Allantoic acid (BioDeep_00000003093)
Secondary id: BioDeep_00000405426
human metabolite PANOMIX_OTCML-2023 Endogenous natural product
代谢物信息卡片
化学式: C4H8N4O4 (176.0546)
中文名称: 尿囊酸, 尿囊素酸
谱图信息:
最多检出来源 Homo sapiens(plant) 19.31%
Last reviewed on 2024-09-13.
Cite this Page
Allantoic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/allantoic_acid (retrieved
2024-12-23) (BioDeep RN: BioDeep_00000003093). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C(=O)O)(NC(=O)N)NC(=O)N
InChI: InChI=1S/C4H8N4O4/c5-3(11)7-1(2(9)10)8-4(6)12/h1H,(H,9,10)(H3,5,7,11)(H3,6,8,12)
描述信息
Allantoic acid is the end product of Allantoicase [EC:3.5.3.4], an enzyme involved in uric acid degradation (Purine metabolism). Although it is commonly accepted that allantoicase is lost in mammals, it has been identified in mice and humans. (PMID 11852104). A crystalline, transparent, colorless substance found in the allantoic liquid of the fetal calf. It was formerly called allantoic acid and amniotic acid.
Isolated from coffee beans and leaves
KEIO_ID A139
Allantoic acid is a degradative product of uric acid and associated with purine metabolism[1][2][3].
同义名列表
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:30837
- KEGG: C00499
- KEGGdrug: D86397
- PubChem: 203
- HMDB: HMDB0001209
- Metlin: METLIN343
- Wikipedia: Allantoic_acid
- MetaCyc: ALLANTOATE
- KNApSAcK: C00007470
- foodb: FDB012646
- chemspider: 198
- CAS: 99-16-1
- MoNA: KO000225
- MoNA: KO000224
- MoNA: KO000226
- MoNA: KO000227
- MoNA: KO000223
- PMhub: MS000008043
- ChEBI: CHEBI:17536
- PubChem: 3782
- PDB-CCD: 1AL
- 3DMET: B01270
- NIKKAJI: J11.619J
- RefMet: Allantoic acid
- medchemexpress: HY-B1514
- KNApSAcK: 17536
- LOTUS: LTS0078832
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
320 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(313)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + S-(-)-Ureidoglycolate ⟶ ammonia + carbon dioxide + glyoxylate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
INOH(1)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(6)
- Urate Degradation to Ureidoglycolate:
5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate + Hydrogen Ion ⟶ Allantoin + Carbon dioxide
- Urate Degradation to Glyoxylate:
5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate + Hydrogen Ion ⟶ Allantoin + Carbon dioxide
- Glycolate and Glyoxylate Degradation:
Allantoin ⟶ (S)-(+)-allantoin
- Allantoin Degradation (Anaerobic):
(S)-Ureidoglycolic acid + NADP ⟶ Hydrogen Ion + NADPH + Oxalureate
- Glycolate and Glyoxylate Degradation:
Allantoin ⟶ (S)-(+)-allantoin
- Allantoin Degradation (Anaerobic):
Adenosine diphosphate + Carbamoyl phosphate + Hydrogen Ion ⟶ Adenosine triphosphate + Ammonium + Carbon dioxide
PharmGKB(0)
35 个相关的物种来源信息
- 432624 - Albertisia: LTS0078832
- 3021348 - Albertisia delagoensis: LTS0078832
- 4294 - Aquifoliaceae: LTS0078832
- 3701 - Arabidopsis: LTS0078832
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1074/JBC.RA118.003351
- 3702 - Arabidopsis thaliana: 10.1104/PP.103.034637
- 3702 - Arabidopsis thaliana: LTS0078832
- 6656 - Arthropoda: LTS0078832
- 3700 - Brassicaceae: LTS0078832
- 33682 - Euglenozoa: LTS0078832
- 2759 - Eukaryota: LTS0078832
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 4295 - Ilex: LTS0078832
- 185542 - Ilex paraguariensis: 10.1016/0031-9422(93)85103-X
- 185542 - Ilex paraguariensis: LTS0078832
- 50557 - Insecta: LTS0078832
- 5653 - Kinetoplastea: LTS0078832
- 3398 - Magnoliopsida: LTS0078832
- 3455 - Menispermaceae: LTS0078832
- 33208 - Metazoa: LTS0078832
- 938084 - Orthaga: LTS0078832
- 938085 - Orthaga exvinacea: 10.1016/S0965-1748(98)00086-1
- 938085 - Orthaga exvinacea: LTS0078832
- 7135 - Pyralidae: LTS0078832
- 35493 - Streptophyta: LTS0078832
- 58023 - Tracheophyta: LTS0078832
- 5690 - Trypanosoma: LTS0078832
- 5691 - Trypanosoma brucei:
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0078832
- 5654 - Trypanosomatidae: LTS0078832
- 33090 - Viridiplantae: LTS0078832
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ming-Zhu Lu, Amanda M Carter, Mechthild Tegeder. Altering ureide transport in nodulated soybean results in whole-plant adjustments of metabolism, assimilate partitioning, and sink strength.
Journal of plant physiology.
2022 Feb; 269(?):153613. doi:
10.1016/j.jplph.2021.153613
. [PMID: 35033961] - Laith Z Samarah, Tina H Tran, Gary Stacey, Akos Vertes. In Vivo Chemical Analysis of Plant Sap from the Xylem and Single Parenchymal Cells by Capillary Microsampling Electrospray Ionization Mass Spectrometry.
Analytical chemistry.
2020 05; 92(10):7299-7306. doi:
10.1021/acs.analchem.0c00939
. [PMID: 32343130] - Bikash Baral, Jaime A Teixeira da Silva, Maria Luisa Izaguirre-Mayoral. Early signaling, synthesis, transport and metabolism of ureides.
Journal of plant physiology.
2016 Apr; 193(?):97-109. doi:
10.1016/j.jplph.2016.01.013
. [PMID: 26967003] - Juan Luis Díaz-Leal, Fernando Torralbo, Francisco Antonio Quiles, Manuel Pineda, Josefa M Alamillo. Molecular and functional characterization of allantoate amidohydrolase from Phaseolus vulgaris.
Physiologia plantarum.
2014 Sep; 152(1):43-58. doi:
10.1111/ppl.12157
. [PMID: 24460648] - Ray Collier, Mechthild Tegeder. Soybean ureide transporters play a critical role in nodule development, function and nitrogen export.
The Plant journal : for cell and molecular biology.
2012 Nov; 72(3):355-67. doi:
10.1111/j.1365-313x.2012.05086.x
. [PMID: 22725647] - Juan Luis Díaz-Leal, Gregorio Gálvez-Valdivieso, Javier Fernández, Manuel Pineda, Josefa M Alamillo. Developmental effects on ureide levels are mediated by tissue-specific regulation of allantoinase in Phaseolus vulgaris L.
Journal of experimental botany.
2012 Jun; 63(11):4095-106. doi:
10.1093/jxb/ers090
. [PMID: 22442417] - Geoffrey E Hawkes, Helene de Wet, Jia Li. Polar compounds isolated from the leaves of Albertisia delagoensis (Menispermaceae).
Molecules (Basel, Switzerland).
2011 Nov; 16(11):9153-60. doi:
10.3390/molecules16119153
. [PMID: 22048698] - Takafumi Toyohara, Takehiro Suzuki, Yasutoshi Akiyama, Daisuke Yoshihara, Yoichi Takeuchi, Eikan Mishima, Koichi Kikuchi, Chitose Suzuki, Masayuki Tanemoto, Sadayoshi Ito, Shizuko Nagao, Tomoyoshi Soga, Takaaki Abe. Metabolomic profiling of the autosomal dominant polycystic kidney disease rat model.
Clinical and experimental nephrology.
2011 Oct; 15(5):676-687. doi:
10.1007/s10157-011-0467-4
. [PMID: 21695416] - Erik Lysøe, Kye-Yong Seong, H Corby Kistler. The transcriptome of Fusarium graminearum during the infection of wheat.
Molecular plant-microbe interactions : MPMI.
2011 Sep; 24(9):995-1000. doi:
10.1094/mpmi-02-11-0038
. [PMID: 21585270] - Heike Riegler, Claudia Geserick, Rita Zrenner. Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation.
The New phytologist.
2011 Jul; 191(2):349-359. doi:
10.1111/j.1469-8137.2011.03711.x
. [PMID: 21599668] - Andrea K Werner, Claus-Peter Witte. The biochemistry of nitrogen mobilization: purine ring catabolism.
Trends in plant science.
2011 Jul; 16(7):381-7. doi:
10.1016/j.tplants.2011.03.012
. [PMID: 21482173] - Joe C Polacco, David L Hyten, Mônica Medeiros-Silva, David A Sleper, Kristin D Bilyeu. Mutational analysis of the major soybean UreF paralogue involved in urease activation.
Journal of experimental botany.
2011 Jun; 62(10):3599-608. doi:
10.1093/jxb/err054
. [PMID: 21430294] - Alfonso Muñoz, Gerard L Bannenberg, Olimpio Montero, Juan Miguel Cabello-Díaz, Pedro Piedras, Manuel Pineda. An alternative pathway for ureide usage in legumes: enzymatic formation of a ureidoglycolate adduct in Cicer arietinum and Phaseolus vulgaris.
Journal of experimental botany.
2011 Jan; 62(1):307-18. doi:
10.1093/jxb/erq268
. [PMID: 20813786] - Josefa M Alamillo, Juan Luís Díaz-Leal, Ma Victoria Sánchez-Moran, Manuel Pineda. Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L.
Plant, cell & environment.
2010 Nov; 33(11):1828-37. doi:
10.1111/j.1365-3040.2010.02187.x
. [PMID: 20545885] - Fabio Serventi, Ileana Ramazzina, Ilaria Lamberto, Vincenzo Puggioni, Rita Gatti, Riccardo Percudani. Chemical basis of nitrogen recovery through the ureide pathway: formation and hydrolysis of S-ureidoglycine in plants and bacteria.
ACS chemical biology.
2010 Feb; 5(2):203-14. doi:
10.1021/cb900248n
. [PMID: 20038185] - Francisco Antonio Quiles, María José Raso, Manuel Pineda, Pedro Piedras. Ureide metabolism during seedling development in French bean (Phaseolus vulgaris).
Physiologia plantarum.
2009 Jan; 135(1):19-28. doi:
10.1111/j.1399-3054.2008.01173.x
. [PMID: 19121096] - Dirk V Charlson, Kenneth L Korth, Larry C Purcell. Allantoate amidohydrolase transcript expression is independent of drought tolerance in soybean.
Journal of experimental botany.
2009; 60(3):847-51. doi:
10.1093/jxb/ern332
. [PMID: 19129162] - Haruhiro Muratsubaki, Keiichiro Enomoto, Akinori Soejima, Kaoru Satake. An enzyme cycling method for measurement of allantoin in human serum.
Analytical biochemistry.
2008 Jul; 378(1):65-70. doi:
10.1016/j.ab.2008.04.013
. [PMID: 18445470] - Galina Brychkova, Zerekbai Alikulov, Robert Fluhr, Moshe Sagi. A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant.
The Plant journal : for cell and molecular biology.
2008 May; 54(3):496-509. doi:
10.1111/j.1365-313x.2008.03440.x
. [PMID: 18266920] - Andrea K Werner, Imogen A Sparkes, Tina Romeis, Claus-Peter Witte. Identification, biochemical characterization, and subcellular localization of allantoate amidohydrolases from Arabidopsis and soybean.
Plant physiology.
2008 Feb; 146(2):418-30. doi:
10.1104/pp.107.110809
. [PMID: 18065556] - Patricia Y Scaraffia, Guanhong Tan, Jun Isoe, Vicki H Wysocki, Michael A Wells, Roger L Miesfeld. Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes.
Proceedings of the National Academy of Sciences of the United States of America.
2008 Jan; 105(2):518-23. doi:
10.1073/pnas.0708098105
. [PMID: 18182492] - María José Raso, Alfonso Muñoz, Manuel Pineda, Pedro Piedras. Biochemical characterisation of an allantoate-degrading enzyme from French bean (Phaseolus vulgaris): the requirement of phenylhydrazine.
Planta.
2007 Oct; 226(5):1333-42. doi:
10.1007/s00425-007-0570-7
. [PMID: 17594111] - Haruhiro Muratsubaki, Kaoru Satake, Keiichiro Enomoto. Enzymatic assay of allantoin in serum using allantoinase and allantoate amidohydrolase.
Analytical biochemistry.
2006 Dec; 359(2):161-6. doi:
10.1016/j.ab.2006.09.024
. [PMID: 17081493] - Christopher D Todd, Joe C Polacco. AtAAH encodes a protein with allantoate amidohydrolase activity from Arabidopsis thaliana.
Planta.
2006 Apr; 223(5):1108-13. doi:
10.1007/s00425-006-0236-x
. [PMID: 16496096] - Nancy J Ganson, Susan J Kelly, Edna Scarlett, John S Sundy, Michael S Hershfield. Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase.
Arthritis research & therapy.
2006; 8(1):R12. doi:
10.1186/ar1861
. [PMID: 16356199] - C Andy King, Larry C Purcell. Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids.
Plant physiology.
2005 Apr; 137(4):1389-96. doi:
10.1104/pp.104.056317
. [PMID: 15778462] - Shigeyuki Tajima, Mika Nomura, Hiroshi Kouchi. Ureide biosynthesis in legume nodules.
Frontiers in bioscience : a journal and virtual library.
2004 May; 9(?):1374-81. doi:
10.2741/1345
. [PMID: 14977553] - Jürgen Stolz. Isolation and characterization of the plasma membrane biotin transporter from Schizosaccharomyces pombe.
Yeast (Chichester, England).
2003 Feb; 20(3):221-31. doi:
10.1002/yea.959
. [PMID: 12557275] - V Vadez, T R Sinclair. Leaf ureide degradation and N(2) fixation tolerance to water deficit in soybean.
Journal of experimental botany.
2001 Jan; 52(354):153-9. doi:
"
. [PMID: 11181724] - B T Kuzhivelil, U V Mohamed. Allantoin and allantoic acid titre in the faeces and tissues of the developing larva of the moth, Orthaga exvinacea Hampson.
Insect biochemistry and molecular biology.
1998 Dec; 28(12):979-86. doi:
10.1016/s0965-1748(98)00086-1
. [PMID: 9887513] - D S Reddy, G Reddy, H Polasa. Biotoxic effects of copper on ureide metabolism of pigeon pea.
Bulletin of environmental contamination and toxicology.
1995 Jun; 54(6):884-91. doi:
10.1007/bf00197974
. [PMID: 7647505] - . .
.
. doi:
. [PMID: 10944160]
- . .
.
. doi:
. [PMID: 15020640]
- . .
.
. doi:
. [PMID: 23940254]
- . .
.
. doi:
. [PMID: 16317038]