dGTP (BioDeep_00000004407)

 

Secondary id: BioDeep_00001868446

human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019


代谢物信息卡片


({[({[(2R,3S,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

化学式: C10H16N5O13P3 (506.9957)
中文名称: 2'-脱氧鸟苷-5'-三磷酸
谱图信息: 最多检出来源 Rattus norvegicus(otcml) 3.85%

分子结构信息

SMILES: C1C(C(OC1N2C=NC3=C2N=C(NC3=O)N)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)O
InChI: InChI=1S/C10H16N5O13P3/c11-10-13-8-7(9(17)14-10)12-3-15(8)6-1-4(16)5(26-6)2-25-30(21,22)28-31(23,24)27-29(18,19)20/h3-6,16H,1-2H2,(H,21,22)(H,23,24)(H2,18,19,20)(H3,11,13,14,17)/t4-,5+,6+/m0/s1

描述信息

Deoxyguanosine triphosphate (dGTP) is a nucleoside triphosphate, and a nucleotide precursor used in cells for DNA synthesis. dGTP is used in the polymerase chain reaction technique, in sequencing, and in cloning. It is also the competitor of inhibition onset by acyclovir in the treatment of HSV virus. Under normal physiologic conditions, deoxyguanosine (dGuo) undergoes phosphorolysis by purine nucleoside phosphorylase (PNP, EC 2.4.2.1, an enzyme involved in the recycling of nucleosides and deoxynucleosides in cellular remodeling). However, when PNP is inhibited, deoxycytidine kinase (dCK, EC 2.7.1.74) shunts unmetabolized dGuo into deoxyguanosine triphosphate (dGTP), which accumulates and blocks DNA synthesis. Deficiency of purine nucleoside phosphorylase results in defective T-cell immunity. A correlation between the degree of T cell inhibition and the level of dCK activity has been observed. (PMID:11287638, 402573).
Under normal physiologic conditions, deoxyguanosine (dGuo) undergoes phosphorolysis by purine nucleoside phosphorylase (PNP, EC 2.4.2.1, an enzyme involved in the recycling of nucleosides and deoxynucleosides in cellular remodeling). However, when PNP is inhibited, deoxycytidine kinase (dCK, EC 2.7.1.74) shunts unmetabolized dGuo into deoxyguanosine triphosphate (dGTP), which accumulates and blocks DNA synthesis. Deficiency of purine nucleoside phosphorylase results in defective T-cell immunity. A correlation between the degree of T cell inhibition and the level of dCK activity is observed. (PMID: 11287638, 402573) [HMDB]. dGTP is found in many foods, some of which are jews ear, evergreen huckleberry, cumin, and red algae.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

16 个代谢物同义名

({[({[(2R,3S,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid; Deoxyguanosine triphosphate, 3H-labeled; 2-Deoxyguanosine 5-triphosphoric acid; Deoxyguanosine 5-triphosphoric acid; Deoxyguanosine triphosphate (dGTP); Deoxyguanosine triphosphoric acid; 2-Deoxyguanosine 5-triphosphate; 2-Deoxyguanosine-5-triphosphate; 2-Deoxyguanosine triphosphate; Deoxyguanosine 5-triphosphate; Deoxyguanosine triphosphate; dGTP - lyophilized; Deoxy-GTP; dGTP; 2'-Deoxyguanosine 5'-triphosphate(dGTP); dGTP



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(3)

PlantCyc(2)

代谢反应

610 个相关的代谢反应过程信息。

Reactome(52)

  • DNA Replication: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • Synthesis of DNA: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Cell Cycle: 2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
  • Cell Cycle, Mitotic: 2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
  • S Phase: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • DNA Replication: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Synthesis of DNA: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Cell Cycle: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Cell Cycle, Mitotic: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • S Phase: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Chromosome Maintenance: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere Maintenance: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Extension of Telomeres: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Cell Cycle: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • Cell Cycle, Mitotic: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • S Phase: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • Synthesis of DNA: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:origin duplex ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:origin duplex:PCNA homotrimer
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • DNA Replication: ATP + MCM2-7 ⟶ ADP + p-MCM2-7
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat

BioCyc(4)

WikiPathways(5)

Plant Reactome(0)

INOH(2)

PlantCyc(495)

COVID-19 Disease Map(1)

PathBank(51)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ADA, APRT, DCK, DCTD, DGUOK, DHFR, HPRT1, NUDT1, PNP, POLB, TUBB4B
Peripheral membrane protein 1 ADA
Endoplasmic reticulum membrane 1 CD4
Nucleus 10 DCK, DGUOK, NUDT1, OGG1, POLB, POLH, POLI, REV1, SAMHD1, TUBB4B
cytosol 13 ADA, APRT, DCK, DCTD, DGUOK, DHFR, HPRT1, NUDT1, NUDT15, OGG1, PNP, POLH, TUBB4B
nucleoplasm 8 APRT, DCK, OGG1, POLB, POLH, POLI, REV1, SAMHD1
Cell membrane 2 ADA, CD4
cell junction 1 ADA
cell surface 1 ADA
Golgi apparatus 1 POLH
Lysosome 1 ADA
acrosomal vesicle 1 NUDT1
plasma membrane 4 ADA, CD4, LRP5, SAMHD1
Membrane 2 ADA, LRP5
extracellular exosome 4 APRT, HPRT1, PNP, TUBB4B
endoplasmic reticulum 1 LRP5
extracellular space 3 IL2, NUDT1, PNP
mitochondrion 5 DCK, DGUOK, DHFR, NUDT1, OGG1
protein-containing complex 2 OGG1, POLB
Single-pass type I membrane protein 2 CD4, LRP5
Secreted 2 IL2, PNP
extracellular region 4 APRT, IL2, PNP, TUBB4B
Mitochondrion matrix 1 NUDT1
mitochondrial matrix 3 DGUOK, NUDT1, OGG1
Extracellular side 1 ADA
Cytoplasmic vesicle lumen 1 ADA
anchoring junction 1 ADA
nuclear membrane 1 NUDT1
external side of plasma membrane 2 ADA, CD4
Extracellular vesicle 1 TUBB4B
microtubule cytoskeleton 1 TUBB4B
Wnt signalosome 1 LRP5
Early endosome 1 CD4
Membrane raft 1 CD4
Cytoplasm, cytoskeleton 1 TUBB4B
microtubule 2 POLB, TUBB4B
mitochondrial nucleoid 1 POLH
nuclear speck 2 OGG1, POLI
receptor complex 1 LRP5
mitotic spindle 1 TUBB4B
Chromosome 2 POLH, SAMHD1
cytoskeleton 1 TUBB4B
cytoplasmic ribonucleoprotein granule 1 POLI
site of double-strand break 2 POLH, SAMHD1
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
axonemal microtubule 1 TUBB4B
Nucleus, nucleoplasm 1 OGG1
Nucleus speckle 1 OGG1
replication fork 1 POLH
ficolin-1-rich granule lumen 1 PNP
secretory granule lumen 2 APRT, PNP
endoplasmic reticulum lumen 1 CD4
nuclear matrix 1 OGG1
azurophil granule lumen 1 TUBB4B
tetraspanin-enriched microdomain 1 SAMHD1
Nucleus matrix 1 OGG1
clathrin-coated endocytic vesicle membrane 1 CD4
spindle microtubule 1 POLB
Wnt-Frizzled-LRP5/6 complex 1 LRP5
site of DNA damage 1 POLH
T cell receptor complex 1 CD4
[Isoform p18]: Cytoplasm, cytosol 1 NUDT1
[Isoform p26]: Mitochondrion matrix 1 NUDT1


文献列表

  • Peng Peng, Yanjuan Xu, Adrian M Di Bisceglie, Xiaofeng Fan. A novel target enrichment strategy in next-generation sequencing through 7-deaza-dGTP-resistant enzymatic digestion. BMC research notes. 2020 Sep; 13(1):445. doi: 10.1186/s13104-020-05292-y. [PMID: 32948245]
  • A Ditta, H Nawaz, T Mahmood, M I Majeed, M Tahir, N Rashid, M Muddassar, A A Al-Saadi, H J Byrne. Principal components analysis of Raman spectral data for screening of Hepatitis C infection. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2019 Oct; 221(?):117173. doi: 10.1016/j.saa.2019.117173. [PMID: 31158766]
  • Yiqing Chen, Jing Zhang, Hehua Liu, Yanqing Gao, Xuhang Li, Lina Zheng, Ruixue Cui, Qingqing Yao, Liang Rong, Jixi Li, Zhen Huang, Jinbiao Ma, Jianhua Gan. Unique 5'-P recognition and basis for dG:dGTP misincorporation of ASFV DNA polymerase X. PLoS biology. 2017 02; 15(2):e1002599. doi: 10.1371/journal.pbio.1002599. [PMID: 28245220]
  • Vi N Nguyen, Annsea Park, Anting Xu, John R Srouji, Steven E Brenner, Jack F Kirsch. Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family. Proteins. 2016 12; 84(12):1810-1822. doi: 10.1002/prot.25163. [PMID: 27618147]
  • Mark D Evans, Vilas Mistry, Rajinder Singh, Daniel Gackowski, Rafał Różalski, Agnieszka Siomek-Gorecka, David H Phillips, Jie Zuo, Leon Mullenders, Alex Pines, Yusaku Nakabeppu, Kunihiko Sakumi, Mutsuo Sekiguchi, Teruhisa Tsuzuki, Margherita Bignami, Ryszard Oliński, Marcus S Cooke. Nucleotide excision repair of oxidised genomic DNA is not a source of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine. Free radical biology & medicine. 2016 10; 99(?):385-391. doi: 10.1016/j.freeradbiomed.2016.08.018. [PMID: 27585947]
  • Ilaria Dalla Rosa, Yolanda Cámara, Romina Durigon, Chloe F Moss, Sara Vidoni, Gokhan Akman, Lilian Hunt, Mark A Johnson, Sarah Grocott, Liya Wang, David R Thorburn, Michio Hirano, Joanna Poulton, Robert W Taylor, Greg Elgar, Ramon Martí, Peter Voshol, Ian J Holt, Antonella Spinazzola. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS genetics. 2016 Jan; 12(1):e1005779. doi: 10.1371/journal.pgen.1005779. [PMID: 26760297]
  • Kumudha Balakrishnan, Farhad Ravandi, Shanta Bantia, Anna Franklin, Varsha Gandhi. Preclinical and clinical evaluation of forodesine in pediatric and adult B-cell acute lymphoblastic leukemia. Clinical lymphoma, myeloma & leukemia. 2013 Aug; 13(4):458-66. doi: 10.1016/j.clml.2013.04.009. [PMID: 23773454]
  • Stephan Bender, Thomas Rellum, Christine Freitag, Franz Resch, Marcella Rietschel, Jens Treutlein, Christine Jennen-Steinmetz, Daniel Brandeis, Tobias Banaschewski, Manfred Laucht. Dopamine inactivation efficacy related to functional DAT1 and COMT variants influences motor response evaluation. PloS one. 2012; 7(5):e37814. doi: 10.1371/journal.pone.0037814. [PMID: 22649558]
  • Martin Pabst, Josephine Grass, Richard Fischl, Renaud Léonard, Chunsheng Jin, Georg Hinterkörner, Nicole Borth, Friedrich Altmann. Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Analytical chemistry. 2010 Dec; 82(23):9782-8. doi: 10.1021/ac101975k. [PMID: 21043458]
  • Kumudha Balakrishnan, Dushyant Verma, Susan O'Brien, John Michael Kilpatrick, Yuling Chen, Brenita F Tyler, Susan Bickel, Shanta Bantia, Michael J Keating, Hagop Kantarjian, Varsha Gandhi, Farhad Ravandi. Phase 2 and pharmacodynamic study of oral forodesine in patients with advanced, fludarabine-treated chronic lymphocytic leukemia. Blood. 2010 Aug; 116(6):886-92. doi: 10.1182/blood-2010-02-272039. [PMID: 20427701]
  • Peter Møller, Steffen Loft. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. Environmental health perspectives. 2010 Aug; 118(8):1126-36. doi: 10.1289/ehp.0901725. [PMID: 20423813]
  • Sanjay U C Sankatsing, Jan M Prins, Si-La L Yong, Jeroen Roelofsen, André B P van Kuilenburg, Steve Kewn, David J Back, Frederike J Bemelman, Ineke J M ten Berge. Mycophenolate mofetil inhibits T-cell proliferation in kidney transplant recipients without lowering intracellular dGTP and GTP. Transplant international : official journal of the European Society for Organ Transplantation. 2008 Nov; 21(11):1066-71. doi: 10.1111/j.1432-2277.2008.00739.x. [PMID: 18699845]
  • Varsha Gandhi, Kumudha Balakrishnan. Pharmacology and mechanism of action of forodesine, a T-cell targeted agent. Seminars in oncology. 2007 Dec; 34(6 Suppl 5):S8-12. doi: 10.1053/j.seminoncol.2007.11.003. [PMID: 18086347]
  • Farhad Ravandi, Varsha Gandhi. Novel purine nucleoside analogues for T-cell-lineage acute lymphoblastic leukaemia and lymphoma. Expert opinion on investigational drugs. 2006 Dec; 15(12):1601-13. doi: 10.1517/13543784.15.12.1601. [PMID: 17107284]
  • Carlos M Galmarini. Drug evaluation: forodesine - PNP inhibitor for the treatment of leukemia, lymphoma and solid tumor. IDrugs : the investigational drugs journal. 2006 Oct; 9(10):712-22. doi: . [PMID: 17016779]
  • Rupinderjeet Kaur, Roger Bedimo, Mary Beth Kvanli, Diana Turner, Leslie Shaw, David Margolis. A placebo-controlled pilot study of intensification of antiretroviral therapy with mycophenolate mofetil. AIDS research and therapy. 2006 May; 3(?):16. doi: 10.1186/1742-6405-3-16. [PMID: 16729890]
  • Tadeusz Robak, Ewa Lech-Maranda, Anna Korycka, Ewa Robak. Purine nucleoside analogs as immunosuppressive and antineoplastic agents: mechanism of action and clinical activity. Current medicinal chemistry. 2006; 13(26):3165-89. doi: 10.2174/092986706778742918. [PMID: 17168705]
  • Varsha Gandhi, John M Kilpatrick, William Plunkett, Mary Ayres, Leigh Harman, Min Du, Shanta Bantia, Jan Davisson, William G Wierda, Stefan Faderl, Hagop Kantarjian, Deborah Thomas. A proof-of-principle pharmacokinetic, pharmacodynamic, and clinical study with purine nucleoside phosphorylase inhibitor immucillin-H (BCX-1777, forodesine). Blood. 2005 Dec; 106(13):4253-60. doi: 10.1182/blood-2005-03-1309. [PMID: 16131572]
  • Kent Persson, Keith Hamby, Luis A Ugozzoli. Four-color multiplex reverse transcription polymerase chain reaction--overcoming its limitations. Analytical biochemistry. 2005 Sep; 344(1):33-42. doi: 10.1016/j.ab.2005.06.026. [PMID: 16039598]
  • Chun Hung Ma, Joannie Hui, Janet Tsui Ying Tang, Danny Tze Ming Leung, Yiu Loon Chui, Tai Fai Fok, Pak-Leong Lim. Antibodies to guanosine triphosphate misidentified as anti-double-stranded DNA antibodies in a patient with antinuclear antibody-negative lupus, due to buckling of insolubilized assay DNA. Arthritis and rheumatism. 2004 May; 50(5):1533-8. doi: 10.1002/art.20188. [PMID: 15146423]
  • Shanta Bantia, John Michael Kilpatrick. Purine nucleoside phosphorylase inhibitors in T-cell malignancies. Current opinion in drug discovery & development. 2004 Mar; 7(2):243-7. doi: . [PMID: 15603259]
  • Sanjay U C Sankatsing, Patrick G Hoggard, Alwin D R Huitema, Rolf W Sparidans, Stephen Kewn, Kristel M L Crommentuyn, Joep M A Lange, Jos H Beijnen, David J Back, Jan M Prins. Effect of mycophenolate mofetil on the pharmacokinetics of antiretroviral drugs and on intracellular nucleoside triphosphate pools. Clinical pharmacokinetics. 2004; 43(12):823-32. doi: 10.2165/00003088-200443120-00004. [PMID: 15355127]
  • Francis J Giles, Paula M Fracasso, Hagop M Kantarjian, Jorge E Cortes, Randy A Brown, Srdan Verstovsek, Yesid Alvarado, Deborah A Thomas, Stefan Faderl, Guillermo Garcia-Manero, Lisa P Wright, Tom Samson, Ann Cahill, Paula Lambert, William Plunkett, Mario Sznol, John F DiPersio, Varsha Gandhi. Phase I and pharmacodynamic study of Triapine, a novel ribonucleotide reductase inhibitor, in patients with advanced leukemia. Leukemia research. 2003 Dec; 27(12):1077-83. doi: 10.1016/s0145-2126(03)00118-8. [PMID: 12921943]
  • David M Margolis, Stephen Kewn, Jason J Coull, Loyda Ylisastigui, Diana Turner, Holly Wise, Mohammed M Hossain, E Randall Lanier, Leslie M Shaw, David Back. The addition of mycophenolate mofetil to antiretroviral therapy including abacavir is associated with depletion of intracellular deoxyguanosine triphosphate and a decrease in plasma HIV-1 RNA. Journal of acquired immune deficiency syndromes (1999). 2002 Sep; 31(1):45-9. doi: 10.1097/00126334-200209010-00006. [PMID: 12352149]
  • S Takahashi, K Hori, K Takahashi, H Ogasawara, M Tomatsu, K Saito. Effects of nucleotides on N-acetyl-d-glucosamine 2-epimerases (renin-binding proteins): comparative biochemical studies. Journal of biochemistry. 2001 Dec; 130(6):815-21. doi: 10.1093/oxfordjournals.jbchem.a003053. [PMID: 11726282]
  • V Gandhi, W Plunkett, S Weller, M Du, M Ayres, C O Rodriguez, P Ramakrishna, G L Rosner, J P Hodge, S O'Brien, M J Keating. Evaluation of the combination of nelarabine and fludarabine in leukemias: clinical response, pharmacokinetics, and pharmacodynamics in leukemia cells. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2001 Apr; 19(8):2142-52. doi: 10.1200/jco.2001.19.8.2142. [PMID: 11304766]
  • E Arpaia, Y Gu, I Dalal, S Kelly, M Hershfield, C M Roifman, A Cohen. Biochemical and immunological abnormalities in purine nucleoside phosphorylase deficient mice. Advances in experimental medicine and biology. 2000; 486(?):41-5. doi: 10.1007/0-306-46843-3_8. [PMID: 11783524]
  • J Neyts, G Andrei, E De Clercq. The novel immunosuppressive agent mycophenolate mofetil markedly potentiates the antiherpesvirus activities of acyclovir, ganciclovir, and penciclovir in vitro and in vivo. Antimicrobial agents and chemotherapy. 1998 Feb; 42(2):216-22. doi: 10.1128/aac.42.2.216. [PMID: 9527762]
  • T M Fletcher, M Salazar, S F Chen. Human telomerase inhibition by 7-deaza-2'-deoxypurine nucleoside triphosphates. Biochemistry. 1996 Dec; 35(49):15611-7. doi: 10.1021/bi961228v. [PMID: 8961922]
  • S Bantia, J A Montgomery, H G Johnson, G M Walsh. In vivo and in vitro pharmacologic activity of the purine nucleoside phosphorylase inhibitor BCX-34: the role of GTP and dGTP. Immunopharmacology. 1996 Oct; 35(1):53-63. doi: 10.1016/0162-3109(96)00123-3. [PMID: 8913795]
  • C Chantin, B Bonin, R Boulieu, C Bory. Liquid-chromatographic study of purine metabolism abnormalities in purine nucleoside phosphorylase deficiency. Clinical chemistry. 1996 Feb; 42(2):326-8. doi: . [PMID: 8595732]
  • R B Gilbertsen, U Josyula, J C Sircar, M K Dong, W S Wu, D J Wilburn, M C Conroy. Comparative in vitro and in vivo activities of two 9-deazaguanine analog inhibitors of purine nucleoside phosphorylase, CI-972 and PD 141955. Biochemical pharmacology. 1992 Sep; 44(5):996-9. doi: 10.1016/0006-2952(92)90135-6. [PMID: 1530667]
  • M K Dong, M E Scott, D J Schrier, M J Suto, J C Sircar, A Black, T Chang, R B Gilbertsen. The biochemistry and pharmacology of PD 116124 (8-amino-2'-nordeoxyguanosine), an inhibitor of purine nucleoside phosphorylase (PNP). The Journal of pharmacology and experimental therapeutics. 1992 Jan; 260(1):319-26. doi: . [PMID: 1530976]
  • R B Gilbertsen, M K Dong, D J Wilburn, L M Kossarek, J C Sircar, C R Kostlan, M C Conroy. Biochemical and pharmacological properties of CI-972, a novel 9-deazaguanine analog purine nucleoside phosphorylase (PNP) inhibitor. Advances in experimental medicine and biology. 1991; 309A(?):41-4. doi: 10.1007/978-1-4899-2638-8_8. [PMID: 1789255]
  • W R Osborne, R W Barton. A rat model of purine nucleoside phosphorylase deficiency. Immunology. 1986 Sep; 59(1):63-7. doi: NULL. [PMID: 3019875]
  • R D Snyder. Deoxyribonucleoside triphosphate pools in human diploid fibroblasts and their modulation by hydroxyurea and deoxynucleosides. Biochemical pharmacology. 1984 May; 33(9):1515-8. doi: 10.1016/0006-2952(84)90421-0. [PMID: 6732868]