1-Methyluric acid (BioDeep_00000001202)

 

Secondary id: BioDeep_00000405547

human metabolite Endogenous blood metabolite natural product


代谢物信息卡片


1-methyl-2,3,6,7,8,9-hexahydro-1H-purine-2,6,8-trione

化学式: C6H6N4O3 (182.044)
中文名称: 1-甲基尿酸
谱图信息: 最多检出来源 Homo sapiens(blood) 43.23%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

1-Methyluric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/1-methyluric_acid (retrieved 2024-12-23) (BioDeep RN: BioDeep_00000001202). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CN1C(=O)C2=C(NC(=O)N2)NC1=O
InChI: InChI=1S/C6H6N4O3/c1-10-4(11)2-3(9-6(10)13)8-5(12)7-2/h1H3,(H,9,13)(H2,7,8,12)

描述信息

1-Methyluric acid is one of the three main theophylline metabolites in man. 1-Methyluric acid is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152, 4039734, 9890610) [HMDB]
1-Methyluric acid is one of the three main theophylline metabolites in man. 1-Methyluric acid is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline, and theobromine). Methyluric acids can be distinguished from uric acid via simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase, or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 superfamily, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis (PMID:11712316, 15833286, 3506820, 15013152, 4039734, 9890610).

同义名列表

7 个代谢物同义名

1-methyl-2,3,6,7,8,9-hexahydro-1H-purine-2,6,8-trione; 1-Methyl-2,6,8-trihydroxypurine; 1-Methyluric acid; 1-Methylic acid; 1-Methylurate; 1-Methylate; 1-Methyluric acid



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

8 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(5)

  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide

PharmGKB(1)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AHR, APOE, CYP1A1, CYP2A6, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, NAT2, NR3C1, XDH
Peripheral membrane protein 2 CYP1A1, CYP2E1
Endoplasmic reticulum membrane 9 CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP3A5
Nucleus 5 AHR, APOE, NAT2, NR3C1, PPARA
cytosol 5 AHR, GPT, NAT2, NR3C1, XDH
dendrite 1 APOE
centrosome 1 NR3C1
nucleoplasm 3 AHR, NR3C1, PPARA
Cell membrane 1 NAT2
Multi-pass membrane protein 2 ATP4A, NAT2
Synapse 1 NR3C1
glutamatergic synapse 1 APOE
Golgi apparatus 1 APOE
Golgi membrane 1 INS
mitochondrial inner membrane 2 CYP1A1, CYP2E1
neuronal cell body 2 APOE, NAT2
plasma membrane 5 APOE, ATP4A, CYP2C8, CYP2C9, NAT2
Membrane 9 APOE, ATP4A, CYP2A6, CYP2D6, CYP3A4, CYP3A5, NAT2, NR3C1, VEGFB
apical plasma membrane 1 ATP4A
axon 1 NAT2
basolateral plasma membrane 1 NAT2
extracellular exosome 3 APOE, GPT, NAT2
endoplasmic reticulum 2 APOE, CYP2D6
extracellular space 6 APOE, ATP4A, IL6, INS, VEGFB, XDH
mitochondrion 3 CYP1A1, CYP2D6, NR3C1
protein-containing complex 2 AHR, NR3C1
intracellular membrane-bounded organelle 9 CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP3A5
Microsome membrane 7 CYP1A1, CYP1A2, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP3A5
Secreted 4 APOE, IL6, INS, VEGFB
extracellular region 4 APOE, IL6, INS, VEGFB
Single-pass membrane protein 1 CYP2D6
mitochondrial matrix 1 NR3C1
transcription regulator complex 2 AHR, NAT2
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NR3C1
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 1 APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 1 APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 1 APOE
Early endosome 1 APOE
Apical cell membrane 1 ATP4A
Mitochondrion inner membrane 2 CYP1A1, CYP2E1
Cytoplasm, cytoskeleton, spindle 1 NR3C1
spindle 1 NR3C1
extracellular matrix 1 APOE
Peroxisome 1 XDH
sarcoplasmic reticulum 1 XDH
collagen-containing extracellular matrix 1 APOE
nuclear speck 1 NR3C1
chromatin 3 AHR, NR3C1, PPARA
Chromosome 1 NR3C1
Secreted, extracellular space 1 APOE
blood microparticle 1 APOE
endosome lumen 1 INS
aryl hydrocarbon receptor complex 1 AHR
Nucleus, nucleoplasm 1 NR3C1
Melanosome 1 APOE
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 APOE, IL6, INS
platelet alpha granule lumen 1 VEGFB
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
clathrin-coated endocytic vesicle membrane 1 APOE
cytoplasmic microtubule 1 CYP2A6
synaptic cleft 1 APOE
external side of apical plasma membrane 1 NAT2
[Isoform Alpha]: Cytoplasm 1 NR3C1
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 1 APOE
chylomicron remnant 1 APOE
intermediate-density lipoprotein particle 1 APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
[Isoform Beta]: Nucleus 1 NR3C1
[Isoform Alpha-B]: Nucleus 1 NR3C1
interleukin-6 receptor complex 1 IL6
potassium:proton exchanging ATPase complex 1 ATP4A
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
NatA complex 1 NAT2


文献列表

  • Eleni Aklillu, Juan Antonio Carrillo, Eyasu Makonnen, Leif Bertilsson, Natasa Djordjevic. N-Acetyltransferase-2 (NAT2) phenotype is influenced by genotype-environment interaction in Ethiopians. European journal of clinical pharmacology. 2018 Jul; 74(7):903-911. doi: 10.1007/s00228-018-2448-y. [PMID: 29589062]
  • Jin A Sohn, Han-Suk Kim, Jaeseong Oh, Joo-Youn Cho, Kyung-Sang Yu, Juyoung Lee, Seung Han Shin, Jin A Lee, Chang Won Choi, Ee-Kyung Kim, Beyong Il Kim, Eun Ae Park. Prediction of serum theophylline concentrations and cytochrome P450 1A2 activity by analyzing urinary metabolites in preterm infants. British journal of clinical pharmacology. 2017 06; 83(6):1279-1286. doi: 10.1111/bcp.13211. [PMID: 27995649]
  • Michael E Rybak, Maya R Sternberg, Ching-I Pao, Namanjeet Ahluwalia, Christine M Pfeiffer. Urine excretion of caffeine and select caffeine metabolites is common in the U.S. population and associated with caffeine intake. The Journal of nutrition. 2015 Apr; 145(4):766-74. doi: 10.3945/jn.114.205476. [PMID: 25833779]
  • Ying Liu, Yan Zhan, Yi-Fan Zhang, Xiao-Yan Chen, Da-Fang Zhong. [Quantitative analysis of theophylline and its metabolites in urine of Chinese healthy subjects after oral administration of theophylline sustained-release tablets]. Yao xue xue bao = Acta pharmaceutica Sinica. 2014 Jul; 49(7):1039-43. doi: . [PMID: 25233637]
  • Xiang-Yang Li, Yong-Nian Liu, Yong-Ping Li, Jun-Bo Zhu, Xing-Chen Yao, Yong-Fang Li, Mei Yang, Ming Yuan, Xue-Ru Fan, Yue-Miao Yin. [Effect of Tibetan medicine zuotai on the activity, protein and mRNA expression of CYP1A2 and NAT2]. Yao xue xue bao = Acta pharmaceutica Sinica. 2014 Feb; 49(2):267-72. doi: . [PMID: 24761621]
  • Natasa Djordjevic, Juan Antonio Carrillo, Hyung-Keun Roh, Sara Karlsson, Nobuhisa Ueda, Leif Bertilsson, Eleni Aklillu. Comparison of N-acetyltransferase-2 enzyme genotype-phenotype and xanthine oxidase enzyme activity between Swedes and Koreans. Journal of clinical pharmacology. 2012 Oct; 52(10):1527-34. doi: 10.1177/0091270011420261. [PMID: 22105431]
  • John R Mercer, Kelly Gray, Nichola Figg, Sheetal Kumar, Martin R Bennett. The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE(-/-) mice. Arteriosclerosis, thrombosis, and vascular biology. 2012 Oct; 32(10):2461-7. doi: 10.1161/atvbaha.112.251322. [PMID: 22859494]
  • Max Tsai, Jing-tao Wu, Lhanoo Gunawardhana, Himanshu Naik. The effects of xanthine oxidase inhibition by febuxostat on the pharmacokinetics of theophylline. International journal of clinical pharmacology and therapeutics. 2012 May; 50(5):331-7. doi: 10.5414/cp201648. [PMID: 22541837]
  • Jung-woo Chae, Dong-hyun Kim, Byung-yo Lee, Eun jung Kim, Kwang-il Kwon. Development and validation of a sensitive LC-MS/MS method for the simultaneous quantitation of theophylline and its metabolites in rat plasma. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2012 Mar; 889-890(?):44-9. doi: 10.1016/j.jchromb.2012.01.028. [PMID: 22365533]
  • Natasa Djordjevic, Juan Antonio Carrillo, Nobuhisa Ueda, Guillermo Gervasini, Takashi Fukasawa, Akira Suda, Slobodan Jankovic, Eleni Aklillu. N-Acetyltransferase-2 (NAT2) gene polymorphisms and enzyme activity in Serbs: unprecedented high prevalence of rapid acetylators in a White population. Journal of clinical pharmacology. 2011 Jul; 51(7):994-1003. doi: 10.1177/0091270010377630. [PMID: 20801937]
  • Lisbeth E Gómez-Martínez. Disposition kinetics of caffeine and paraxanthine in Nile tilapia (Oreochromis niloticus): characterization of the main metabolites. Archives of environmental contamination and toxicology. 2011 May; 60(4):654-64. doi: 10.1007/s00244-010-9571-9. [PMID: 20669017]
  • Yao Chen, Chang-Qiong Xiao, Yi-Jing He, Bi-Lian Chen, Guo Wang, Gan Zhou, Wei Zhang, Zhi-Rong Tan, Shan Cao, Li-Ping Wang, Hong-Hao Zhou. Genistein alters caffeine exposure in healthy female volunteers. European journal of clinical pharmacology. 2011 Apr; 67(4):347-353. doi: 10.1007/s00228-010-0964-5. [PMID: 21222115]
  • Yao Chen, Peng Xiao, Dong-Sheng Ou-Yang, Lan Fan, Dong Guo, Yi-Nan Wang, Yang Han, Jiang-Hua Tu, Gan Zhou, Yuan-Fei Huang, Hong-Hao Zhou. Simultaneous action of the flavonoid quercetin on cytochrome P450 (CYP) 1A2, CYP2A6, N-acetyltransferase and xanthine oxidase activity in healthy volunteers. Clinical and experimental pharmacology & physiology. 2009 Aug; 36(8):828-33. doi: 10.1111/j.1440-1681.2009.05158.x. [PMID: 19215233]
  • Nancy M Kh Hakooz. Caffeine metabolic ratios for the in vivo evaluation of CYP1A2, N-acetyltransferase 2, xanthine oxidase and CYP2A6 enzymatic activities. Current drug metabolism. 2009 May; 10(4):329-38. doi: 10.2174/138920009788499003. [PMID: 19519341]
  • Alexander Jetter, Martina Kinzig, Michael Rodamer, Dorota Tomalik-Scharte, Fritz Sörgel, Uwe Fuhr. Phenotyping of N-acetyltransferase type 2 and xanthine oxidase with caffeine: when should urine samples be collected?. European journal of clinical pharmacology. 2009 Apr; 65(4):411-7. doi: 10.1007/s00228-008-0597-0. [PMID: 19082994]
  • T Balasubramanian. Role for the urinary bladder in pathogenesis of metabolic syndrome in Wistar rats. Singapore medical journal. 2008 Aug; 49(8):644-9. doi: . [PMID: 18756350]
  • José Angel Gómez-Ruiz, David S Leake, Jennifer M Ames. In vitro antioxidant activity of coffee compounds and their metabolites. Journal of agricultural and food chemistry. 2007 Aug; 55(17):6962-9. doi: 10.1021/jf0710985. [PMID: 17655324]
  • Masayuki Nadai, Miki Kato, Kazumasa Yasui, Masao Kimura, Ying Lan Zhao, Jun Ueyama, Yoshimi Tsunekawa, Hideo Yoshizumi, Takaaki Hasegawa. Lack of effect of aciclovir on metabolism of theophylline and expression of hepatic cytochrome P450 1A2 in rats. Biological & pharmaceutical bulletin. 2007 Mar; 30(3):562-8. doi: 10.1248/bpb.30.562. [PMID: 17329857]
  • Hans-Peter Rihs, Andrea John, Michael Scherenberg, Albrecht Seidel, Thomas Brüning. Concordance between the deduced acetylation status generated by high-speed: real-time PCR based NAT2 genotyping of seven single nucleotide polymorphisms and human NAT2 phenotypes determined by a caffeine assay. Clinica chimica acta; international journal of clinical chemistry. 2007 Feb; 376(1-2):240-3. doi: 10.1016/j.cca.2006.08.010. [PMID: 17011540]
  • Hiroyuki Nosaka, Masayuki Nadai, Miki Kato, Kazumasa Yasui, Hideo Yoshizumi, Mika Miyoshi, Ying Lan Zhao, Kenji Baba, Kenzo Takagi, Takaaki Hasegawa. Effect of a newly developed ketolide antibiotic, telithromycin, on metabolism of theophylline and expression of cytochrome P450 in rats. Life sciences. 2006 May; 79(1):50-6. doi: 10.1016/j.lfs.2005.12.022. [PMID: 16423372]
  • Rocco Orlando, Roberto Padrini, Mauro Perazzi, Sara De Martin, Pierpaolo Piccoli, Pietro Palatini. Liver dysfunction markedly decreases the inhibition of cytochrome P450 1A2-mediated theophylline metabolism by fluvoxamine. Clinical pharmacology and therapeutics. 2006 May; 79(5):489-99. doi: 10.1016/j.clpt.2006.01.012. [PMID: 16678550]
  • Jun Li, Xiang-qian Peng, Jian Zhang, Ji-ping Xu. [Determination of the activity of cytochrome P-450 CYP2A6 by HPLC method with caffeine as metabolizing probe]. Yao xue xue bao = Acta pharmaceutica Sinica. 2006 Mar; 41(3):282-4. doi: . [PMID: 16759004]
  • Phillip M Davies, Lynette D Fairbanks, Krzysztof Safranow, Michael R Bending, H Anne Simmonds. An unusual patient with kidney stones composed of 1-methyluric acid. Urological research. 2006 Feb; 34(1):58-60. doi: 10.1007/s00240-005-0002-8. [PMID: 16397778]
  • Barbara Tavazzi, Giuseppe Lazzarino, Paola Leone, Angela Maria Amorini, Francesco Bellia, Christopher G Janson, Valentina Di Pietro, Lia Ceccarelli, Sonia Donzelli, Jeremy S Francis, Bruno Giardina. Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clinical biochemistry. 2005 Nov; 38(11):997-1008. doi: 10.1016/j.clinbiochem.2005.08.002. [PMID: 16139832]
  • Sandrine Derkenne, Christine P Curran, Howard G Shertzer, Timothy P Dalton, Nadine Dragin, Daniel W Nebert. Theophylline pharmacokinetics: comparison of Cyp1a1(-/-) and Cyp1a2(-/-) knockout mice, humanized hCYP1A1_1A2 knock-in mice lacking either the mouse Cyp1a1 or Cyp1a2 gene, and Cyp1(+/+) wild-type mice. Pharmacogenetics and genomics. 2005 Jul; 15(7):503-11. doi: 10.1097/01.fpc.0000167326.00411.50. [PMID: 15970798]
  • Makiko Kizawa, Etsuko Miyamoto, Shuka Aono, Junichi Kawakami, Isao Adachi. Inhibition of theophylline metabolism by suplatast and its metabolites in rats. Biological & pharmaceutical bulletin. 2005 Jun; 28(6):1061-5. doi: 10.1248/bpb.28.1061. [PMID: 15930745]
  • Leslie F McCoy, M Bridgette Bowen, Mary Xu, Huiping Chen, Rosemary L Schleicher. Improved HPLC assay for measuring serum vitamin C with 1-methyluric acid used as an electrochemically active internal standard. Clinical chemistry. 2005 Jun; 51(6):1062-4. doi: 10.1373/clinchem.2004.046904. [PMID: 15860567]
  • Allan Weimann, Mads Sabroe, Henrik E Poulsen. Measurement of caffeine and five of the major metabolites in urine by high-performance liquid chromatography/tandem mass spectrometry. Journal of mass spectrometry : JMS. 2005 Mar; 40(3):307-16. doi: 10.1002/jms.785. [PMID: 15685651]
  • Junghan Song, Kyoung Un Park, Hyung Doo Park, Yeomin Yoon, Jin Q Kim. High-throughput liquid chromatography-tandem mass spectrometry assay for plasma theophylline and its metabolites. Clinical chemistry. 2004 Nov; 50(11):2176-9. doi: 10.1373/clinchem.2004.035337. [PMID: 15502093]
  • Mirosława Zydroń, Jacek Baranowski, Irena Baranowska. Separation, pre-concentration, and HPLC analysis of methylxanthines in urine samples. Journal of separation science. 2004 Oct; 27(14):1166-72. doi: 10.1002/jssc.200401841. [PMID: 15537072]
  • Alexander Jetter, Martina Kinzig-Schippers, Michael Illauer, Robert Hermann, Katharina Erb, Jürgen Borlak, Helga Wolf, Gillian Smith, Ingolf Cascorbi, Fritz Sörgel, Uwe Fuhr. Phenotyping of N-acetyltransferase type 2 by caffeine from uncontrolled dietary exposure. European journal of clinical pharmacology. 2004 Mar; 60(1):17-21. doi: 10.1007/s00228-003-0718-8. [PMID: 14747882]
  • Chi-Chen Hong, Bing-Kou Tang, Geoffrey L Hammond, David Tritchler, Martin Yaffe, Norman F Boyd. Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study. Breast cancer research : BCR. 2004; 6(4):R352-65. doi: 10.1186/bcr798. [PMID: 15217502]
  • Chi-Chen Hong, Bing-Kou Tang, Venketeshwer Rao, Sanjiv Agarwal, Lisa Martin, David Tritchler, Martin Yaffe, Norman F Boyd. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study. Breast cancer research : BCR. 2004; 6(4):R338-51. doi: 10.1186/bcr797. [PMID: 15217501]
  • T Balasubramanian. Uric acid or 1-methyl uric acid in the urinary bladder increases serum glucose, insulin, true triglyceride, and total cholesterol levels in Wistar rats. TheScientificWorldJournal. 2003 Oct; 3(?):930-6. doi: 10.1100/tsw.2003.90. [PMID: 15241498]
  • Fatima Vrtic, Walter E Haefeli, Jürgen Drewe, Stephan Krähenbühl, Markus Wenk. Interaction of ibuprofen and probenecid with drug metabolizing enzyme phenotyping procedures using caffeine as the probe drug. British journal of clinical pharmacology. 2003 Feb; 55(2):191-8. doi: 10.1046/j.1365-2125.2003.01725.x. [PMID: 12580991]
  • Su Yeon Yu, Hye Chin Chung, Eun Jung Kim, So Hee Kim, Inchull Lee, Sang Geon Kim, Myung Gull Lee. Effects of acute renal failure induced by uranyl nitrate on the pharmacokinetics of intravenous theophylline in rats: the role of CYP2E1 induction in 1,3-dimethyluric acid formation. The Journal of pharmacy and pharmacology. 2002 Dec; 54(12):1687-92. doi: 10.1211/002235702333. [PMID: 12542900]
  • Klaus Abraham, Alexandra Geusau, Yalcin Tosun, Hans Helge, Steffen Bauer, Jürgen Brockmöller. Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: insights into the measurement of hepatic cytochrome P450 1A2 induction. Clinical pharmacology and therapeutics. 2002 Aug; 72(2):163-74. doi: 10.1067/mcp.2002.126408. [PMID: 12189363]
  • M A Vincent, D Dawson, A D H Clark, J R Lindner, S Rattigan, M G Clark, E J Barrett. Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes. 2002 Jan; 51(1):42-8. doi: 10.2337/diabetes.51.1.42. [PMID: 11756321]
  • C Yao, K L Kunze, E D Kharasch, Y Wang, W F Trager, I Ragueneau, R H Levy. Fluvoxamine-theophylline interaction: gap between in vitro and in vivo inhibition constants toward cytochrome P4501A2. Clinical pharmacology and therapeutics. 2001 Nov; 70(5):415-24. doi: 10.1067/mcp.2001.119724. [PMID: 11719727]
  • K A Georgia, V F Samanidou, I N Papadoyannis. Use of novel solid-phase extraction sorbent materials for high-performance liquid chromatography quantitation of caffeine metabolism products methylxanthines and methyluric acids in samples of biological origin. Journal of chromatography. B, Biomedical sciences and applications. 2001 Aug; 759(2):209-18. doi: 10.1016/s0378-4347(01)00251-1. [PMID: 11499474]
  • K Tsutsumi, T Kotegawa, S Matsuki, Y Tanaka, Y Ishii, Y Kodama, M Kuranari, I Miyakawa, S Nakano. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clinical pharmacology and therapeutics. 2001 Aug; 70(2):121-5. doi: 10.1067/mcp.2001.116495. [PMID: 11503005]
  • Y C Bechtel, P R Bechtel, H Lelouët, H Choisy, N R Dy. [The acetylator polymorphism in a Khmer population: clinical consequences]. Therapie. 2001 Jul; 56(4):409-13. doi: NULL. [PMID: 11677864]
  • Y C Bechtel, H Lelouët, S Hrusovsky, M P Brientini, G Mantion, G Paintaud, J P Miguet, P R Bechtel. Caffeine metabolism before and after liver transplantation. International journal of clinical pharmacology and therapeutics. 2001 Feb; 39(2):53-60. doi: 10.5414/cpp39053. [PMID: 11270802]
  • I Németh, D Boda. Xanthine oxidase activity and blood glutathione redox ratio in infants and children with septic shock syndrome. Intensive care medicine. 2001 Jan; 27(1):216-21. doi: 10.1007/s001340000791. [PMID: 11280638]
  • S Dadashzadeh, H Tajerzaden. Dose dependent pharmacokinetics of theophylline: Michaelis-Menten parameters for its major metabolic pathways. European journal of drug metabolism and pharmacokinetics. 2001 Jan; 26(1-2):77-83. doi: 10.1007/bf03190380. [PMID: 11554438]
  • Y C Bechtel, H Lelouët, M P Brientini, M David-Laroche, J P Miguet, G Paintaud, P R Bechtel. Caffeine metabolism differences in acute hepatitis of viral and drug origin. Therapie. 2000 Sep; 55(5):619-27. doi: NULL. [PMID: 11201977]
  • M Boda, I Németh, D Boda. The caffeine metabolic ratio as an index of xanthine oxidase activity in clinically active and silent celiac patients. Journal of pediatric gastroenterology and nutrition. 1999 Nov; 29(5):546-50. doi: 10.1097/00005176-199911000-00014. [PMID: 10554121]
  • B Sinués, M A Sáenz, J Lanuza, M L Bernal, A Fanlo, J L Juste, E Mayayo. Five caffeine metabolite ratios to measure tobacco-induced CYP1A2 activity and their relationships with urinary mutagenicity and urine flow. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 1999 Feb; 8(2):159-66. doi: . [PMID: 10067814]
  • T Tateishi, M Asoh, A Yamaguchi, T Yoda, Y J Okano, Y Koitabashi, S Kobayashi. Developmental changes in urinary elimination of theophylline and its metabolites in pediatric patients. Pediatric research. 1999 Jan; 45(1):66-70. doi: 10.1203/00006450-199901000-00011. [PMID: 9890610]
  • W L Macias, R F Bergstrom, B J Cerimele, K Kassahun, D E Tatum, J T Callaghan. Lack of effect of olanzapine on the pharmacokinetics of a single aminophylline dose in healthy men. Pharmacotherapy. 1998 Nov; 18(6):1237-48. doi: . [PMID: 9855322]
  • W Cao, H T Zhuo, G Chen, S S Ling. Pharmacokinetics of theophylline metabolites in 8 Chinese patients. Zhongguo yao li xue bao = Acta pharmacologica Sinica. 1998 Sep; 19(5):437-9. doi: . [PMID: 10375804]
  • J F Lu, T Yi, X M Cao, H T Zhuo, S S Ling. [Determination of caffeine metabolite for the evaluation of N-acetyltransferase, CYP1A2 and xanthine oxidase activities]. Yao xue xue bao = Acta pharmaceutica Sinica. 1997 Nov; 32(11):813-8. doi: NULL. [PMID: 11596199]
  • C Bayar, I Ozer. A study on the route of 1-methylurate formation in theophylline metabolism. European journal of drug metabolism and pharmacokinetics. 1997 Oct; 22(4):415-9. doi: 10.1007/bf03190979. [PMID: 9512943]
  • V V Sumbaev, A Ia Rozanov. [Effect of caffeine on xanthine oxidase activity]. Ukrainskii biokhimicheskii zhurnal (1978). 1997 Sep; 69(5-6):196-200. doi: NULL. [PMID: 9606845]
  • J F Lu, T Yi, X M Cao, H T Zhuo, S S Lin. [HPLC determination of five caffeine metabolites]. Yao xue xue bao = Acta pharmaceutica Sinica. 1997 Aug; 32(8):607-11. doi: . [PMID: 11596311]
  • N Rodopoulos, A Norman. Elimination of theophylline metabolites in healthy adults. Scandinavian journal of clinical and laboratory investigation. 1997 May; 57(3):233-40. doi: 10.3109/00365519709060032. [PMID: 9238759]
  • D J Birkett, J O Miners, L Valente, K J Lillywhite, R O Day. 1-Methylxanthine derived from caffeine as a pharmacodynamic probe of oxypurinol effect. British journal of clinical pharmacology. 1997 Feb; 43(2):197-200. doi: 10.1046/j.1365-2125.1997.53711.x. [PMID: 9131954]
  • S W Lee, I J Jang, S G Shin, K H Lee, D S Yim, S W Kim, S J Oh, S H Lee. CYP1A2 activity as a risk factor for bladder cancer. Journal of Korean medical science. 1994 Dec; 9(6):482-9. doi: 10.3346/jkms.1994.9.6.482. [PMID: 7786445]
  • H J Kuh, C K Shim. Nonlinear renal excretion of theophylline and its metabolites, 1-methyluric acid and 1,3-dimethyluric acid, in rats. Archives of pharmacal research. 1994 Apr; 17(2):124-30. doi: 10.1007/bf02974236. [PMID: 10319144]
  • H Konishi, K Morita, A Yamaji. Effect of fluconazole on theophylline disposition in humans. European journal of clinical pharmacology. 1994; 46(4):309-12. doi: 10.1007/bf00194397. [PMID: 7957514]
  • M Vincent-Viry, Z B Pontes, R Gueguen, M M Galteau, G Siest. Segregation analyses of four urinary caffeine metabolite ratios implicated in the determination of human acetylation phenotypes. Genetic epidemiology. 1994; 11(2):115-29. doi: 10.1002/gepi.1370110203. [PMID: 8013893]
  • L Fraisse, J B Verlhac, B Roche, M C Rascle, A Rabion, J L Seris. Long-chain-substituted uric acid and 5,6-diaminouracil derivatives as novel agents against free radical processes: synthesis and in vitro activity. Journal of medicinal chemistry. 1993 May; 36(10):1465-73. doi: 10.1021/jm00062a020. [PMID: 8496914]
  • T Ogiso, M Iwaki, T Tanino, K Okuyama, S Uno. Effect of mexiletine on elimination and metabolic conversion of theophylline and its major metabolites in rats. Biological & pharmaceutical bulletin. 1993 Feb; 16(2):163-7. doi: 10.1248/bpb.16.163. [PMID: 8364452]
  • D J Birkett, J O Miners, R O Day. 1-Methylxanthine derived from theophylline as an in vivo biochemical probe of allopurinol effect. British journal of clinical pharmacology. 1991 Aug; 32(2):238-41. doi: 10.1111/j.1365-2125.1991.tb03888.x. [PMID: 1931474]
  • K Ueno, K Miyai, M Kato, Y Kawaguchi, T Suzuki. Mechanism of interaction between theophylline and mexiletine. DICP : the annals of pharmacotherapy. 1991 Jul; 25(7-8):727-30. doi: 10.1177/106002809102500704. [PMID: 1949927]
  • B K Tang, D Kadar, L Qian, J Iriah, J Yip, W Kalow. Caffeine as a metabolic probe: validation of its use for acetylator phenotyping. Clinical pharmacology and therapeutics. 1991 Jun; 49(6):648-57. doi: 10.1038/clpt.1991.82. [PMID: 2060254]
  • M Nadai, T Hasegawa, T Kuzuya, I Muraoka, K Takagi, H Yoshizumi. Effects of enoxacin on renal and metabolic clearance of theophylline in rats. Antimicrobial agents and chemotherapy. 1990 Sep; 34(9):1739-43. doi: 10.1128/aac.34.9.1739. [PMID: 2285287]
  • A J Kilbane, L K Silbart, M Manis, I Z Beitins, W W Weber. Human N-acetylation genotype determination with urinary caffeine metabolites. Clinical pharmacology and therapeutics. 1990 Apr; 47(4):470-7. doi: 10.1038/clpt.1990.59. [PMID: 2328555]
  • G J Wijnands, T B Vree, T J Janssen, P J Guelen. Drug-drug interactions affecting fluoroquinolones. The American journal of medicine. 1989 Dec; 87(6C):47S-51S. doi: NULL. [PMID: 2603893]
  • N Brion, E Naline, D Beaumont, M Pays, C Advenier. Lack of effect of terfenadine on theophylline pharmacokinetics and metabolism in normal subjects. British journal of clinical pharmacology. 1989 Mar; 27(3):391-5. doi: 10.1111/j.1365-2125.1989.tb05383.x. [PMID: 2497767]
  • I Kishimoto, Y Tanigawara, K Okumura, R Hori. Blood oxygen tension-related change of theophylline clearance in experimental hypoxemia. The Journal of pharmacology and experimental therapeutics. 1989 Mar; 248(3):1237-42. doi: NULL. [PMID: 2703972]
  • I Bonnacker, D Berdel, R Süverkrüp, A von Berg. Renal clearance of theophylline and its major metabolites: age and urine flow dependency in paediatric patients. European journal of clinical pharmacology. 1989; 36(2):145-50. doi: 10.1007/bf00609186. [PMID: 2721539]
  • T B Vree, M Martea, R G Tiggeler, Y A Hekster, J C Hafkenscheid. Pharmacokinetics of theophylline and its metabolites in a patient undergoing continuous ambulatory peritoneal dialysis. Clinical pharmacokinetics. 1988 Dec; 15(6):390-5. doi: 10.2165/00003088-198815060-00003. [PMID: 3243042]
  • M C Rogge, W R Solomon, A J Sedman, P G Welling, R D Toothaker, J G Wagner. The theophylline-enoxacin interaction: I. Effect of enoxacin dose size on theophylline disposition. Clinical pharmacology and therapeutics. 1988 Nov; 44(5):579-87. doi: 10.1038/clpt.1988.197. [PMID: 3180639]
  • S G Shin, D Juan, M Rammohan. Theophylline pharmacokinetics in normal elderly subjects. Clinical pharmacology and therapeutics. 1988 Nov; 44(5):522-30. doi: 10.1038/clpt.1988.189. [PMID: 3180633]
  • D C Knoppert, M Spino, R Beck, J J Thiessen, S M MacLeod. Cystic fibrosis: enhanced theophylline metabolism may be linked to the disease. Clinical pharmacology and therapeutics. 1988 Sep; 44(3):254-64. doi: 10.1038/clpt.1988.147. [PMID: 3046811]
  • S Bompadre, P Ercolani, L Leone. [Determination of theophylline in the plasma by rapid solid-phase extraction]. Bollettino della Societa italiana di biologia sperimentale. 1987 Aug; 63(8):717-23. doi: NULL. [PMID: 3663373]
  • M E Campbell, S P Spielberg, W Kalow. A urinary metabolite ratio that reflects systemic caffeine clearance. Clinical pharmacology and therapeutics. 1987 Aug; 42(2):157-65. doi: 10.1038/clpt.1987.126. [PMID: 3608349]
  • L A Reinke, M Nakamura, L Logan, H D Christensen, J M Carney. In vivo and in vitro 1-methylxanthine metabolism in the rat. Evidence that the dehydrogenase form of xanthine oxidase predominates in intact perfused liver. Drug metabolism and disposition: the biological fate of chemicals. 1987 May; 15(3):295-9. doi: . [PMID: 2886302]
  • J Beckmann, W Elsässer, U Gundert-Remy, R Hertrampf. Enoxacin--a potent inhibitor of theophylline metabolism. European journal of clinical pharmacology. 1987; 33(3):227-30. doi: 10.1007/bf00637553. [PMID: 3480222]
  • N R Scott, J Chakraborty, V Marks. Urinary metabolites of caffeine in pregnant women. British journal of clinical pharmacology. 1986 Oct; 22(4):475-8. doi: 10.1111/j.1365-2125.1986.tb02920.x. [PMID: 3768258]
  • D M Grant, B K Tang, M E Campbell, W Kalow. Effect of allopurinol on caffeine disposition in man. British journal of clinical pharmacology. 1986 Apr; 21(4):454-8. doi: 10.1111/j.1365-2125.1986.tb05222.x. [PMID: 3754760]
  • I M Ramzan, G Levy. Kinetics of drug action in disease states. XVI. Pharmacodynamics of theophylline-induced seizures in rats. The Journal of pharmacology and experimental therapeutics. 1986 Mar; 236(3):708-13. doi: . [PMID: 3485196]
  • D Berdel, G Heimann. [Peculiarities of the pharmacokinetics and pharmacodynamics of theophylline in children]. Wiener klinische Wochenschrift. 1984 Aug; 96(16):616-21. doi: . [PMID: 6516414]
  • R Hildebrandt, U Gundert-Remy, H Möller, E Weber. Lack of clinically important interaction between erythromycin and theophylline. European journal of clinical pharmacology. 1984; 26(4):485-9. doi: 10.1007/bf00542146. [PMID: 6734707]
  • D J Birkett, J O Miners, J Attwood. Secondary metabolism of theophylline biotransformation products in man--route of formation of 1-methyluric acid. British journal of clinical pharmacology. 1983 Jan; 15(1):117-9. doi: 10.1111/j.1365-2125.1983.tb01475.x. [PMID: 6849735]
  • D D Tang-Liu, S Riegelman. An automated HPLC assay for simultaneous quantitation of methylated xanthines and uric acids in urine. Journal of chromatographic science. 1982 Apr; 20(4):155-9. doi: 10.1093/chromsci/20.4.155. [PMID: 7096523]
  • D D Tang-Liu, R L Williams, S Riegelman. Nonlinear theophylline elimination. Clinical pharmacology and therapeutics. 1982 Mar; 31(3):358-69. doi: 10.1038/clpt.1982.46. [PMID: 7060318]
  • J J Grygiel, D J Birkett. Cigarette smoking and theophylline clearance and metabolism. Clinical pharmacology and therapeutics. 1981 Oct; 30(4):491-6. doi: 10.1038/clpt.1981.193. [PMID: 7285483]
  • T J Monks, C A Lawrie, J Caldwell. The effect of increased caffeine intake on the metabolism and pharmacokinetics of theophylline in man. Biopharmaceutics & drug disposition. 1981 Jan; 2(1):31-7. doi: 10.1002/bdd.2510020104. [PMID: 7236869]
  • J H Jonkman, D Tang, R A Upton, S Riegelman. Measurement of excretion characteristics of theophylline and its major metabolites. European journal of clinical pharmacology. 1981; 20(6):435-41. doi: 10.1007/bf00542096. [PMID: 7286053]
  • . . . . doi: . [PMID: 17221922]
  • . . . . doi: . [PMID: 14977550]