alpha-Ergocryptine (BioDeep_00000398700)

Main id: BioDeep_00000003722

Secondary id: BioDeep_00000175909, BioDeep_00000403133

natural product PANOMIX_OTCML-2023


代谢物信息卡片


alpha-Ergocryptine

化学式: C32H41N5O5 (575.3108)
中文名称: 麦角克碱
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 44.05%

分子结构信息

SMILES: CC(C)CC1C(=O)N2CCCC2C3(N1C(=O)C(O3)(C(C)C)NC(=O)C4CN(C5CC6=CNC7=CC=CC(=C67)C5=C4)C)O
InChI: InChI=1S/C32H41N5O5/c1-17(2)12-25-29(39)36-11-7-10-26(36)32(41)37(25)30(40)31(42-32,18(3)4)34-28(38)20-13-22-21-8-6-9-23-27(21)19(15-33-23)14-24(22)35(5)16-20/h6,8-9,13,15,17-18,20,24-26,33,41H,7,10-12,14,16H2,1-5H3,(H,34,38)

描述信息

Ergotaman bearing hydroxy, isopropyl, and 2-methylpropyl groups at the 12, 2 and 5 positions, respectively, and oxo groups at positions 3, 6, and 18. It is a natural ergot alkaloid. Ergocryptine discussed in the literature prior to 1967, when beta-ergocryptine was separated from alpha-ergocryptine, is now referred to as alpha-ergocryptine.
D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.085
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.083
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.081
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.080

同义名列表

3 个代谢物同义名

alpha-Ergocryptine; alpha-Ergocryptine; (6aS,9R)-N-[(1R,2R,4R,7S)-2-hydroxy-7-(2-methylpropyl)-5,8-dioxo-4-propan-2-yl-3-oxa-6,9-diazatricyclo[7.3.0.02,6]dodecan-4-yl]-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide



数据库引用编号

32 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

7 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ADRA1A, ANXA5, DBH, DDC, PKHD1, POMC, PRL
Peripheral membrane protein 2 ANXA5, LPL
Endoplasmic reticulum membrane 1 DRD1
Nucleus 4 ADRA1A, DRD1, PKHD1, PRL
cytosol 4 ADRA1A, ANXA5, DDC, SST
dendrite 1 DRD2
centrosome 1 PKHD1
nucleoplasm 2 ADRA1A, PRL
RNA polymerase II transcription regulator complex 1 PRL
Cell membrane 7 ADRA1A, ADRB3, DRD1, DRD2, LHCGR, LPL, PKHD1
Multi-pass membrane protein 5 ADRA1A, ADRB3, DRD1, DRD2, LHCGR
Golgi apparatus membrane 1 DRD2
Synapse 3 CRH, DBH, DRD2
cell surface 2 LPL, PRLR
glutamatergic synapse 2 DRD1, DRD2
Golgi apparatus 1 PKHD1
Golgi membrane 2 DRD2, INS
neuronal cell body 1 SST
presynaptic membrane 2 DRD1, DRD2
sarcolemma 1 ANXA5
acrosomal vesicle 1 DRD2
endosome 1 LHCGR
plasma membrane 8 ADRA1A, ADRB3, DRD1, DRD2, GCG, LHCGR, LPL, PRLR
synaptic vesicle membrane 1 DRD2
Membrane 3 ANXA5, DBH, PRLR
apical plasma membrane 1 PKHD1
axon 1 DRD2
caveola 1 ADRA1A
extracellular exosome 3 ANXA5, DDC, PKHD1
endoplasmic reticulum 3 CSH1, DBH, PKHD1
extracellular space 10 CRH, CSH1, DBH, GCG, INS, LHCGR, LPL, POMC, PRL, SST
perinuclear region of cytoplasm 1 PKHD1
intracellular membrane-bounded organelle 2 ADRA1A, DBH
Single-pass type I membrane protein 2 PKHD1, PRLR
Secreted 12 CRH, CSH1, DBH, GCG, INS, LPL, PKHD1, POMC, PRL, SST, TRH, VIP
extracellular region 13 ANXA5, CRH, CSH1, DBH, GCG, INS, LPL, POMC, PRL, PRLR, SST, TRH, VIP
Extracellular side 1 LPL
Cell projection, cilium 1 PKHD1
centriolar satellite 2 DBH, LHCGR
ciliary membrane 2 DRD1, DRD2
Nucleus membrane 1 ADRA1A
nuclear membrane 1 ADRA1A
external side of plasma membrane 3 ANXA5, PKHD1, PRLR
varicosity 1 CRH
Secreted, extracellular space, extracellular matrix 1 LPL
chylomicron 1 LPL
very-low-density lipoprotein particle 1 LPL
dendritic spine 2 DRD1, DRD2
neuronal dense core vesicle lumen 1 CRH
perikaryon 2 CRH, DRD2
Single-pass type II membrane protein 1 DBH
vesicle 1 CSH1
postsynaptic membrane 2 DRD1, DRD2
Apical cell membrane 1 PKHD1
Cytoplasm, cytoskeleton, spindle 1 PKHD1
focal adhesion 1 ANXA5
GABA-ergic synapse 3 DRD1, DRD2, SST
Cell projection, dendritic spine 1 DRD1
collagen-containing extracellular matrix 1 ANXA5
secretory granule 2 POMC, TRH
lateral plasma membrane 1 DRD2
receptor complex 3 ADRB3, LHCGR, PRLR
Zymogen granule membrane 1 ANXA5
neuron projection 1 VIP
ciliary basal body 1 PKHD1
cilium 3 DRD1, DRD2, PKHD1
chromatin 1 PRL
mitotic spindle 1 PKHD1
Cytoplasm, cytoskeleton, cilium basal body 1 PKHD1
non-motile cilium 2 DRD1, DRD2
sperm flagellum 1 DRD2
endosome lumen 4 CSH1, INS, PRL, PRLR
Membrane, caveola 1 ADRA1A
Chromosome, centromere 1 PKHD1
Cell projection, dendrite 1 DRD1
secretory granule lumen 4 DBH, GCG, INS, POMC
secretory granule membrane 1 DBH
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 GCG, INS
axon terminus 1 DRD2
endocytic vesicle 1 DRD2
transport vesicle 1 INS
Secreted, extracellular exosome 1 PKHD1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
neuronal dense core vesicle 1 SST
chromosome, centromeric region 1 PKHD1
9+0 non-motile cilium 1 PKHD1
vesicle membrane 1 ANXA5
dopaminergic synapse 1 DRD2
Cytoplasmic vesicle, secretory vesicle membrane 1 DBH
Cell projection, cilium membrane 1 DRD1
Cytoplasmic vesicle, secretory vesicle, chromaffin granule lumen 1 DBH
chromaffin granule lumen 1 DBH
[Glucagon-like peptide 1]: Secreted 1 GCG
transport vesicle membrane 1 DBH
catalytic complex 1 LPL
endothelial microparticle 1 ANXA5
[Soluble dopamine beta-hydroxylase]: Cytoplasmic vesicle, secretory vesicle lumen 1 DBH
Cytoplasmic vesicle, secretory vesicle, chromaffin granule membrane 1 DBH
chromaffin granule membrane 1 DBH
G protein-coupled receptor complex 2 DRD1, DRD2


文献列表

  • Wiebke Rudolph, Daniela Remane, Dirk K Wissenbach, Frank T Peters. Comparative study on the metabolism of the ergot alkaloids ergocristine, ergocryptine, ergotamine, and ergovaline in equine and human S9 fractions and equine liver preparations. Xenobiotica; the fate of foreign compounds in biological systems. 2019 Oct; 49(10):1149-1157. doi: 10.1080/00498254.2018.1542187. [PMID: 30623698]
  • Matevž Likar, Marjana Grandič, Breda Jakovac Strajn, Katarina Kos, Franci Aco Celar. Links Between Genetic Groups, Host Specificity, and Ergot-Alkaloid Profiles within Claviceps purpurea (Fr.) Tul. on Slovenian Grasses. Plant disease. 2018 Jul; 102(7):1334-1340. doi: 10.1094/pdis-08-17-1179-re. [PMID: 30673578]
  • A P Foote, D L Harmon, K R Brown, J R Strickland, K R McLeod, L P Bush, J L Klotz. Constriction of bovine vasculature caused by endophyte-infected tall fescue seed extract is similar to pure ergovaline. Journal of animal science. 2012 May; 90(5):1603-9. doi: 10.2527/jas.2011-4513. [PMID: 22147482]
  • Dennis Mulac, Hans-Ulrich Humpf. Cytotoxicity and accumulation of ergot alkaloids in human primary cells. Toxicology. 2011 Apr; 282(3):112-21. doi: 10.1016/j.tox.2011.01.019. [PMID: 21295106]
  • A A Bacetty, M E Snook, A E Glenn, J P Noe, N Hill, A Culbreath, P Timper, P Nagabhyru, C W Bacon. Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on Pratylenchus scribneri. Phytopathology. 2009 Dec; 99(12):1336-45. doi: 10.1094/phyto-99-12-1336. [PMID: 19899999]
  • Ada A Bacetty, Maurice E Snook, Anthony E Glenn, James P Noe, Padmaja Nagabhyru, Charles W Bacon. Chemotaxis disruption in Pratylenchus scribneri by tall fescue root extracts and alkaloids. Journal of chemical ecology. 2009 Jul; 35(7):844-50. doi: 10.1007/s10886-009-9657-x. [PMID: 19575265]
  • S Stanosz. An attempt at conservative treatment in selected cases of type I endometrial carcinoma (stage I a/G1) in young women. European journal of gynaecological oncology. 2009; 30(4):365-9. doi: . [PMID: 19761123]
  • Rudolf Krska, Franz Berthiller, Rainer Schuhmacher, Kristian F Nielsen, Colin Crews. Determination of ergot alkaloids: purity and stability assessment of standards and optimization of extraction conditions for cereal samples. Journal of AOAC International. 2008 Nov; 91(6):1363-71. doi: . [PMID: 19202797]
  • Thomas Haarmann, Nicole Lorenz, Paul Tudzynski. Use of a nonhomologous end joining deficient strain (Deltaku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal genetics and biology : FG & B. 2008 Jan; 45(1):35-44. doi: 10.1016/j.fgb.2007.04.008. [PMID: 17560817]
  • Christopher L Schardl, Daniel G Panaccione, Paul Tudzynski. Ergot alkaloids--biology and molecular biology. The Alkaloids. Chemistry and biology. 2006; 63(?):45-86. doi: 10.1016/s1099-4831(06)63002-2. [PMID: 17133714]
  • Andreas F Lehner, Morrie Craig, Neil Fannin, Lowell Bush, Tom Tobin. Electrospray[+] tandem quadrupole mass spectrometry in the elucidation of ergot alkaloids chromatographed by HPLC: screening of grass or forage samples for novel toxic compounds. Journal of mass spectrometry : JMS. 2005 Nov; 40(11):1484-502. doi: 10.1002/jms.933. [PMID: 16278935]
  • Simone Mainka, Sven Dänicke, Hartwig Böhme, Joachim Wolff, Siegfried Matthes, Gerhard Flachowsky. Comparative studies on the effect of ergot contaminated feed on performance and health of piglets and chickens. Archives of animal nutrition. 2005 Apr; 59(2):81-98. doi: 10.1080/17450390512331387909. [PMID: 16080303]
  • T W Naudè, C J Botha, J H Vorster, C Roux, E J Van der Linde, S I Van der Walt, G E Rottinghaus, L Van Jaarsveld, A N Lawrence. Claviceps cyperi, a new cause of severe ergotism in dairy cattle consuming maize silage and teff hay contaminated with ergotised Cyperus esculentus (nut sedge) on the Highveld of South Africa. The Onderstepoort journal of veterinary research. 2005 Mar; 72(1):23-37. doi: 10.4102/ojvr.v72i1.221. [PMID: 15991703]
  • Raymond F Suckow, Mira Fein, Christoph U Correll, Thomas B Cooper. Determination of plasma ziprasidone using liquid chromatography with fluorescence detection. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2004 Jan; 799(2):201-8. doi: 10.1016/j.jchromb.2003.10.027. [PMID: 14670738]
  • Kazuto Yasuda, Lu-Bin Lan, Dominique Sanglard, Katryn Furuya, John D Schuetz, Erin G Schuetz. Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. The Journal of pharmacology and experimental therapeutics. 2002 Oct; 303(1):323-32. doi: 10.1124/jpet.102.037549. [PMID: 12235267]
  • D J Smith, N W Shappell. Technical note: epimerization of ergopeptine alkaloids in organic and aqueous solvents. Journal of animal science. 2002 Jun; 80(6):1616-22. doi: 10.2527/2002.8061616x. [PMID: 12078743]
  • Sean Ekins, Richard B Kim, Brenda F Leake, Anne H Dantzig, Erin G Schuetz, Lu-Bin Lan, Kazuto Yasuda, Robert L Shepard, Mark A Winter, John D Schuetz, James H Wikel, Steven A Wrighton. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Molecular pharmacology. 2002 May; 61(5):964-73. doi: 10.1124/mol.61.5.964. [PMID: 11961113]
  • J M Schnitzius, N S Hill, C S Thompson, A M Craig. Semiquantitative determination of ergot alkaloids in seed, straw, and digesta samples using a competitive enzyme-linked immunosorbent assay. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc. 2001 May; 13(3):230-7. doi: 10.1177/104063870101300307. [PMID: 11482600]
  • G B Janssen, R B Beems, G J Speijers, H P van Egmond. Subacute toxicity of alpha-ergocryptine in Sprague-Dawley rats. 1: general toxicological effects. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2000 Aug; 38(8):679-88. doi: 10.1016/s0278-6915(00)00054-5. [PMID: 10908815]
  • G B Janssen, R B Beems, L H Elvers, G J Speijers. Subacute toxicity of alpha-ergocryptine in Sprague-Dawley rats. 2: metabolic and hormonal changes. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2000 Aug; 38(8):689-95. doi: 10.1016/s0278-6915(00)00055-7. [PMID: 10908816]
  • D I Lugo, J E Pintar. Ontogeny of basal and regulated proopiomelanocortin-derived peptide secretion from fetal and neonatal pituitary intermediate lobe cells: melanotrophs exhibit transient glucocorticoid responses during development. Developmental biology. 1996 Jan; 173(1):110-8. doi: 10.1006/dbio.1996.0010. [PMID: 8575613]
  • J R Strickland, D L Cross, T C Jenkins, R J Petroski, R G Powell. The effect of alkaloids and seed extracts of endophyte-infected tall fescue on prolactin secretion in an in vitro rat pituitary perfusion system. Journal of animal science. 1992 Sep; 70(9):2779-86. doi: 10.2527/1992.7092779x. [PMID: 1399895]
  • D J Haisenleder, R R Gala, D M Lawson. The effect of transient dopamine antagonism on thyrotropin-releasing hormone-induced prolactin release in female rats during the estrous cycle. Life sciences. 1991; 48(20):1911-8. doi: 10.1016/0024-3205(91)90223-x. [PMID: 1902543]
  • F C Iturriza, M G Castro, F E Estivariz. On the stimulatory nature of the control of MSH secretion in ducks. General and comparative endocrinology. 1986 Dec; 64(3):440-5. doi: 10.1016/0016-6480(86)90081-x. [PMID: 3026883]
  • D J Haisenleder, R R Gala, D M Lawson. A comparison of the effects of suckling or transient dopamine antagonism on thyrotropin-releasing hormone and suckling induced prolactin release in lactating rats. Life sciences. 1986 Aug; 39(7):659-65. doi: 10.1016/0024-3205(86)90048-2. [PMID: 3090397]
  • L A Glaser, P A Kelly, G Gibori. Differential action and secretion of rat placental lactogens. Endocrinology. 1984 Sep; 115(3):969-76. doi: 10.1210/endo-115-3-969. [PMID: 6547668]
  • R Basuray, R C Jaffe, G Gibori. Role of decidual luteotropin and prolactin in the control of luteal cell receptors of estradiol. Biology of reproduction. 1983 Apr; 28(3):551-6. doi: 10.1095/biolreprod28.3.551. [PMID: 6687813]
  • C B Gow, G H McDowell, G Jenkin. The importance of prolactin for initiation of lactation in the pregnant ewe. Australian journal of biological sciences. 1983; 36(4):357-67. doi: 10.1071/bi9830357. [PMID: 6362635]
  • M D Whitacre, W R Threlfall. Effects of ergocryptine on plasma prolactin, luteinizing hormone, and progesterone in the periparturient sow. American journal of veterinary research. 1981 Sep; 42(9):1538-41. doi: . [PMID: 6895686]
  • J C Young. Variability in the content and composition of alkaloids found in Canadian ergot. II. Wheat. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 1981; 16(4):381-93. doi: 10.1080/03601238109372265. [PMID: 6895228]
  • J P OKunewick, E L Phillips, B Brozovich. Effect of antiserum on transplantable hematopoietic colony-forming units during Rauscher leukemia development. American journal of hematology. 1976; 1(4):443-52. doi: 10.1002/ajh.2830010409. [PMID: 12656]
  • H Isaacs, J J Heffron, M Badenhorst. 'Picture frame' fibres in a carrier of the trait for malignant hyperpyrexia. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde. 1975 Nov; 49(46):1923-6. doi: NULL. [PMID: 795]
  • J Harkness. Why urinalysis?. The Central African journal of medicine. 1975 Aug; 21(8):178-83. doi: NULL. [PMID: 1150]