Capsidiol (BioDeep_00000007503)

 

Secondary id: BioDeep_00000638486

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


(1R,3R,4S,4aR,6R)-4,4a-dimethyl-6-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene-1,3-diol 1beta,3alpha,4betaH-eremophila-9,11-diene-1,3-diol

化学式: C15H24O2 (236.1776)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 14.76%

分子结构信息

SMILES: C=C(C)C1CC=C2C(O)CC(O)C(C)C2(C)C1
InChI: InChI=1S/C15H24O2/c1-9(2)11-5-6-12-14(17)7-13(16)10(3)15(12,4)8-11/h6,10-11,13-14,16-17H,1,5,7-8H2,2-4H3/t10-,11-,13-,14-,15-/m1/s1

描述信息

Capsidiol is a phytoalexin, a natural fungicide present in pepper. (PMID: 10335386). Capsidiol shows bacteriostatic properties in vitro against Helicobacter pylori with a minimum inhibitory concentration (MIC) of 200 microg/mL. (PMID: 17002415). Capsidiol is a bicyclic, dihydroxylated sesquiterpene produced by several solanaceous species in response to a variety of environmental stimuli. It is the primary antimicrobial compound produced by Nicotiana tabacum in response to fungal elicitation, and it is formed via the isoprenoid pathway from 5-epi-aristolochene. (PMID: 11556809).
Phytoalexin of infected sweet pepper fruits (Capsicum annuum)

同义名列表

7 个代谢物同义名

(1R,3R,4S,4aR,6R)-4,4a-dimethyl-6-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene-1,3-diol 1beta,3alpha,4betaH-eremophila-9,11-diene-1,3-diol; (1R,3R,4S,4aR,6R)-4,4a-dimethyl-6-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene-1,3-diol; (1R,3R,4S,4AR,6R)-4,4a-dimethyl-6-prop-1-en-2-yl-2,3,4,5,6,7-hexahydro-1H-naphthalene-1,3-diol; (1R,3R,4S,4aR,6R)-6-isopropenyl-4,4a-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalene-1,3-diol; capsidiol; NSC635814; Capsidiol



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

19 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

  • capsidiol biosynthesis: (+)-5-epi-aristolochene + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-deoxycapsidiol + H2O + an oxidized [NADPH-hemoprotein reductase]

WikiPathways(0)

Plant Reactome(3)

INOH(0)

PlantCyc(15)

  • capsidiol biosynthesis: 3-deoxycapsidiol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + capsidiol
  • capsidiol biosynthesis: 3-deoxycapsidiol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + capsidiol
  • capsidiol biosynthesis: 3-deoxycapsidiol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + capsidiol
  • capsidiol biosynthesis: (+)-5-epi-aristolochene + H+ + NADPH + O2 ⟶ 3-deoxy-capsidiol + H2O + NADP+
  • capsidiol biosynthesis: 3-deoxycapsidiol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + capsidiol
  • capsidiol biosynthesis: (+)-5-epi-aristolochene + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-deoxycapsidiol + H2O + an oxidized [NADPH-hemoprotein reductase]
  • capsidiol biosynthesis: 3-deoxycapsidiol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + capsidiol
  • capsidiol biosynthesis: (+)-5-epi-aristolochene + H+ + NADPH + O2 ⟶ 3-deoxy-capsidiol + H2O + NADP+
  • capsidiol biosynthesis: 3-deoxycapsidiol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + capsidiol
  • capsidiol biosynthesis: 1-deoxy-capsidiol + H+ + NADPH + O2 ⟶ H2O + NADP+ + capsidiol
  • capsidiol biosynthesis: 3-deoxycapsidiol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + capsidiol
  • capsidiol biosynthesis: 3-deoxycapsidiol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + capsidiol
  • capsidiol biosynthesis: 3-deoxycapsidiol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + capsidiol
  • capsidiol biosynthesis: 3-deoxycapsidiol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + capsidiol
  • capsidiol biosynthesis: (2E,6E)-farnesyl diphosphate ⟶ (+)-5-epi-aristolochene + diphosphate

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

30 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 GGPS1, PTGS2, RANBP1, TCIM
Peripheral membrane protein 2 CYP1B1, PTGS2
Endoplasmic reticulum membrane 6 ABCG1, CD4, CYP1B1, FDFT1, HMGCR, PTGS2
Mitochondrion membrane 1 ABCG2
Nucleus 4 NUP160, RANBP1, TBX21, TCIM
cytosol 5 CD28, GGPS1, NUP160, RANBP1, TCIM
mitochondrial membrane 1 ABCG2
centrosome 1 RANBP1
nucleoplasm 3 ABCG2, GGPS1, TCIM
Cell membrane 6 ABCG1, ABCG2, CD28, CD4, CD8A, TNF
Multi-pass membrane protein 4 ABCG1, ABCG2, FDFT1, HMGCR
Golgi apparatus membrane 1 ABCG1
cell surface 2 CD28, TNF
Golgi apparatus 1 ABCG1
Golgi membrane 1 ABCG1
neuronal cell body 2 TBX21, TNF
endosome 1 ABCG1
plasma membrane 8 ABCG1, ABCG2, CD28, CD4, CD8A, KNG1, TCIM, TNF
Membrane 5 ABCG1, ABCG2, CYP1B1, FDFT1, HMGCR
apical plasma membrane 1 ABCG2
caveola 1 PTGS2
extracellular exosome 1 KNG1
endoplasmic reticulum 3 FDFT1, HMGCR, PTGS2
extracellular space 5 CXCL10, IL17A, IL2, KNG1, TNF
perinuclear region of cytoplasm 1 GGPS1
mitochondrion 2 ABCG1, CYP1B1
protein-containing complex 1 PTGS2
intracellular membrane-bounded organelle 1 CYP1B1
Microsome membrane 2 CYP1B1, PTGS2
Single-pass type I membrane protein 2 CD4, CD8A
Secreted 3 CXCL10, IL17A, IL2
extracellular region 7 CD8A, CXCL10, DNAH9, IL17A, IL2, KNG1, TNF
[Isoform 2]: Secreted 1 CD8A
motile cilium 1 DNAH9
external side of plasma membrane 7 ABCG1, CD28, CD4, CD8A, CXCL10, IL17A, TNF
Z disc 1 GGPS1
nucleolus 1 TCIM
Early endosome 1 CD4
recycling endosome 2 ABCG1, TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 1 ABCG2
Cytoplasm, perinuclear region 1 GGPS1
Membrane raft 3 ABCG2, CD4, TNF
microtubule 1 DNAH9
peroxisomal membrane 1 HMGCR
collagen-containing extracellular matrix 1 KNG1
axoneme 1 DNAH9
nuclear speck 1 TCIM
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 CD8A
neuron projection 1 PTGS2
chromatin 1 TBX21
phagocytic cup 1 TNF
Secreted, extracellular space 1 KNG1
brush border membrane 1 ABCG2
Nucleus, nucleolus 1 TCIM
blood microparticle 1 KNG1
Cytoplasm, cytoskeleton, cilium axoneme 1 DNAH9
Nucleus, nuclear pore complex 1 NUP160
nuclear envelope 2 NUP160, RANBP1
nuclear pore 2 NUP160, RANBP1
Nucleus speckle 1 TCIM
Peroxisome membrane 1 HMGCR
Cytoplasm, myofibril, sarcomere, Z line 1 GGPS1
plasma membrane raft 1 CD8A
endoplasmic reticulum lumen 3 CD4, KNG1, PTGS2
platelet alpha granule lumen 1 KNG1
immunological synapse 1 CD28
9+2 motile cilium 1 DNAH9
dynein complex 1 DNAH9
clathrin-coated endocytic vesicle membrane 1 CD4
external side of apical plasma membrane 1 ABCG2
[Isoform 1]: Cell membrane 1 CD8A
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 2 CD4, CD8A
[Isoform 3]: Cell surface 1 CD28
protein complex involved in cell adhesion 1 CD28
nuclear pore outer ring 1 NUP160
outer dynein arm 1 DNAH9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
distal portion of axoneme 1 DNAH9


文献列表

  • Na Song, Jinsong Wu. NaWRKY70 is a key regulator of Nicotiana attenuata resistance to Alternaria alternata through regulation of phytohormones and phytoalexins biosynthesis. The New phytologist. 2024 May; 242(3):1289-1306. doi: 10.1111/nph.19647. [PMID: 38426573]
  • Yingbo Liang, Ze Li, Yi Zhang, Fanlu Meng, Dewen Qiu, Hongmei Zeng, Guangyue Li, Xiufen Yang. Nbnrp1 mediates Verticillium dahliae effector PevD1-triggered defense responses by regulating sesquiterpenoid phytoalexins biosynthesis pathway in Nicotiana benthamiana. Gene. 2021 Feb; 768(?):145280. doi: 10.1016/j.gene.2020.145280. [PMID: 33186613]
  • Viviane Y Baba, Adrian F Powell, Suzana T Ivamoto-Suzuki, Luiz F P Pereira, André L L Vanzela, Renata M Giacomin, Susan R Strickler, Lukas A Mueller, Rosana Rodrigues, Leandro S A Gonçalves. Capsidiol-related genes are highly expressed in response to Colletotrichum scovillei during Capsicum annuum fruit development stages. Scientific reports. 2020 07; 10(1):12048. doi: 10.1038/s41598-020-68949-5. [PMID: 32694584]
  • Maurizio Camagna, Makoto Ojika, Daigo Takemoto. Detoxification of the solanaceous phytoalexins rishitin, lubimin, oxylubimin and solavetivone via a cytochrome P450 oxygenase. Plant signaling & behavior. 2020; 15(2):1707348. doi: 10.1080/15592324.2019.1707348. [PMID: 31884882]
  • Tomoya Kojima, Nobuhide Asakura, Shiori Hasegawa, Taishi Hirasawa, Yuri Mizuno, Daigo Takemoto, Shinpei Katou. Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis. BMC plant biology. 2019 Dec; 19(1):576. doi: 10.1186/s12870-019-2204-1. [PMID: 31864296]
  • Xi Chen, Fangjie Liu, Lu Liu, Jie Qiu, Dunhuang Fang, Weidi Wang, Xingcheng Zhang, Chuyu Ye, Michael Paul Timko, Qian-Hao Zhu, Longjiang Fan, Bingguang Xiao. Characterization and evolution of gene clusters for terpenoid phytoalexin biosynthesis in tobacco. Planta. 2019 Nov; 250(5):1687-1702. doi: 10.1007/s00425-019-03255-7. [PMID: 31414203]
  • Na Song, Lan Ma, Weiguang Wang, Huanhuan Sun, Lei Wang, Ian T Baldwin, Jinsong Wu. An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. Journal of experimental botany. 2019 10; 70(20):5895-5908. doi: 10.1093/jxb/erz327. [PMID: 31294452]
  • Yingqi Cai, Payton Whitehead, Joe Chappell, Kent D Chapman. Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells. Planta. 2019 Jul; 250(1):79-94. doi: 10.1007/s00425-019-03148-9. [PMID: 30919065]
  • Ivonne Suárez, Gesiane da Silva Lima, Raphael Conti, Cristina Pinedo, Javier Moraga, Javier Barúa, Ana Ligia L de Oliveira, Josefina Aleu, Rosa Durán-Patrón, Antonio J Macías-Sánchez, James R Hanson, Mônica Tallarico Pupo, Rosario Hernández-Galán, Isidro G Collado. Structural and biosynthetic studies on eremophilenols related to the phytoalexin capsidiol, produced by Botrytis cinerea. Phytochemistry. 2018 Oct; 154(?):10-18. doi: 10.1016/j.phytochem.2018.06.010. [PMID: 29929021]
  • Hyun-Ah Lee, Sejun Kim, Seungill Kim, Doil Choi. Expansion of sesquiterpene biosynthetic gene clusters in pepper confers nonhost resistance to the Irish potato famine pathogen. The New phytologist. 2017 Aug; 215(3):1132-1143. doi: 10.1111/nph.14637. [PMID: 28631815]
  • Yonghyun Kim, Masahiro Miyashita, Hisashi Miyagawa. Early signaling events induced by the peptide elicitor PIP-1 necessary for acetosyringone accumulation in tobacco cells. Bioscience, biotechnology, and biochemistry. 2016 Jun; 80(6):1054-7. doi: 10.1080/09168451.2016.1151342. [PMID: 26924306]
  • Yonghyun Kim, Masahiro Miyashita, Hisashi Miyagawa. Photocontrol of Elicitor Activity of PIP-1 to Investigate Temporal Factors Involved in Phytoalexin Biosynthesis. Journal of agricultural and food chemistry. 2015 Jul; 63(25):5894-901. doi: 10.1021/acs.jafc.5b01910. [PMID: 26047371]
  • Ran Li, Chuan-Sia Tee, Yu-Lin Jiang, Xi-Yuan Jiang, Prasanna Nori Venkatesh, Rajani Sarojam, Jian Ye. A terpenoid phytoalexin plays a role in basal defense of Nicotiana benthamiana against Potato virus X. Scientific reports. 2015 May; 5(?):9682. doi: 10.1038/srep09682. [PMID: 25993114]
  • Mina Ohtsu, Yusuke Shibata, Makoto Ojika, Kentaro Tamura, Ikuko Hara-Nishimura, Hitoshi Mori, Kazuhito Kawakita, Daigo Takemoto. Nucleoporin 75 is involved in the ethylene-mediated production of phytoalexin for the resistance of Nicotiana benthamiana to Phytophthora infestans. Molecular plant-microbe interactions : MPMI. 2014 Dec; 27(12):1318-30. doi: 10.1094/mpmi-06-14-0181-r. [PMID: 25122483]
  • Alexandre Huchelmann, Clément Gastaldo, Mickaël Veinante, Ying Zeng, Dimitri Heintz, Denis Tritsch, Hubert Schaller, Michel Rohmer, Thomas J Bach, Andréa Hemmerlin. S-carvone suppresses cellulase-induced capsidiol production in Nicotiana tabacum by interfering with protein isoprenylation. Plant physiology. 2014 Feb; 164(2):935-50. doi: 10.1104/pp.113.232546. [PMID: 24367019]
  • Artemis Giannakopoulou, Sebastian Schornack, Tolga O Bozkurt, Dave Haart, Dae-Kyun Ro, Juan A Faraldos, Sophien Kamoun, Paul E O'Maille. Variation in capsidiol sensitivity between Phytophthora infestans and Phytophthora capsici is consistent with their host range. PloS one. 2014; 9(9):e107462. doi: 10.1371/journal.pone.0107462. [PMID: 25203155]
  • Sangkyu Park, Ae Ran Park, Soonduk Im, Yun-Jeong Han, Sungbeom Lee, Kyoungwhan Back, Jeong-Il Kim, Young Soon Kim. Developmentally regulated sesquiterpene production confers resistance to Colletotrichum gloeosporioides in ripe pepper fruits. PloS one. 2014; 9(10):e109453. doi: 10.1371/journal.pone.0109453. [PMID: 25286411]
  • Ladislav Dokládal, Michal Oboril, Karel Stejskal, Zbynek Zdráhal, Nikola Ptácková, Radka Chaloupková, Jirí Damborsky, Tomás Kasparovsky, Sylvain Jeandroz, Markéta Zd'árská, Jan Lochman. Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance. Journal of experimental botany. 2012 Mar; 63(5):2203-15. doi: 10.1093/jxb/err427. [PMID: 22223811]
  • Lorena Almagro, Roque Bru, Alain Pugin, María A Pedreño. Early signaling network in tobacco cells elicited with methyl jasmonate and cyclodextrins. Plant physiology and biochemistry : PPB. 2012 Feb; 51(?):1-9. doi: 10.1016/j.plaphy.2011.09.021. [PMID: 22153233]
  • Trinh-Don Nguyen, Gillian MacNevin, Dae-Kyun Ro. De novo synthesis of high-value plant sesquiterpenoids in yeast. Methods in enzymology. 2012; 517(?):261-78. doi: 10.1016/b978-0-12-404634-4.00013-9. [PMID: 23084943]
  • Jeannette Vera, Jorge Castro, Alberto Gonzalez, Alejandra Moenne. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Marine drugs. 2011 Dec; 9(12):2514-25. doi: 10.3390/md9122514. [PMID: 22363237]
  • Dominik K Grosskinsky, Muhammad Naseem, Usama Ramadan Abdelmohsen, Nicole Plickert, Thomas Engelke, Thomas Griebel, Jürgen Zeier, Ondrej Novák, Miroslav Strnad, Hartwig Pfeifhofer, Eric van der Graaff, Uwe Simon, Thomas Roitsch. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant physiology. 2011 Oct; 157(2):815-30. doi: 10.1104/pp.111.182931. [PMID: 21813654]
  • Nobuaki Ishihama, Reiko Yamada, Miki Yoshioka, Shinpei Katou, Hirofumi Yoshioka. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. The Plant cell. 2011 Mar; 23(3):1153-70. doi: 10.1105/tpc.110.081794. [PMID: 21386030]
  • Mari Aidemark, Henrik Tjellström, Anna Stina Sandelius, Henrik Stålbrand, Erik Andreasson, Allan G Rasmusson, Susanne Widell. Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. BMC plant biology. 2010 Dec; 10(?):274. doi: 10.1186/1471-2229-10-274. [PMID: 21156059]
  • Yusuke Shibata, Kazuhito Kawakita, Daigo Takemoto. Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethylene- and salicylic acid-mediated signaling pathways. Molecular plant-microbe interactions : MPMI. 2010 Sep; 23(9):1130-42. doi: 10.1094/mpmi-23-9-1130. [PMID: 20687803]
  • Petra Literakova, Jan Lochman, Zbynek Zdrahal, Zbynek Prokop, Vladimir Mikes, Tomas Kasparovsky. Determination of capsidiol in tobacco cells culture by HPLC. Journal of chromatographic science. 2010 Jul; 48(6):436-40. doi: 10.1093/chromsci/48.6.436. [PMID: 20822656]
  • Jens C Göpfert, Gillian Macnevin, Dae-Kyun Ro, Otmar Spring. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC plant biology. 2009 Jul; 9(?):86. doi: 10.1186/1471-2229-9-86. [PMID: 19580670]
  • Alexis Samba Mialoundama, Dimitri Heintz, Delphine Debayle, Alain Rahier, Bilal Camara, Florence Bouvier. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. Plant physiology. 2009 Jul; 150(3):1556-66. doi: 10.1104/pp.109.138420. [PMID: 19420326]
  • Simona De Marino, Nicola Borbone, Fulvio Gala, Franco Zollo, Gelsomina Fico, Rita Pagiotti, Maria Iorizzi. New constituents of sweet Capsicum annuum L. fruits and evaluation of their biological activity. Journal of agricultural and food chemistry. 2006 Oct; 54(20):7508-16. doi: 10.1021/jf061404z. [PMID: 17002415]
  • Shunji Takahashi, Yuxin Zhao, Paul E O'Maille, Bryan T Greenhagen, Joseph P Noel, Robert M Coates, Joe Chappell. Kinetic and molecular analysis of 5-epiaristolochene 1,3-dihydroxylase, a cytochrome P450 enzyme catalyzing successive hydroxylations of sesquiterpenes. The Journal of biological chemistry. 2005 Feb; 280(5):3686-96. doi: 10.1074/jbc.m411870200. [PMID: 15522862]
  • Bryan T Greenhagen, Paul Griggs, Shunji Takahashi, Lyle Ralston, Joe Chappell. Probing sesquiterpene hydroxylase activities in a coupled assay with terpene synthases. Archives of biochemistry and biophysics. 2003 Jan; 409(2):385-94. doi: 10.1016/s0003-9861(02)00613-6. [PMID: 12504906]
  • Maria Brodelius, Anneli Lundgren, Per Mercke, Peter E Brodelius. Fusion of farnesyldiphosphate synthase and epi-aristolochene synthase, a sesquiterpene cyclase involved in capsidiol biosynthesis in Nicotiana tabacum. European journal of biochemistry. 2002 Jul; 269(14):3570-7. doi: 10.1046/j.1432-1033.2002.03044.x. [PMID: 12135497]
  • Jörg Bohlmann, Einar J Stauber, Bernd Krock, Neil J Oldham, Jonathan Gershenzon, Ian T Baldwin. Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry. 2002 May; 60(2):109-16. doi: 10.1016/s0031-9422(02)00080-8. [PMID: 12009313]
  • A Mandujano-Chávez, M A Schoenbeck, L F Ralston, E Lozoya-Gloria, J Chappell. Differential induction of sesquiterpene metabolism in tobacco cell suspension cultures by methyl jasmonate and fungal elicitor. Archives of biochemistry and biophysics. 2000 Sep; 381(2):285-94. doi: 10.1006/abbi.2000.1961. [PMID: 11032417]
  • K Back, S He, K U Kim, D H Shin. Cloning and bacterial expression of sesquiterpene cyclase, a key branch point enzyme for the synthesis of sesquiterpenoid phytoalexin capsidiol in UV-challenged leaves of Capsicum annuum. Plant & cell physiology. 1998 Sep; 39(9):899-904. doi: 10.1093/oxfordjournals.pcp.a029452. [PMID: 9816674]
  • S Yin, L Mei, J Newman, K Back, J Chappell. Regulation of sesquiterpene cyclase gene expression. Characterization of an elicitor- and pathogen-inducible promoter. Plant physiology. 1997 Oct; 115(2):437-51. doi: 10.1104/pp.115.2.437. [PMID: 9342864]
  • A Nasiri, A Holth, L Björk. Effects of the sesquiterpene capsidiol on isolated guinea-pig ileum and trachea, and on prostaglandin synthesis in vitro. Planta medica. 1993 Jun; 59(3):203-6. doi: 10.1055/s-2006-959652. [PMID: 8316587]
  • . . . . doi: . [PMID: 17440821]