132
. [PMID: 38095914] - Daniel B Mills, Rachel L Simister, Taylor R Sehein, Steven J Hallam, Erik A Sperling, Sean A Crowe. Constraining the oxygen requirements for modern microbial eukaryote diversity.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Jan; 121(2):e2303754120. doi:
10.1073/pnas.2303754120
. [PMID: 38165897] - Nir Hananya, Ori Green, Ismael Gutiérrez-Fernández, Doron Shabat, Juan B Arellano. Singlet Oxygen Detection by Chemiluminescence Probes in Living Cells.
Methods in molecular biology (Clifton, N.J.).
2024; 2798(?):27-43. doi:
10.1007/978-1-0716-3826-2_3
. [PMID: 38587734] - Chenxi Guo, Yi Le, Yuyun Lu, Hongshun Yang, Yun He. Effect of oxygen supplement on post-mortem metabolic profile of shrimp during cold storage.
Food research international (Ottawa, Ont.).
2024 Jan; 175(?):113734. doi:
10.1016/j.foodres.2023.113734
. [PMID: 38129045] - Jin Ye, Kefen Zhang, Xing Yang, Mengting Liu, Yujie Cui, Yunlong Li, Chunsheng Li, Shuang Liu, Yong Lu, Zhiyong Zhang, Na Niu, Ligang Chen, Yujie Fu, Jiating Xu. Embedding Atomically Dispersed Manganese/Gadolinium Dual Sites in Oxygen Vacancy-Enriched Biodegradable Bimetallic Silicate Nanoplatform for Potentiating Catalytic Therapy.
Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2024 Jan; 11(4):e2307424. doi:
10.1002/advs.202307424
. [PMID: 38037255] - Usuk Jung, Minjeong Kim, Presley Dowker-Key, Simon Noë, Ahmed Bettaieb, Elizabeth Shepherd, Brynn Voy. Hypoxia promotes proliferation and inhibits myogenesis in broiler satellite cells.
Poultry science.
2024 Jan; 103(1):103203. doi:
10.1016/j.psj.2023.103203
. [PMID: 37980759] - Thais González, Juan Pablo Miranda, Gloria Gómez, Jaume Puigagut, Gladys Vidal. Saturated constructed wetland-microbial fuel cell system and effect on dissolved oxygen gradient, electricity generation and ammonium removal.
Environmental technology.
2024 Jan; 45(4):624-638. doi:
10.1080/09593330.2022.2119170
. [PMID: 36101485] - Steven M Driever. Measurement of O2 Uptake and Evolution in Leaves In Vivo Using Stable Isotopes and Membrane Inlet Mass Spectrometry.
Methods in molecular biology (Clifton, N.J.).
2024; 2790(?):149-162. doi:
10.1007/978-1-0716-3790-6_9
. [PMID: 38649571] - Tao Jiang, Yong Li. 25-hydroxycholesterol aggravates oxygen-glucose deprivation/reoxygenation-induced pyroptosis through promoting activation of NLRP3 inflammasome in H9C2 cardiomyocytes.
Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.
2024; 57(?):e13299. doi:
10.1590/1414-431x2024e13299
. [PMID: 38716981] - Abiodun Onadeji, Badruddeen Saulawa Sani, Umar Alfa Abubakar. Response surface methodology optimization of the effect of pH, contact time, and microbial concentration on chemical oxygen removal potential of vegetable oil industrial effluents.
Water environment research : a research publication of the Water Environment Federation.
2024 Jan; 96(1):e10963. doi:
10.1002/wer.10963
. [PMID: 38200640] - Yaxin Wang, Li-Ming Zhao, Naijie Feng, Dianfeng Zheng, Xue Feng Shen, Hang Zhou, Wenxin Jiang, Youwei Du, Huimin Zhao, Xutong Lu, Peng Deng. Plant growth regulators mitigate oxidative damage to rice seedling roots by NaCl stress.
PeerJ.
2024; 12(?):e17068. doi:
10.7717/peerj.17068
. [PMID: 38495756] - Steven J Burgess, Chandra Davies. Measurement of Algal Photosynthesis Using a Clark-Type O2 Electrode.
Methods in molecular biology (Clifton, N.J.).
2024; 2790(?):121-132. doi:
10.1007/978-1-0716-3790-6_7
. [PMID: 38649569] - Wenbing Su, Meifen Lv, Dayu Wang, Yinghong He, Hui Han, Yu Zhang, Xiuying Zhang, Shaokun Lv, Liqing Yao. Tanshinone IIA Alleviates Traumatic Brain Injury by Reducing Ischemia‒Reperfusion via the miR-124-5p/FoxO1 Axis.
Mediators of inflammation.
2024; 2024(?):7459054. doi:
10.1155/2024/7459054
. [PMID: 38549714] - Yukun Liu, Bo Li, Xiaoli Chai. Novel cost-effective oxygen-enriched melting method for MSWI fly ash.
Journal of the Air & Waste Management Association (1995).
2024 01; 74(1):1-10. doi:
10.1080/10962247.2023.2277772
. [PMID: 37967101] - Ana Jiménez, Sandra Correa, Francisca Sevilla. Identification of Superoxide Dismutase (SOD) Isozymes in Plant Tissues.
Methods in molecular biology (Clifton, N.J.).
2024; 2798(?):205-212. doi:
10.1007/978-1-0716-3826-2_14
. [PMID: 38587745] - Ievgeniia Ostrov, Yongjia Gong, Joshua B Zuk, Purni C K Wickramasinghe, Irina Tmenova, Diana E Roopchand, Liping Zhao, Ilya Raskin. Elemental iron protects gut microbiota against oxygen-induced dysbiosis.
PloS one.
2024; 19(2):e0298592. doi:
10.1371/journal.pone.0298592
. [PMID: 38412144] - Ya-Chao Wang, Yi-da Shao, Chang-le Shao, Xiao-Qi Guan, Ping-Ping Lu, Ke Ning, Bao-Nian Liu, Hai-Dong Guo. Dihydrotanshinone I reduces H9c2 cell damage by regulating AKT and MAPK signaling pathways.
In vitro cellular & developmental biology. Animal.
2024 Jan; 60(1):89-97. doi:
10.1007/s11626-023-00839-2
. [PMID: 38253954] - Quan He, Shuanglan Xu, Xiaomei Ma, Yinxia Zhou, Weiqi Feng, Xuzhi Lu, Meiyue Yu, Zi Chen. Molecular design and systematic optimization of a halogen-bonding system between the asthma interleukin-5 receptor and its cyclic peptide ligand.
Chemical biology & drug design.
2024 01; 103(1):e14387. doi:
10.1111/cbdd.14387
. [PMID: 37926515] - Lei Gu, Yunyan Hou, Yiyue Sun, Xuanxuan Chen, Hongcheng Wang, Bin Zhu, Xuye Du. ZmB12D, a target of transcription factor ZmWRKY70, enhances the tolerance of Arabidopsis to submergence.
Plant physiology and biochemistry : PPB.
2024 Jan; 206(?):108322. doi:
10.1016/j.plaphy.2023.108322
. [PMID: 38169225] - Laura Tomás-Gallardo, Juan J Cabrera, Socorro Mesa. Surface Plasmon Resonance as a Tool to Elucidate the Molecular Determinants of Key Transcriptional Regulators Controlling Rhizobial Lifestyles.
Methods in molecular biology (Clifton, N.J.).
2024; 2751(?):145-163. doi:
10.1007/978-1-0716-3617-6_10
. [PMID: 38265715] - Qingzhuoma Yang, Yulu Ran, Shengtao Guo, Fazhi Li, Dongyou Xiang, Yu Cao, Dairong Qiao, Hui Xu, Yi Cao. Molecular characterization and expression profiling of two flavohemoglobin genes play essential roles in dissolved oxygen and NO stress in Saitozyma podzolica zwy2-3.
International journal of biological macromolecules.
2023 Dec; 253(Pt 8):127008. doi:
10.1016/j.ijbiomac.2023.127008
. [PMID: 37844810] - Z H Xiong, B B Liu, L J Yang, Q Li, W J Jin, M N Xiang, R F Dai, J Chen, X S Han. [Treatment of intrauterine adhesions in rats with hypoxia-cultured BMSC-derived exosomes].
Zhonghua fu chan ke za zhi.
2023 Dec; 58(12):911-921. doi:
10.3760/cma.j.cn112141-20230922-00114
. [PMID: 38123197] - Angel Franco, Anthony Chukwubuikem, Carina Meiners, Miriam A Rosenbaum. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa.
Bioelectrochemistry (Amsterdam, Netherlands).
2023 Dec; 157(?):108636. doi:
10.1016/j.bioelechem.2023.108636
. [PMID: 38181591]