Glyceraldehyde (BioDeep_00000003228)
Main id: BioDeep_00000014393
Secondary id: BioDeep_00000400043, BioDeep_00001868566
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
描述信息
DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].
同义名列表
数据库引用编号
25 个数据库交叉引用编号
- ChEBI: CHEBI:17378
- KEGG: C00577
- PubChem: 79014
- PubChem: 751
- HMDB: HMDB0001051
- Metlin: METLIN63095
- DrugBank: DB02536
- CAS: 453-17-8 367-47-5
- CAS: 453-17-8
- CAS: 56-82-6
- MoNA: PS074301
- PMhub: MS000008542
- PubChem: 3856
- CAS: 367-47-5
- PDB-CCD: 3GR
- 3DMET: B00137
- NIKKAJI: J5.790H
- NIKKAJI: J9.119G
- RefMet: Glyceraldehyde
- medchemexpress: HY-128748
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-114
- KNApSAcK: 17378
- KEGG: C02154
- PubChem: 5231
- KNApSAcK: 5445
分类词条
相关代谢途径
BioCyc(5)
- N-acetylneuraminate and N-acetylmannosamine degradation I
- superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation
- superpathway of N-acetylneuraminate degradation
- Entner-Doudoroff pathway II (non-phosphorylative)
- glycine betaine biosynthesis I (Gram-negative bacteria)
PlantCyc(0)
代谢反应
114 个相关的代谢反应过程信息。
Reactome(72)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
ATP + GA ⟶ ADP + GA3P
- Fructose catabolism:
ATP + GA ⟶ ADP + GA3P
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
ATP + GA ⟶ ADP + GA3P
- Fructose catabolism:
ATP + GA ⟶ ADP + GA3P
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
Glc + H+ + TPNH ⟶ D-sorbitol + TPN
- Fructose catabolism:
ATP + GA ⟶ ADP + GA3P
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Fructose metabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
ATP + DGA ⟶ 3PDGA + ADP + H+
- Fructose catabolism:
ATP + DGA ⟶ 3PDGA + ADP + H+
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Fructose metabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Fructose metabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
Glc + H+ + TPNH ⟶ D-sorbitol + TPN
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
Glc + H+ + TPNH ⟶ D-sorbitol + TPN
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
Glu + OAA ⟶ 2OG + L-Asp
- Fructose metabolism:
Fru 1-P ⟶ DHAP + GA
- Fructose catabolism:
Fru 1-P ⟶ DHAP + GA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
Glc + H+ + TPNH ⟶ D-sorbitol + TPN
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Fructose metabolism:
Glc + H+ + TPNH ⟶ D-sorbitol + TPN
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Fructose metabolism:
Glc + H+ + TPNH ⟶ D-sorbitol + TPN
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Fructose metabolism:
Glc + H+ + TPNH ⟶ D-sorbitol + TPN
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Fructose metabolism:
Glc + H+ + TPNH ⟶ D-sorbitol + TPN
- Fructose catabolism:
GA + H2O + NAD ⟶ DGA + H+ + NADH
BioCyc(7)
- cytidine-5'-diphosphate-glycerol biosynthesis:
H+ + NAD(P)H + dihydroxyacetone ⟶ NAD(P)+ + glycerol
- sucrose degradation:
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- Entner-Doudoroff pathway II (non-phosphorylative):
D-glucopyranose + NADP+ ⟶ D-glucono-1,5-lactone + H+ + NADPH
- sucrose degradation V (sucrose α-glucosidase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- sucrose degradation V (mammalian):
α-D-glucose ⟶ β-D-glucose
- sucrose degradation V (mammalian):
α-D-glucose ⟶ β-D-glucose
- Entner-Doudoroff pathway II (non-phosphorylative):
α-D-glucose ⟶ β-D-glucose
WikiPathways(3)
- Polyol pathway:
D-Glucose ⟶ D-Sorbitol
- Hexoses metabolism in proximal tubules:
Glucose ⟶ Sorbitol
- Disorders of fructose metabolism:
Sucrose ⟶ Fructose
Plant Reactome(0)
INOH(2)
- Fructose and Mannose metabolism ( Fructose and Mannose metabolism ):
D-Sorbitol + NADP+ ⟶ D-Glucose + NADPH
- D-Fructose 1-phosphate = Dihydroxy-acetone phosphate + D-Glyceraldehyde ( Fructose and Mannose metabolism ):
D-Fructose 1-phosphate ⟶ D-Glyceraldehyde + Dihydroxy-acetone phosphate
PlantCyc(4)
- sucrose degradation V (sucrose α-glucosidase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- ceramide degradation (generic):
a sphingoid 1-phosphate ⟶ O-phosphoethanolamine + an aldehyde
- ceramide degradation (generic):
a sphingoid 1-phosphate ⟶ O-phosphoethanolamine + an aldehyde
- ceramide degradation (generic):
a sphingoid 1-phosphate ⟶ O-phosphoethanolamine + an aldehyde
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(25)
- Fructose Metabolism:
Adenosine triphosphate + D-Fructose ⟶ -D-Fructose 6-phosphate + Adenosine diphosphate
- Fructose and Mannose Degradation:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructosuria:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose Intolerance, Hereditary:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose and Mannose Degradation:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose Intolerance, Hereditary:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructosuria:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose Intolerance, Hereditary:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose and Mannose Degradation:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose and Mannose Degradation:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructosuria:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Glycerolipid Metabolism:
Glyceraldehyde + NADP ⟶ Glycerol + NADPH
- Glycerol Kinase Deficiency:
Glyceraldehyde + NADP ⟶ Glycerol + NADPH
- D-Glyceric Acidura:
Glyceraldehyde + NADP ⟶ Glycerol + NADPH
- Familial Lipoprotein Lipase Deficiency:
Glyceraldehyde + NADP ⟶ Glycerol + NADPH
- Glycerol Metabolism:
Dihydroxyacetone + Hydrogen Ion + NADPH ⟶ Glycerol + NADP
- Glycerolipid Metabolism:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Glycerol Kinase Deficiency:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- D-Glyceric Acidura:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Familial Lipoprotein Lipase Deficiency:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Glycerolipid Metabolism:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Glycerolipid Metabolism:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Glycerol Kinase Deficiency:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- D-Glyceric Acidura:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Familial Lipoprotein Lipase Deficiency:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
PharmGKB(0)
5 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 1822464 - Paraburkholderia: 10.1128/AEM.01851-20
- 28511 - Pogostemon cablin: 10.1021/JF304466T
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yuushi Yasuda, Hirofumi Aoki, Wataru Fujita, Kousuke Fujibayashi, Minoru Wakasa, Yasuyuki Kawai, Hiroaki Nakanishi, Kazuyuki Saito, Masayoshi Takeuchi, Kouji Kajinami. Glyceraldehyde-derived advanced glycation end-products are associated with left ventricular ejection fraction and brain natriuretic peptide in patients with diabetic adverse cardiac remodeling.
Scandinavian cardiovascular journal : SCJ.
2022 12; 56(1):208-216. doi:
10.1080/14017431.2022.2095013
. [PMID: 35792728] - Alena Soboleva, Nadezhda Frolova, Kseniia Bureiko, Julia Shumilina, Gerd U Balcke, Vladimir A Zhukov, Igor A Tikhonovich, Andrej Frolov. Dynamics of Reactive Carbonyl Species in Pea Root Nodules in Response to Polyethylene Glycol (PEG)-Induced Osmotic Stress.
International journal of molecular sciences.
2022 Mar; 23(5):. doi:
10.3390/ijms23052726
. [PMID: 35269869] - Agustin Martin-Morales, Takanori Arakawa, Mona Sato, Yasuki Matsumura, Fumika Mano-Usui, Kaori Ikeda, Nobuya Inagaki, Kenji Sato. Development of a Method for Quantitation of Glyceraldehyde in Various Body Compartments of Rodents and Humans.
Journal of agricultural and food chemistry.
2021 Nov; 69(44):13246-13254. doi:
10.1021/acs.jafc.1c03177
. [PMID: 34702032] - Ami Sotokawauchi, Nobutaka Nakamura, Takanori Matsui, Yuichiro Higashimoto, Sho-Ichi Yamagishi. Glyceraldehyde-Derived Pyridinium Evokes Renal Tubular Cell Damage via RAGE Interaction.
International journal of molecular sciences.
2020 Apr; 21(7):. doi:
10.3390/ijms21072604
. [PMID: 32283652] - Nupur K Das, Andrew J Schwartz, Gabrielle Barthel, Naohiro Inohara, Qing Liu, Amanda Sankar, David R Hill, Xiaoya Ma, Olivia Lamberg, Matthew K Schnizlein, Juan L Arqués, Jason R Spence, Gabriel Nunez, Andrew D Patterson, Duxin Sun, Vincent B Young, Yatrik M Shah. Microbial Metabolite Signaling Is Required for Systemic Iron Homeostasis.
Cell metabolism.
2020 01; 31(1):115-130.e6. doi:
10.1016/j.cmet.2019.10.005
. [PMID: 31708445] - Falco Beer, Felix Urbat, Charles M A P Franz, Melanie Huch, Sabine E Kulling, Mirko Bunzel, Diana Bunzel. The Human Fecal Microbiota Metabolizes Foodborne Heterocyclic Aromatic Amines by Reuterin Conjugation and Further Transformations.
Molecular nutrition & food research.
2019 05; 63(10):e1801177. doi:
10.1002/mnfr.201801177
. [PMID: 30815965] - Nayyar Rabbani, Shams Tabrez, Badar Ul Islam, Md Tabish Rehman, Abdulrahman M Alsenaidy, Mohamed F AlAjmi, Rais Ahmad Khan, Mohammad A Alsenaidy, Mohd Shahnawaz Khan. Characterization of colchicine binding with normal and glycated albumin: In vitro and molecular docking analysis.
Journal of biomolecular structure & dynamics.
2018 Oct; 36(13):3453-3462. doi:
10.1080/07391102.2017.1389661
. [PMID: 28990867] - Bülent Şengül, Şükrü Beydemir. The interactions of cephalosporins on polyol pathway enzymes from sheep kidney.
Archives of physiology and biochemistry.
2018 Feb; 124(1):35-44. doi:
10.1080/13813455.2017.1358749
. [PMID: 28758816] - Eisei Hori, Chigusa Kikuchi, Chie Nagami, Junko Kajikuri, Takeo Itoh, Masayoshi Takeuchi, Tamihide Matsunaga. Role of Glyceraldehyde-Derived AGEs and Mitochondria in Superoxide Production in Femoral Artery of OLETF Rat and Effects of Pravastatin.
Biological & pharmaceutical bulletin.
2017 Nov; 40(11):1903-1908. doi:
10.1248/bpb.b17-00411
. [PMID: 28835584] - Jennifer K Spinler, Jennifer Auchtung, Aaron Brown, Prapaporn Boonma, Numan Oezguen, Caná L Ross, Ruth Ann Luna, Jessica Runge, James Versalovic, Alex Peniche, Sara M Dann, Robert A Britton, Anthony Haag, Tor C Savidge. Next-Generation Probiotics Targeting Clostridium difficile through Precursor-Directed Antimicrobial Biosynthesis.
Infection and immunity.
2017 10; 85(10):. doi:
10.1128/iai.00303-17
. [PMID: 28760934] - Budsakorn Auiyawong, Rawint Narawongsanont, Chonticha Tantitadapitak. Characterization of AKR4C15, a Novel Member of Aldo-Keto Reductase, in Comparison with Other Rice AKR(s).
The protein journal.
2017 08; 36(4):257-269. doi:
10.1007/s10930-017-9732-z
. [PMID: 28699078] - Won-Rak Son, Mi-Hyun Nam, Chung-Oui Hong, Yoonsook Kim, Kwang-Won Lee. Plantamajoside from Plantago asiatica modulates human umbilical vein endothelial cell dysfunction by glyceraldehyde-induced AGEs via MAPK/NF-κB.
BMC complementary and alternative medicine.
2017 Jan; 17(1):66. doi:
10.1186/s12906-017-1570-1
. [PMID: 28109289] - Dian Wang, Xingxing Wang, Jing Kong, Jiayan Wu, Minchao Lai. GC-MS-Based metabolomics discovers a shared serum metabolic characteristic among three types of epileptic seizures.
Epilepsy research.
2016 10; 126(?):83-9. doi:
10.1016/j.eplepsyres.2016.07.003
. [PMID: 27450370] - Juntana Chimchang, Talent Theparee, Boonyarut Ladda, Somboon Tanasupawat, Benjamas Thanomsub Wongsatayanon, Malai Taweechotipatr. Antimicrobial Properties of a Potential Probiotic Lactobacillus from Thai Newborn Feces.
Journal of the Medical Association of Thailand = Chotmaihet thangphaet.
2015 Oct; 98 Suppl 9(?):S116-22. doi:
. [PMID: 26817219]
- Takanori Matsui, Hoo Don Joo, Jae Min Lee, Sung Mi Ju, Wang Hong Tao, Yuichiro Higashimoto, Kei Fukami, Sho-ichi Yamagishi. Development of a monoclonal antibody-based ELISA system for glyceraldehyde-derived advanced glycation end products.
Immunology letters.
2015 Oct; 167(2):141-6. doi:
10.1016/j.imlet.2015.08.008
. [PMID: 26304702] - Bjørnar Hassel, Ahmed Elsais, Anne-Sofie Frøland, Erik Taubøll, Leif Gjerstad, Yi Quan, Raymond Dingledine, Frode Rise. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro.
Journal of neurochemistry.
2015 May; 133(4):572-81. doi:
10.1111/jnc.13079
. [PMID: 25708447] - Mayu Takeda, Tohru Ohnuma, Masayoshi Takeuchi, Narimasa Katsuta, Hitoshi Maeshima, Yuto Takebayashi, Motoyuki Higa, Toru Nakamura, Shohei Nishimon, Takahiro Sannohe, Yuri Hotta, Ryo Hanzawa, Ryoko Higashiyama, Nobuto Shibata, Tomohito Gohda, Yusuke Suzuki, Sho-ichi Yamagishi, Yasuhiko Tomino, Heii Arai. Altered serum glyceraldehyde-derived advanced glycation end product (AGE) and soluble AGE receptor levels indicate carbonyl stress in patients with schizophrenia.
Neuroscience letters.
2015 Apr; 593(?):51-5. doi:
10.1016/j.neulet.2015.03.002
. [PMID: 25766756] - Takanori Matsui, Eriko Oda, Yuichiro Higashimoto, Sho-ichi Yamagishi. Glyceraldehyde-derived pyridinium (GLAP) evokes oxidative stress and inflammatory and thrombogenic reactions in endothelial cells via the interaction with RAGE.
Cardiovascular diabetology.
2015 Jan; 14(?):1. doi:
10.1186/s12933-014-0162-3
. [PMID: 25582325] - Hiroyuki Hachiya, Yoshikazu Miura, Ken-Ichi Inoue, Kyung Hwa Park, Masayoshi Takeuchi, Keiichi Kubota. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic β-cells.
Journal of hepato-biliary-pancreatic sciences.
2014 Feb; 21(2):134-41. doi:
10.1002/jhbp.12
. [PMID: 23798335] - Yuichi Miki, Hikaru Dambara, Yoshihiro Tachibana, Kazuya Hirano, Mio Konishi, Masatoshi Beppu. Macrophage recognition of toxic advanced glycosylation end products through the macrophage surface-receptor nucleolin.
Biological & pharmaceutical bulletin.
2014; 37(4):588-96. doi:
10.1248/bpb.b13-00818
. [PMID: 24818254] - Sreekanth Suravajjala, Menashi Cohenford, Leslie R Frost, Praveen K Pampati, Joel A Dain. Glycation of human erythrocyte glutathione peroxidase: effect on the physical and kinetic properties.
Clinica chimica acta; international journal of clinical chemistry.
2013 Jun; 421(?):170-6. doi:
10.1016/j.cca.2013.02.032
. [PMID: 23524033] - Yoshikazu Miura, Yuichi Hori, Shinzo Kimura, Hiroyuki Hachiya, Yuichirou Sakurai, Kenichi Inoue, Tokihiko Sawada, Keiichi Kubota. Triphenyltin impairs insulin secretion by decreasing glucose-induced NADP(H) and ATP production in hamster pancreatic β-cells.
Toxicology.
2012 Sep; 299(2-3):165-71. doi:
10.1016/j.tox.2012.05.021
. [PMID: 22664483] - A G Ivanov, D Rosso, L V Savitch, P Stachula, M Rosembert, G Oquist, V Hurry, N P A Hüner. Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana.
Photosynthesis research.
2012 Sep; 113(1-3):191-206. doi:
10.1007/s11120-012-9769-y
. [PMID: 22843101] - Dongfeng Yang, Xuhong Du, Xiao Liang, Ruilian Han, Zongsuo Liang, Yan Liu, Fenghua Liu, Jianjun Zhao. Different roles of the mevalonate and methylerythritol phosphate pathways in cell growth and tanshinone production of Salvia miltiorrhiza hairy roots.
PloS one.
2012; 7(11):e46797. doi:
10.1371/journal.pone.0046797
. [PMID: 23209548] - Champika Seneviratne, G W Dombi, W Liu, J A Dain. The in vitro glycation of human serum albumin in the presence of Zn(II).
Journal of inorganic biochemistry.
2011 Dec; 105(12):1548-54. doi:
10.1016/j.jinorgbio.2011.09.001
. [PMID: 22071077] - Qiang Dong, Kai Yang, Stephanie M Wong, Peter J O'Brien. Hepatocyte or serum albumin protein carbonylation by oxidized fructose metabolites: Glyceraldehyde or glycolaldehyde as endogenous toxins?.
Chemico-biological interactions.
2010 Oct; 188(1):31-7. doi:
10.1016/j.cbi.2010.06.006
. [PMID: 20561512] - Miwako Tsunosue, Naomi Mashiko, Yhukou Ohta, Yoshito Matsuo, Kouichi Ueda, Masayuki Ninomiya, Sho-ichi Tanaka, Masaru Hoshiko, Yasutsugu Yoshiyama, Masayoshi Takeuchi, Shin-ichiro Ueda, Sho-ichi Yamagishi. An alpha-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes.
Clinical and experimental medicine.
2010 Jun; 10(2):139-41. doi:
10.1007/s10238-009-0074-9
. [PMID: 19834782] - Rolene Bauer, Maret du Toit, Jens Kossmann. Influence of environmental parameters on production of the acrolein precursor 3-hydroxypropionaldehyde by Lactobacillus reuteri DSMZ 20016 and its accumulation by wine lactobacilli.
International journal of food microbiology.
2010 Jan; 137(1):28-31. doi:
10.1016/j.ijfoodmicro.2009.10.012
. [PMID: 19897270] - Ronit Reich-Slotky, Christina A Kabbash, Phyllis Della-Latta, John S Blanchard, Steven J Feinmark, Sherry Freeman, Gilla Kaplan, Howard A Shuman, Samuel C Silverstein. Gemfibrozil inhibits Legionella pneumophila and Mycobacterium tuberculosis enoyl coenzyme A reductases and blocks intracellular growth of these bacteria in macrophages.
Journal of bacteriology.
2009 Aug; 191(16):5262-71. doi:
10.1128/jb.00175-09
. [PMID: 19429621] - Jian Lei, Yan-Feng Zhou, Lan-Fen Li, Xiao-Dong Su. Structural and biochemical analyses of YvgN and YtbE from Bacillus subtilis.
Protein science : a publication of the Protein Society.
2009 Aug; 18(8):1792-800. doi:
10.1002/pro.178
. [PMID: 19585557] - Makoto Ogata, Makoto Nakajima, Tatsuya Kato, Takakiyo Obara, Hirokazu Yagi, Koichi Kato, Taichi Usui, Enoch Y Park. Synthesis of sialoglycopolypeptide for potentially blocking influenza virus infection using a rat alpha2,6-sialyltransferase expressed in BmNPV bacmid-injected silkworm larvae.
BMC biotechnology.
2009 Jun; 9(?):54. doi:
10.1186/1472-6750-9-54
. [PMID: 19500344] - Hidetoshi Morita, Hidehiro Toh, Shinji Fukuda, Hiroshi Horikawa, Kenshiro Oshima, Takehito Suzuki, Masaru Murakami, Shin Hisamatsu, Yukio Kato, Tatsuya Takizawa, Hideo Fukuoka, Tetsuhiko Yoshimura, Kikuji Itoh, Daniel J O'Sullivan, Larry L McKay, Hiroshi Ohno, Jun Kikuchi, Toshio Masaoka, Masahira Hattori. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production.
DNA research : an international journal for rapid publication of reports on genes and genomes.
2008 Jun; 15(3):151-61. doi:
10.1093/dnares/dsn009
. [PMID: 18487258] - Kevork Hagopian, Jon J Ramsey, Richard Weindruch. Enzymes of glycerol and glyceraldehyde metabolism in mouse liver: effects of caloric restriction and age on activities.
Bioscience reports.
2008 Apr; 28(2):107-15. doi:
10.1042/bsr20080015
. [PMID: 18429748] - Fumitaka Hayase, Teruyuki Usui, Yoriyuki Ono, Yoshinobu Shirahashi, Tomomi Machida, Takashi Ito, Nozomu Nishitani, Kazuhito Shimohira, Hirohito Watanabe. Formation mechanisms of melanoidins and fluorescent pyridinium compounds as advanced glycation end products.
Annals of the New York Academy of Sciences.
2008 Apr; 1126(?):53-8. doi:
10.1196/annals.1433.009
. [PMID: 18079473] - Valentine Cleusix, Christophe Lacroix, Sabine Vollenweider, Gwenaëlle Le Blay. Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces.
FEMS microbiology ecology.
2008 Jan; 63(1):56-64. doi:
10.1111/j.1574-6941.2007.00412.x
. [PMID: 18028400] - Xuyu Zu, Ruilan Yan, Sarah Robbins, Paulette A Krishack, Duan-Fang Liao, Deliang Cao. Reduced 293T cell susceptibility to acrolein due to aldose reductase-like-1 protein expression.
Toxicological sciences : an official journal of the Society of Toxicology.
2007 Jun; 97(2):562-8. doi:
10.1093/toxsci/kfm033
. [PMID: 17329238] - S McCoy, S E Gilliland. Isolation and characterization of Lactobacillus species having potential for use as probiotic cultures for dogs.
Journal of food science.
2007 Apr; 72(3):M94-7. doi:
10.1111/j.1750-3841.2007.00310.x
. [PMID: 17995807] - Teruyuki Usui, Kazuhito Shimohira, Hirohito Watanabe, Fumitaka Hayase. Detection and determination of glyceraldehyde-derived pyridinium-type advanced glycation end product in streptozotocin-induced diabetic rats.
Bioscience, biotechnology, and biochemistry.
2007 Feb; 71(2):442-8. doi:
10.1271/bbb.60497
. [PMID: 17284838] - Qiang Hao, Wolfgang Maret. Aldehydes release zinc from proteins. A pathway from oxidative stress/lipid peroxidation to cellular functions of zinc.
The FEBS journal.
2006 Sep; 273(18):4300-10. doi:
10.1111/j.1742-4658.2006.05428.x
. [PMID: 16930132] - Tobias Marquardt, Dirk Kostrewa, Rajkumar Balakrishnan, Antonietta Gasperina, Christian Kambach, Alberto Podjarny, Fritz K Winkler, Ganesaratnam K Balendiran, Xiao-Dan Li. High-resolution crystal structure of AKR11C1 from Bacillus halodurans: an NADPH-dependent 4-hydroxy-2,3-trans-nonenal reductase.
Journal of molecular biology.
2005 Nov; 354(2):304-16. doi:
10.1016/j.jmb.2005.09.067
. [PMID: 16242712] - M Kitamura, N Kitaichi, M Takeuchi, H Kitamei, K Namba, S-I Yamagishi, K Iwabuchi, K Onoé, S Ohno. Decrease in the glyceraldehyde derived advanced glycation end products in the sera of patients with Vogt-Koyanagi-Harada disease.
The British journal of ophthalmology.
2005 Nov; 89(11):1407-9. doi:
10.1136/bjo.2005.072678
. [PMID: 16234440] - Marja Hakala, Ilona Tuominen, Mika Keränen, Taina Tyystjärvi, Esa Tyystjärvi. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II.
Biochimica et biophysica acta.
2005 Jan; 1706(1-2):68-80. doi:
10.1016/j.bbabio.2004.09.001
. [PMID: 15620366] - S Yamagishi, K Nakamura, H Inoue, S Kikuchi, M Takeuchi. Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer's disease.
Medical hypotheses.
2005; 64(6):1205-7. doi:
10.1016/j.mehy.2005.01.016
. [PMID: 15823718] - Heidrun Wartlick, Birgit Spänkuch-Schmitt, Klaus Strebhardt, Jörg Kreuter, Klaus Langer. Tumour cell delivery of antisense oligonuclceotides by human serum albumin nanoparticles.
Journal of controlled release : official journal of the Controlled Release Society.
2004 May; 96(3):483-95. doi:
10.1016/j.jconrel.2004.01.029
. [PMID: 15120904] - Teruyuki Usui, Satomi Shizuuchi, Hirohito Watanabe, Fumitaka Hayase. Cytotoxicity and oxidative stress induced by the glyceraldehyde-related Maillard reaction products for HL-60 cells.
Bioscience, biotechnology, and biochemistry.
2004 Feb; 68(2):333-40. doi:
10.1271/bbb.68.333
. [PMID: 14981296] - M Takeuchi, S Yamagishi. TAGE (toxic AGEs) hypothesis in various chronic diseases.
Medical hypotheses.
2004; 63(3):449-52. doi:
10.1016/j.mehy.2004.02.042
. [PMID: 15288366] - Junnosuke Miura, Yasuko Uchigata, Yasuhiko Yamamoto, Masayoshi Takeuchi, Sigeru Sakurai, Takuo Watanabe, Hideto Yonekura, Sho-Ichi Yamagishi, Zenji Makita, Akiko Sato, Yasue Omori, Hiroshi Yamamoto, Yasuhiko Iwamoto. AGE down-regulation of monocyte RAGE expression and its association with diabetic complications in type 1 diabetes.
Journal of diabetes and its complications.
2004 Jan; 18(1):53-9. doi:
10.1016/s1056-8727(02)00281-7
. [PMID: 15019601] - M Takeuchi, S Yamagishi. Alternative routes for the formation of glyceraldehyde-derived AGEs (TAGE) in vivo.
Medical hypotheses.
2004; 63(3):453-5. doi:
10.1016/j.mehy.2004.03.005
. [PMID: 15288367] - Teruyuki Usui, Kazuhito Shimohira, Hirohito Watanabe, Fumitaka Hayase. Detection and determination of glyceraldehyde-derived advanced glycation end product.
BioFactors (Oxford, England).
2004; 21(1-4):391-4. doi:
10.1002/biof.552210176
. [PMID: 15630233] - C W le Roux, S D Wilkinson, D V Pavitt, B R Muller, J Alaghband-Zadeh. A new antiglycolytic agent.
Annals of clinical biochemistry.
2004 Jan; 41(Pt 1):43-6. doi:
10.1258/000456304322664681
. [PMID: 14713384] - E Rodríguez, J L Arqués, R Rodríguez, M Nuñez, M Medina. Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits.
Letters in applied microbiology.
2003; 37(3):259-63. doi:
10.1046/j.1472-765x.2003.01390.x
. [PMID: 12904230] - Isabelle Briaud, Cynthia L Kelpe, Lisa M Johnson, Phuong Oanh T Tran, Vincent Poitout. Differential effects of hyperlipidemia on insulin secretion in islets of langerhans from hyperglycemic versus normoglycemic rats.
Diabetes.
2002 Mar; 51(3):662-8. doi:
10.2337/diabetes.51.3.662
. [PMID: 11872664] - Sho-ichi Yamagishi, Shinjiro Amano, Yosuke Inagaki, Tamami Okamoto, Kohachiro Koga, Nobuyuki Sasaki, Hiroshi Yamamoto, Masayoshi Takeuchi, Zenji Makita. Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes.
Biochemical and biophysical research communications.
2002 Jan; 290(3):973-8. doi:
10.1006/bbrc.2001.6312
. [PMID: 11798169] - M Beránek, J Drsata, V Palicka. Inhibitory effect of glycation on catalytic activity of alanine aminotransferase.
Molecular and cellular biochemistry.
2001 Feb; 218(1-2):35-9. doi:
10.1023/a:1007280913732
. [PMID: 11330835] - Y Asada, W Li, T Yoshikawa. Biosynthesis of the dimethylallyl moiety of glabrol in Glycyrrhiza glabra hairy root cultures via a non-mevalonate pathway.
Phytochemistry.
2000 Oct; 55(4):323-6. doi:
10.1016/s0031-9422(00)00327-7
. [PMID: 11117880] - M Landt. Glyceraldehyde preserves glucose concentrations in whole blood specimens.
Clinical chemistry.
2000 Aug; 46(8 Pt 1):1144-9. doi:
10.1093/clinchem/46.8.1144
. [PMID: 10926895] - I Miwa, N Ichimura, M Sugiura, Y Hamada, S Taniguchi. Inhibition of glucose-induced insulin secretion by 4-hydroxy-2-nonenal and other lipid peroxidation products.
Endocrinology.
2000 Aug; 141(8):2767-72. doi:
10.1210/endo.141.8.7614
. [PMID: 10919261] - M Takeuchi, Z Makita, R Bucala, T Suzuki, T Koike, Y Kameda. Immunological evidence that non-carboxymethyllysine advanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo.
Molecular medicine (Cambridge, Mass.).
2000 Feb; 6(2):114-25. doi:
. [PMID: 10859028]
- M B Burg, E M Peters, K M Bohren, K H Gabbay. Factors affecting counteraction by methylamines of urea effects on aldose reductase.
Proceedings of the National Academy of Sciences of the United States of America.
1999 May; 96(11):6517-22. doi:
10.1073/pnas.96.11.6517
. [PMID: 10339620] - A Y Lee, S S Chung. Contributions of polyol pathway to oxidative stress in diabetic cataract.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
1999 Jan; 13(1):23-30. doi:
10.1096/fasebj.13.1.23
. [PMID: 9872926] - A Chandra, S Srivastava, J M Petrash, A Bhatnagar, S K Srivastava. Modification of aldose reductase by S-nitrosoglutathione.
Biochemistry.
1997 Dec; 36(50):15801-9. doi:
10.1021/bi9714722
. [PMID: 9398310] - Y Hamada, N Araki, N Koh, J Nakamura, S Horiuchi, N Hotta. Rapid formation of advanced glycation end products by intermediate metabolites of glycolytic pathway and polyol pathway.
Biochemical and biophysical research communications.
1996 Nov; 228(2):539-43. doi:
10.1006/bbrc.1996.1695
. [PMID: 8920948] - C Tarnus, J M Rémy, H d'Orchymont. 3-Amino-2-hydroxy-propionaldehyde and 3-amino-1-hydroxy-propan-2-one derivatives: new classes of aminopeptidase inhibitors.
Bioorganic & medicinal chemistry.
1996 Aug; 4(8):1287-97. doi:
10.1016/0968-0896(96)00115-0
. [PMID: 8879550] - H Haraguchi, I Ohmi, H Masuda, Y Tamura, K Mizutani, O Tanaka, W H Chou. Inhibition of aldose reductase by dihydroflavonols in Engelhardtia chrysolepis and effects on other enzymes.
Experientia.
1996 Jun; 52(6):564-7. doi:
10.1007/bf01969729
. [PMID: 8698090] - F Martin, B Soria. Amino acid-induced [Ca2+]i oscillations in single mouse pancreatic islets of Langerhans.
The Journal of physiology.
1995 Jul; 486 ( Pt 2)(?):361-71. doi:
10.1113/jphysiol.1995.sp020818
. [PMID: 7473203] - H Niknahad, S Khan, C Sood, P J O'Brien. Prevention of cyanide-induced cytotoxicity by nutrients in isolated rat hepatocytes.
Toxicology and applied pharmacology.
1994 Oct; 128(2):271-9. doi:
10.1006/taap.1994.1207
. [PMID: 7940542] - S J Hughes, K Suzuki, Y Goto. The role of islet secretory function in the development of diabetes in the GK Wistar rat.
Diabetologia.
1994 Sep; 37(9):863-70. doi:
10.1007/bf00400940
. [PMID: 7806015] - M S Malamas, T C Hohman, J Millen. Novel spirosuccinimide aldose reductase inhibitors derived from isoquinoline-1,3-diones: 2-[(4-bromo-2-fluorophenyl)methyl]-6- fluorospiro[isoquinoline-4(1H),3'-pyrrolidine]-1,2',3,5'(2H)-tetrone and congeners. 1.
Journal of medicinal chemistry.
1994 Jun; 37(13):2043-58. doi:
10.1021/jm00039a017
. [PMID: 8027986] - K Omichi, S Hase. Linkage position analysis of pyridylamino-disaccharides by HPLC of fluorogenic Smith degradation products.
Journal of biochemistry.
1994 Mar; 115(3):429-34. doi:
10.1093/oxfordjournals.jbchem.a124355
. [PMID: 8056754] - H K Parekh, N E Sladek. NADPH-dependent enzyme-catalyzed reduction of aldophosphamide, the pivotal metabolite of cyclophosphamide.
Biochemical pharmacology.
1993 Sep; 46(6):1043-52. doi:
10.1016/0006-2952(93)90669-n
. [PMID: 8216347] - A C Elliott, R Trebilcock, A P Yates, L Best. Stimulation of HIT-T15 insulinoma cells by glyceraldehyde does not require its metabolism.
European journal of biochemistry.
1993 Apr; 213(1):359-65. doi:
10.1111/j.1432-1033.1993.tb17769.x
. [PMID: 8477707] - A Nakai, Y Shigematsu, Y Y Liu, Y Kikawa, M Sudo. Urinary sugar phosphates and related organic acids in fructose-1,6-diphosphatase deficiency.
Journal of inherited metabolic disease.
1993; 16(2):408-14. doi:
10.1007/bf00710290
. [PMID: 8412001] - M Tadayyon, I C Green. Pharmacological interference with phospholipase A2 activity reveals mechanistic differences between glucose and glyceraldehyde induced insulin release: implication for coupling of glucose metabolism to phospholipase A2 activity.
Diabete & metabolisme.
1993 Jan; 19(1):36-43. doi:
NULL
. [PMID: 8504883] - J Wrobel, A Dietrich, S A Woolson, J Millen, M McCaleb, M C Harrison, T C Hohman, J Sredy, D Sullivan. Novel spirosuccinimides with incorporated isoindolone and benzisothiazole 1,1-dioxide moieties as aldose reductase inhibitors and antihyperglycemic agents.
Journal of medicinal chemistry.
1992 Nov; 35(24):4613-27. doi:
10.1021/jm00102a016
. [PMID: 1469692] - J Turk, M Mueller, A Bohrer, S Ramanadham. Arachidonic acid metabolism in isolated pancreatic islets. VI. Carbohydrate insulin secretagogues must be metabolized to induce eicosanoid release.
Biochimica et biophysica acta.
1992 May; 1125(3):280-91. doi:
10.1016/0005-2760(92)90057-3
. [PMID: 1596516] - M Hoenig, L H Culberson, J M Clement, D C Ferguson. Na+/Ca2+ exchange in plasma membrane vesicles from a glucose-responsive insulinoma.
Cell calcium.
1992 Jan; 13(1):1-8. doi:
10.1016/0143-4160(92)90024-m
. [PMID: 1311639] - S Suzuki, M Murakami, S Abe, Y Satoh, S Shintani, J Ishizuka, K Suzuki, J C Thompson, T Toyota. The effects of amylin on insulin secretion from Rin m5F cells and glycogen synthesis and lipogenesis in rat primary cultured hepatocytes.
Diabetes research and clinical practice.
1992 Jan; 15(1):77-84. doi:
10.1016/0168-8227(92)90071-x
. [PMID: 1311671] - C E Grimshaw. Enantiospecific change in products for aldose reductase-mediated reaction of glyceraldehyde with bound NADP+.
Biochemical and biophysical research communications.
1991 Mar; 175(3):943-8. doi:
10.1016/0006-291x(91)91656-w
. [PMID: 1902671] - M E Trautmann, B Blondel, A Gjinovci, C B Wollheim. Inverse relationship between glucose metabolism and glucose-induced insulin secretion in rat insulinoma cells.
Hormone research.
1990; 34(2):75-82. doi:
10.1159/000181799
. [PMID: 2097293] - G W Sharp, Y Le Marchand-Brustel, T Yada, L L Russo, C R Bliss, M Cormont, L Monge, E Van Obberghen. Galanin can inhibit insulin release by a mechanism other than membrane hyperpolarization or inhibition of adenylate cyclase.
The Journal of biological chemistry.
1989 May; 264(13):7302-9. doi:
. [PMID: 2468668]
- M Fields, C G Lewis, T Beal. Accumulation of sorbitol in copper deficiency: dependency on gender and type of dietary carbohydrate.
Metabolism: clinical and experimental.
1989 Apr; 38(4):371-5. doi:
10.1016/0026-0495(89)90127-3
. [PMID: 2498610] - M J MacDonald, R J Mertz, R S Rana. Glyceraldehyde phosphate: an insulin secretagogue with possible effects on inositol phosphate formation in pancreatic islets.
Archives of biochemistry and biophysics.
1989 Feb; 269(1):194-200. doi:
10.1016/0003-9861(89)90100-8
. [PMID: 2644893] - W S Zawalich, K C Zawalich. Interleukin 1 is a potent stimulator of islet insulin secretion and phosphoinositide hydrolysis.
The American journal of physiology.
1989 Jan; 256(1 Pt 1):E19-24. doi:
10.1152/ajpendo.1989.256.1.e19
. [PMID: 2536231] - A J Jonas, S N Lin, S B Conley, J A Schneider, J C Williams, R C Caprioli. Urine glyceraldehyde excretion is elevated in the renal Fanconi syndrome.
Kidney international.
1989 Jan; 35(1):99-104. doi:
10.1038/ki.1989.14
. [PMID: 2709665] - C B Wollheim, M J Dunne, B Peter-Riesch, R Bruzzone, T Pozzan, O H Petersen. Activators of protein kinase C depolarize insulin-secreting cells by closing K+ channels.
The EMBO journal.
1988 Aug; 7(8):2443-9. doi:
10.1002/j.1460-2075.1988.tb03090.x
. [PMID: 3056715] - S J Sullivan, A Schonbrunn. Distribution of somatostatin receptors in RINm5F insulinoma cells.
Endocrinology.
1988 Mar; 122(3):1137-45. doi:
10.1210/endo-122-3-1137
. [PMID: 2893729] - L Boquist, R Lorentzon. Factors affecting Ca2+ transport in mouse islet and kidney mitochondria.
Biochemistry international.
1986 Jul; 13(1):181-7. doi:
. [PMID: 3019350]
- M T Bihoreau, A Ktorza, L Picon. Gestational hyperglycaemia and insulin release by the fetal rat pancreas in vitro: effect of amino acids and glyceraldehyde.
Diabetologia.
1986 Jul; 29(7):434-9. doi:
10.1007/bf00506535
. [PMID: 3527842] - S Horiuchi, M Murakami, K Takata, Y Morino. Scavenger receptor for aldehyde-modified proteins.
The Journal of biological chemistry.
1986 Apr; 261(11):4962-6. doi:
. [PMID: 3007483]
- S K Srivastava, N H Ansari, G A Hair, J Jaspan, M B Rao, B Das. Hyperglycemia-induced activation of human erythrocyte aldose reductase and alterations in kinetic properties.
Biochimica et biophysica acta.
1986 Mar; 870(2):302-11. doi:
10.1016/0167-4838(86)90234-7
. [PMID: 3082363] - B Draznin, J P Steinberg, J W Leitner, K E Sussman. The nature of insulin secretory defect in aging rats.
Diabetes.
1985 Nov; 34(11):1168-73. doi:
10.2337/diab.34.11.1168
. [PMID: 2412920] - R A McPherson, K D Brown, R P Agarwal, G A Threatte, R J Jacobson. Hydroxyurea interferes negatively with triglyceride measurement by a glycerol oxidase method.
Clinical chemistry.
1985 Aug; 31(8):1355-7. doi:
. [PMID: 4017240]
- M Hoenig, D C Ferguson, F M Matschinsky. Fuel-induced insulin release in vitro from insulinomas transplanted into the rat kidney.
Diabetes.
1984 Jan; 33(1):1-7. doi:
10.2337/diab.33.1.1
. [PMID: 6140199] - M H Giroix, B Portha, M Kergoat, D Bailbe, L Picon. Glucose insensitivity and amino-acid hypersensitivity of insulin release in rats with non-insulin-dependent diabetes. A study with the perfused pancreas.
Diabetes.
1983 May; 32(5):445-51. doi:
10.2337/diab.32.5.445
. [PMID: 6341128] - B R Rittman, I C Mackenzie. Effects of histological processing on lectin binding patterns in oral mucosa and skin.
The Histochemical journal.
1983 May; 15(5):467-74. doi:
10.1007/bf01002700
. [PMID: 6347978] - K A Sobiech, A Gładysz, J Molin. Inhibition of human serum alpha-amylase activity.
Enzyme.
1983; 30(1):66-9. doi:
10.1159/000469547
. [PMID: 6191980] - P A Davis, A K Hajra. Stereochemical specificity of the biosynthesis of the alkyl ether bond in alkyl ether lipids.
The Journal of biological chemistry.
1979 Jun; 254(11):4760-3. doi:
10.1016/s0021-9258(17)30078-9
. [PMID: 438213] - W S Davidson, T G Flynn. Kinetics and mechanism of action of aldehyde reductase from pig kidney.
The Biochemical journal.
1979 Feb; 177(2):595-601. doi:
10.1042/bj1770595
. [PMID: 35157] - S Kawazu, A C Boschero, C Delcroix, W J Malaisse. The stimulus-secretion coupling of glucose-induced insulin release. XXVIII. Effect of glucose on Na+ fluxes in isolated islets.
Pflugers Archiv : European journal of physiology.
1978 Jul; 375(2):197-206. doi:
10.1007/bf00584244
. [PMID: 358133]