norlaudanosoline (BioDeep_00000015315)

Main id: BioDeep_00000003342

 


代谢物信息卡片


Tetrahydropapaveroline

化学式: C16H17NO4 (287.1158)
中文名称: 四氢维洛林
谱图信息: 最多检出来源 Homo sapiens(blood) 8.17%

分子结构信息

SMILES: C1CNC(C2=CC(=C(C=C21)O)O)CC3=CC(=C(C=C3)O)O
InChI: InChI=1S/C16H17NO4/c18-13-2-1-9(6-14(13)19)5-12-11-8-16(21)15(20)7-10(11)3-4-17-12/h1-2,6-8,12,17-21H,3-5H2

描述信息

Origin: Animal; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053
Acquisition and generation of the data is financially supported by the Max-Planck-Society
IPB_RECORD: 2522; CONFIDENCE confident structure

同义名列表

3 个代谢物同义名

norlaudanosoline; Tetrahydropapaveroline; Tetrahydropapaveroline



数据库引用编号

30 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 CAT, DDC, MAPK14, NFE2L2, NQO1, PIK3R6, SLC6A3, TH, TYR
Peripheral membrane protein 2 CYP1B1, PIK3R6
Endoplasmic reticulum membrane 3 CYP1B1, HMOX1, PNMT
Mitochondrion membrane 1 PNMT
Nucleus 6 HMOX1, JUND, MAPK14, NFE2L2, NQO1, TH
cytosol 11 CAT, COMT, DDC, HMOX1, IL1B, MAPK14, NFE2L2, NQO1, PIK3R6, PNMT, TH
dendrite 3 COMT, NQO1, TH
mitochondrial membrane 1 PNMT
centrosome 1 NFE2L2
nucleoplasm 4 HMOX1, JUND, MAPK14, NFE2L2
RNA polymerase II transcription regulator complex 2 JUND, NFE2L2
Cell membrane 3 COMT, PIK3R6, SLC6A3
Cytoplasmic side 1 HMOX1
Cell projection, axon 2 SLC6A3, TH
Multi-pass membrane protein 3 CACNA1I, PNMT, SLC6A3
Synapse 2 COMT, NQO1
cell surface 2 SLC6A3, TNR
glutamatergic synapse 2 MAPK14, TNR
Golgi apparatus 1 NFE2L2
neuronal cell body 2 NQO1, SLC6A3
presynaptic membrane 1 SLC6A3
smooth endoplasmic reticulum 1 TH
synaptic vesicle 1 TH
Cytoplasm, cytosol 3 IL1B, NFE2L2, NQO1
Lysosome 2 IL1B, TYR
plasma membrane 6 CACNA1I, COMT, EDNRA, NFE2L2, PIK3R6, SLC6A3
terminal bouton 1 TH
Membrane 8 CACNA1I, CAT, COMT, CYP1B1, HMOX1, NQO1, PIK3R6, SLC6A3
axon 3 COMT, SLC6A3, TH
extracellular exosome 4 ALDH2, CAT, COMT, DDC
endoplasmic reticulum 2 HMOX1, PNMT
extracellular space 4 CXCL8, HMOX1, IL1B, TNR
perinuclear region of cytoplasm 3 HMOX1, TH, TYR
Schaffer collateral - CA1 synapse 1 TNR
mitochondrion 6 ALDH2, CAT, CYP1B1, MAPK14, PNMT, TH
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 5 CAT, COMT, CYP1B1, PNMT, TYR
Microsome membrane 1 CYP1B1
Single-pass type I membrane protein 1 TYR
Secreted 2 CXCL8, IL1B
extracellular region 5 CAT, CXCL8, IL1B, MAPK14, TNR
cytoplasmic side of plasma membrane 1 TH
mitochondrial outer membrane 1 HMOX1
neuronal cell body membrane 1 SLC6A3
Mitochondrion matrix 1 ALDH2
mitochondrial matrix 2 ALDH2, CAT
Extracellular side 1 COMT
transcription regulator complex 1 JUND
Secreted, extracellular space, extracellular matrix 1 TNR
perikaryon 1 TH
cytoplasmic vesicle 1 TH
Melanosome membrane 2 TH, TYR
Golgi-associated vesicle 1 TYR
Single-pass type II membrane protein 1 COMT
postsynaptic membrane 1 SLC6A3
Cytoplasm, perinuclear region 1 TH
Membrane raft 2 SLC6A3, TNR
focal adhesion 1 CAT
flotillin complex 1 SLC6A3
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 TNR
secretory granule 1 IL1B
nuclear speck 1 MAPK14
Cell projection, neuron projection 1 SLC6A3
neuron projection 2 SLC6A3, TH
chromatin 2 JUND, NFE2L2
mediator complex 1 NFE2L2
spindle pole 1 MAPK14
[Isoform 1]: Endoplasmic reticulum membrane 1 PNMT
Melanosome 1 TYR
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
transcription repressor complex 1 JUND
axon terminus 1 SLC6A3
voltage-gated calcium channel complex 1 CACNA1I
phosphatidylinositol 3-kinase complex 1 PIK3R6
phosphatidylinositol 3-kinase complex, class IA 1 PIK3R6
Secreted, extracellular exosome 1 IL1B
perineuronal net 1 TNR
Single-pass type IV membrane protein 1 HMOX1
protein-DNA complex 1 NFE2L2
dopaminergic synapse 1 SLC6A3
[Isoform 2]: Endoplasmic reticulum membrane 1 PNMT
transcription factor AP-1 complex 1 JUND
catalase complex 1 CAT
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 TH
[Isoform Soluble]: Cytoplasm 1 COMT
[Isoform Membrane-bound]: Cell membrane 1 COMT
tenascin complex 1 TNR
phosphatidylinositol 3-kinase complex, class IB 1 PIK3R6


文献列表

  • Xiaotao Tuo, Zhiyin Yu, Junheng Li, Yuxin Qi, Guoqing Peng, Sheng-Xiong Huang, Xueshuang Huang, Jian-Ping Huang. Characterization of two putative norlaudanosoline methyltransferases from Aristolochia debilis. Journal of plant physiology. 2023 Apr; 285(?):153983. doi: 10.1016/j.jplph.2023.153983. [PMID: 37116390]
  • Joachim Nagler, Sonja C Schriever, Artem Romanov, Daniela Vogt-Weisenhorn, Wolfgang Wurst, Paul T Pfluger, Karl-Werner Schramm. Determination of morphine and norlaudanosoline in murine brain regions by dispersive liquid-liquid micro-extraction and liquid chromatograpy-electrochemical detection. Neurochemistry international. 2021 11; 150(?):105174. doi: 10.1016/j.neuint.2021.105174. [PMID: 34474098]
  • Eitaro Matsumura, Akira Nakagawa, Yusuke Tomabechi, Takashi Koyanagi, Hidehiko Kumagai, Kenji Yamamoto, Takane Katayama, Fumihiko Sato, Hiromichi Minami. Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method. Bioscience, biotechnology, and biochemistry. 2017 Feb; 81(2):396-402. doi: 10.1080/09168451.2016.1243985. [PMID: 27740901]
  • Yanran Li, Christina D Smolke. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nature communications. 2016 07; 7(?):12137. doi: 10.1038/ncomms12137. [PMID: 27378283]
  • Limei Chang, Jillian M Hagel, Peter J Facchini. Isolation and Characterization of O-methyltransferases Involved in the Biosynthesis of Glaucine in Glaucium flavum. Plant physiology. 2015 Oct; 169(2):1127-40. doi: 10.1104/pp.15.01240. [PMID: 26297140]
  • Stephanie Galanie, Christina D Smolke. Optimization of yeast-based production of medicinal protoberberine alkaloids. Microbial cell factories. 2015 Sep; 14(?):144. doi: 10.1186/s12934-015-0332-3. [PMID: 26376732]
  • Elena Fossati, Andrew Ekins, Lauren Narcross, Yun Zhu, Jean-Pierre Falgueyret, Guillaume A W Beaudoin, Peter J Facchini, Vincent J J Martin. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nature communications. 2014; 5(?):3283. doi: 10.1038/ncomms4283. [PMID: 24513861]
  • George B Stefano, Kirk J Mantione, Milena Králíčková, Radek Ptacek, Hana Kuzelova, Tobias Esch, Richard M Kream. Parkinson's disease, L-DOPA, and endogenous morphine: a revisit. Medical science monitor : international medical journal of experimental and clinical research. 2012 Aug; 18(8):RA133-137. doi: 10.12659/msm.883259. [PMID: 22847214]
  • Akira Nakagawa, Hiromichi Minami, Ju-Sung Kim, Takashi Koyanagi, Takane Katayama, Fumihiko Sato, Hidehiko Kumagai. A bacterial platform for fermentative production of plant alkaloids. Nature communications. 2011; 2(?):326. doi: 10.1038/ncomms1327. [PMID: 21610729]
  • Xu Han, Marc Lamshöft, Nadja Grobe, Xuan Ren, Anthony J Fist, Toni M Kutchan, Michael Spiteller, Meinhart H Zenk. The biosynthesis of papaverine proceeds via (S)-reticuline. Phytochemistry. 2010 Aug; 71(11-12):1305-12. doi: 10.1016/j.phytochem.2010.04.022. [PMID: 20494383]
  • Nadja Grobe, Marc Lamshöft, Robert G Orth, Birgit Dräger, Toni M Kutchan, Meinhart H Zenk, Michael Spiteller. Urinary excretion of morphine and biosynthetic precursors in mice. Proceedings of the National Academy of Sciences of the United States of America. 2010 May; 107(18):8147-52. doi: 10.1073/pnas.1003423107. [PMID: 20421505]
  • Ramón Soto-Otero, Carolina Sanmartín-Suárez, Sofía Sánchez-Iglesias, Alvaro Hermida-Ameijeiras, Inés Sánchez-Sellero, Estefanía Méndez-Alvarez. Study on the ability of 1,2,3,4-tetrahydropapaveroline to cause oxidative stress: Mechanisms and potential implications in relation to parkinson's disease. Journal of biochemical and molecular toxicology. 2006; 20(5):209-20. doi: 10.1002/jbt.20138. [PMID: 17009235]
  • Wei Zhu, Patrick Cadet, Geert Baggerman, Kirk J Mantione, George B Stefano. Human white blood cells synthesize morphine: CYP2D6 modulation. Journal of immunology (Baltimore, Md. : 1950). 2005 Dec; 175(11):7357-62. doi: 10.4049/jimmunol.175.11.7357. [PMID: 16301642]
  • Jürgen Schmidt, Klaus Raith, Chotima Boettcher, Meinhart H Zenk. Analysis of benzylisoquinoline-type alkaloids by electrospray tandem mass spectrometry and atmospheric pressure photoionization. European journal of mass spectrometry (Chichester, England). 2005; 11(3):325-33. doi: 10.1255/ejms.745. [PMID: 16107747]
  • Chotima Poeaknapo, Jürgen Schmidt, Matthias Brandsch, Birgit Dräger, Meinhart H Zenk. Endogenous formation of morphine in human cells. Proceedings of the National Academy of Sciences of the United States of America. 2004 Sep; 101(39):14091-6. doi: 10.1073/pnas.0405430101. [PMID: 15383669]
  • Jae Joon Lee, Yu Mi Kim, Shou Yu Yin, Hee Dong Park, Min Hee Kang, Jin Tae Hong, Myung Koo Lee. Aggravation of L-DOPA-induced neurotoxicity by tetrahydropapaveroline in PC12 cells. Biochemical pharmacology. 2003 Nov; 66(9):1787-95. doi: 10.1016/s0006-2952(03)00421-0. [PMID: 14563489]
  • T Okada, S Shimada, K Sato, Y Kotake, H Kawai, S Ohta, M Tohyama, T Nishimura. Tetrahydropapaveroline and its derivatives inhibit dopamine uptake through dopamine transporter expressed in HEK293 cells. Neuroscience research. 1998 Jan; 30(1):87-90. doi: 10.1016/s0168-0102(97)00121-1. [PMID: 9572583]
  • H Haber, H M Haber, M F Melzig. A new rapid method for the analysis of catecholic tetrahydroisoquinolines from biological samples by gas chromatography/mass spectrometry. Analytical biochemistry. 1995 Jan; 224(1):256-62. doi: 10.1006/abio.1995.1038. [PMID: 7710080]
  • J L Cashaw. Determination of tetrahydropapaveroline in the urine of parkinsonian patients receiving L-dopa-carbidopa (Sinemet) therapy by high-performance liquid chromatography. Journal of chromatography. 1993 Apr; 613(2):267-73. doi: 10.1016/0378-4347(93)80141-p. [PMID: 8491812]
  • K Matsubara, S Fukushima, A Akane, S Kobayashi, H Shiono. Increased urinary morphine, codeine and tetrahydropapaveroline in parkinsonian patient undergoing L-3,4-dihydroxyphenylalanine therapy: a possible biosynthetic pathway of morphine from L-3,4-dihydroxyphenylalanine in humans. The Journal of pharmacology and experimental therapeutics. 1992 Mar; 260(3):974-8. doi: . [PMID: 1545408]
  • C A Geraghty, J L Cashaw. Method for the identification of tetrahydropapaveroline using the Pictet-Spengler condensation reaction and high-performance liquid chromatography. Journal of chromatography. 1989 Apr; 489(2):399-403. doi: 10.1016/s0378-4347(00)82921-7. [PMID: 2753963]
  • R J Simmonds. Determination of atracurium, laudanosine and related compounds in plasma by high-performance liquid chromatography. Journal of chromatography. 1985 Oct; 343(2):431-6. doi: 10.1016/s0378-4347(00)84615-0. [PMID: 3840807]
  • G A Smythe, M W Duncan. Precise GC/MS assays for salsolinol and tetrahydropapaveroline: the question of artifacts and dietary sources and the influence of alcohol. Progress in clinical and biological research. 1985; 183(?):77-84. doi: NULL. [PMID: 4048185]
  • M Schmidt, J L Imbs, J L Neumeyer, E M Giesen, J Schwartz. Vascular effects of apomorphine and related compounds in the perfused rat kidney. European journal of pharmacology. 1984 Jan; 97(1-2):75-85. doi: 10.1016/0014-2999(84)90514-4. [PMID: 6141949]
  • M Sandler, V Glover, I Armando, A Clow. Pictet-Spengler condensation products, stress and alcoholism: some clinical overtones. Progress in clinical and biological research. 1982; 90(?):215-26. doi: NULL. [PMID: 7111321]
  • H Weiner. Estimation of the in vivo concentration of salsolinol and tetrahydropapaveroline in rat brain after the administration of ethanol. Substance and alcohol actions/misuse. 1980; 1(3):317-22. doi: . [PMID: 7347923]
  • J M Lasala, C J Coscia. Accumulation of a tetrahydroisoquinoline in phenylketonuria. Science (New York, N.Y.). 1979 Jan; 203(4377):283-4. doi: 10.1126/science.153583. [PMID: 153583]