Ajmalicine (BioDeep_00000000513)

 

Secondary id: BioDeep_00000408335

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


methyl (1S,15R,16S,20S)-16-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4(9),5,7,18-pentaene-19-carboxylate

化学式: C21H24N2O3 (352.1787)
中文名称: 萝巴新, 阿吗里新
谱图信息: 最多检出来源 Viridiplantae(plant) 18.41%

分子结构信息

SMILES: CC1C2CN3CCC4=C(C3CC2C(=CO1)C(=O)OC)NC5=CC=CC=C45
InChI: InChI=1S/C21H24N2O3/c1-12-16-10-23-8-7-14-13-5-3-4-6-18(13)22-20(14)19(23)9-15(16)17(11-26-12)21(24)25-2/h3-6,11-12,15-16,19,22H,7-10H2,1-2H3

描述信息

Ajmalicine is a monoterpenoid indole alkaloid with formula C21H24N2O3, isolated from several Rauvolfia and Catharanthus species. It is a selective alpha1-adrenoceptor antagonist used for the treatment of high blood pressure. It has a role as an antihypertensive agent, an alpha-adrenergic antagonist and a vasodilator agent. It is a monoterpenoid indole alkaloid, a methyl ester and an organic heteropentacyclic compound. It is a conjugate base of an ajmalicine(1+).
Ajmalicine is a natural product found in Crossosoma bigelovii, Rauvolfia yunnanensis, and other organisms with data available.
A monoterpenoid indole alkaloid with formula C21H24N2O3, isolated from several Rauvolfia and Catharanthus species. It is a selective alpha1-adrenoceptor antagonist used for the treatment of high blood pressure.
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
INTERNAL_ID 2326; CONFIDENCE Reference Standard (Level 1)
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2326
[Raw Data] CB001_Ajmalicine_pos_40eV_CB000004.txt
[Raw Data] CB001_Ajmalicine_pos_10eV_CB000004.txt
[Raw Data] CB001_Ajmalicine_pos_50eV_CB000004.txt
[Raw Data] CB001_Ajmalicine_pos_20eV_CB000004.txt
[Raw Data] CB001_Ajmalicine_pos_30eV_CB000004.txt
Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2].
Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2].
Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2].

同义名列表

80 个代谢物同义名

methyl (1S,15R,16S,20S)-16-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4(9),5,7,18-pentaene-19-carboxylate; methyl (1S,15R,16S,20S)-16-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4,6,8,18-pentaene-19-carboxylate; (7aR,8S,11aS,12aS)-8-Methyl-5,6,7a,8,11a,12,12a,13-octahydro-7H-9-oxa-6a,13-diaza-indeno[2,1-a]anthracene-11-carboxylic acid methyl ester; methyl (1S,15R,16S,20S)-16-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.02,10.04,9.015,20]henicosa-2(10),4,6,8,18-pentaene-19-carboxylate; methyl (4S,4aR,13bS,14aS)-4-methyl-4a,5,7,8,13,13b,14,14a-octahydro-4H-indolo[2,3-a]pyrano[3,4-g]quinolizine-1-carboxylate; (4S,4aR,13bS,14aS)-methyl 4-methyl-4a,5,7,8,13,13b,14,14a-octahydro-4H-indolo[2,3-a]pyrano[3,4-g]quinolizine-1-carboxylate; Methyl (19-methyl-16,17-dehydro-18-oxa-3alpha,15alpha,19beta,20beta-yohimban-16-carboxylat); Oxayohimban-16-carboxylic acid, 16,17-didehydro-19-methyl-, methyl ester, (19-.alpha).-; Oxayohimban-16-carboxylic acid, 16,17-didehydro-19-methyl-, methyl ester, (19-alpha)-; (19.ALPHA.)-16,17-DIDEHYDRO-19-METHYLOXAYOHIMBAN-16-CARBOXYLIC ACID METHYL ESTER; (19alpha)-16,17-Didehydro-19-methyl-oxayohimban-16-carboxylic acid methyl ester; Oxayohimban-16-carboxylicacid, 16,17-didehydro-19-methyl-, methyl ester, (19a)-; Oxayohimban-16-carboxylic acid, 16,17-didehydro-19-methyl-, methylester, (19a)-; methyl (19alpha)-19-methyl-16,17-didehydro-18-oxayohimban-16-carboxylate; Methyl (19alpha)-19-methyl-16,17-didehydro-18-oxayohimban-16-carboxylate; 16,17-Didehydro-19-methyloxayohimban-16-carboxylic acid methyl ester; methyl (19alpha)-19-methyl-16,17-didehydrooxayohimban-16-carboxylate; Methyl 16,17-didehydro-19alpha-methyl-18-oxayohimban-16-carboxylat; 19b-methyl-16-methoxycarbonyl-16,17-didehydro-oxayohimbane; ajmalicine, (hydrochloride(19beta,20alpha))-isomer; [2,3-a]pyrano[3,4-g]quinolizine-1-carboxylate; 4-27-00-07927 (Beilstein Handbook Reference); ajmalicine, (3beta,19alpha,20alpha)-isomer; 4a,5,7,8,13,13b,14,14a-octahydro-4H-indolo; ajmalicine, hydrochloride(19alpha)-isomer; ajmalicine, (19alpha,20alpha)-isomer; ajmalicine, (19beta,20alpha)-isomer; (4S,4aR,13bS,14aS)-methyl 4-methyl-; ajmalicine, (3beta,19alpha)-isomer; ajmalicine, (3-beta,19beta)-isomer; ajmalicine, PO4(19alpha)-isomer; ajmalicine, (19beta)-isomer; GRTOGORTSDXSFK-XJTZBENFSA-N; ajmalicine hydrochloride; raubasine hydrochloride; Ajmalicine(-Yohimbine); PYTETRAHYDROSERPENTINE; Tetrahydroserpentine; tetrahydro-alstonine; Tetrahydroalstonine; RAUBASINE [WHO-DD]; rauwolfia alkaloid; Prestwick3_000592; RAUBASINE [MART.]; .delta.-Yohimbine; Prestwick1_000592; Prestwick0_000592; Prestwick2_000592; 19-epiajmalicine; delta-yohimbine; Raubasine (DCF); UNII-4QJL8OX71Z; RAUBASINE [MI]; DivK1c_006521; BPBio1_000512; Raubasine,(S); raubasine HCl; MEGxp0_001818; KBio2_001255; KBio2_006391; ACon1_001630; Substance II; Lamuran (TN); KBio2_003823; KBio1_001465; Hydrosarpan; akuammigine; 4QJL8OX71Z; ajmalicine; Isoarteril; Cristanyl; Ajmalicin; raubasine; Circolene; rauvasan; Lamuran; Sarpan; AJN; Mayumbine; Ajmalicine



数据库引用编号

51 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

132 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ADRA1A, CASP3, CAT, CYP2D6, CYP3A4, GSDME, PF4
Peripheral membrane protein 2 ACHE, GBA1
Endoplasmic reticulum membrane 3 CYP2D6, CYP3A4, HMGCR
Nucleus 5 ACHE, ADRA1A, CASP3, CS, CYC1
cytosol 5 ADRA1A, CASP3, CAT, GSDME, NGB
dendrite 1 MAOB
trans-Golgi network 1 GBA1
nucleoplasm 3 ADRA1A, ATP2B1, CASP3
Cell membrane 5 ACHE, ADRA1A, ADRB3, ATP2B1, GSDME
Cytoplasmic side 1 MAOB
Multi-pass membrane protein 6 ADRA1A, ADRB3, ATP2B1, GSDME, HMGCR, MT-CYB
Synapse 2 ACHE, ATP2B1
cell surface 1 ACHE
glutamatergic synapse 2 ATP2B1, CASP3
Golgi apparatus 2 ACHE, GBA1
Golgi membrane 1 INS
lysosomal membrane 1 GBA1
mitochondrial inner membrane 2 CYC1, MT-CYB
neuromuscular junction 1 ACHE
neuronal cell body 2 CASP3, MAOB
presynaptic membrane 1 ATP2B1
Cytoplasm, cytosol 1 NGB
Lysosome 1 GBA1
plasma membrane 6 ACHE, ADRA1A, ADRB3, ATP2B1, BCHE, GSDME
synaptic vesicle membrane 1 ATP2B1
Membrane 10 ACHE, ATP2B1, CAT, CS, CYC1, CYP2D6, CYP3A4, GSDME, HMGCR, MT-CYB
basolateral plasma membrane 1 ATP2B1
caveola 1 ADRA1A
extracellular exosome 4 ATP2B1, CAT, CS, GBA1
Lysosome membrane 1 GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 3 CYP2D6, GBA1, HMGCR
extracellular space 5 ACHE, BCHE, IL6, INS, PF4
lysosomal lumen 1 GBA1
perinuclear region of cytoplasm 1 ACHE
mitochondrion 6 CAT, CS, CYC1, CYP2D6, MAOB, MT-CYB
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 5 ADRA1A, ATP2B1, CAT, CYP2D6, CYP3A4
Microsome membrane 2 CYP2D6, CYP3A4
postsynaptic density 1 CASP3
Secreted 5 ACHE, BCHE, IL6, INS, PF4
extracellular region 6 ACHE, BCHE, CAT, IL6, INS, PF4
Mitochondrion outer membrane 1 MAOB
Single-pass membrane protein 2 CYC1, CYP2D6
mitochondrial outer membrane 1 MAOB
Mitochondrion matrix 2 CS, NGB
mitochondrial matrix 3 CAT, CS, NGB
Extracellular side 1 ACHE
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Nucleus membrane 1 ADRA1A
nuclear membrane 1 ADRA1A
Mitochondrion inner membrane 2 CYC1, MT-CYB
focal adhesion 1 CAT
Peroxisome 1 CAT
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 2 CAT, HMGCR
collagen-containing extracellular matrix 1 PF4
lateral plasma membrane 1 ATP2B1
receptor complex 1 ADRB3
cell projection 1 ATP2B1
blood microparticle 1 BCHE
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 ACHE
endosome lumen 1 INS
Membrane, caveola 1 ADRA1A
Presynaptic cell membrane 1 ATP2B1
side of membrane 1 ACHE
Peroxisome membrane 1 HMGCR
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 BCHE, IL6, INS
platelet alpha granule lumen 1 PF4
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
mitochondrial envelope 1 MAOB
immunological synapse 1 ATP2B1
Single-pass type IV membrane protein 1 MAOB
nuclear envelope lumen 1 BCHE
respiratory chain complex III 2 CYC1, MT-CYB
synaptic cleft 1 ACHE
death-inducing signaling complex 1 CASP3
[Gasdermin-E, N-terminal]: Cell membrane 1 GSDME
[Gasdermin-E]: Cytoplasm, cytosol 1 GSDME
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
photoreceptor ribbon synapse 1 ATP2B1
[Isoform H]: Cell membrane 1 ACHE


文献列表

  • Kang Chen, Guran Yu. Tetrahydroalstonine possesses protective potentials on palmitic acid stimulated SK-N-MC cells by suppression of Aβ1-42 and tau through regulation of PI3K/Akt signaling pathway. European journal of pharmacology. 2024 Jan; 962(?):176251. doi: 10.1016/j.ejphar.2023.176251. [PMID: 38061471]
  • Sachin Kumar Verma, Danswrang Goyary, Amit Kumar Singh, Sivalingam Anandhan, Soom Nath Raina, Sadanand Pandey, Shailesh Kumar, Neeraj Khare. Modulation of terpenoid indole alkaloid pathway via elicitation with phytosynthesized silver nanoparticles for the enhancement of ajmalicine, a pharmaceutically important alkaloid. Planta. 2023 Dec; 259(2):30. doi: 10.1007/s00425-023-04311-z. [PMID: 38150044]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Tengfei Liu, Yuanwei Gou, Bei Zhang, Rui Gao, Chang Dong, Mingming Qi, Lihong Jiang, Xuanwei Ding, Chun Li, Jiazhang Lian. Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotechnology and bioengineering. 2022 05; 119(5):1314-1326. doi: 10.1002/bit.28040. [PMID: 35060115]
  • Shyam H Kamble, Erin C Berthold, Tamara I King, Siva Rama Raju Kanumuri, Raluca Popa, Julius R Herting, Francisco León, Abhisheak Sharma, Lance R McMahon, Bonnie A Avery, Christopher R McCurdy. Pharmacokinetics of Eleven Kratom Alkaloids Following an Oral Dose of Either Traditional or Commercial Kratom Products in Rats. Journal of natural products. 2021 04; 84(4):1104-1112. doi: 10.1021/acs.jnatprod.0c01163. [PMID: 33620222]
  • Priya Kashyap, Vivekanandan Kalaiselvan, Robin Kumar, Suresh Kumar. Ajmalicine and Reserpine: Indole Alkaloids as Multi-Target Directed Ligands Towards Factors Implicated in Alzheimer's Disease. Molecules (Basel, Switzerland). 2020 Apr; 25(7):. doi: 10.3390/molecules25071609. [PMID: 32244635]
  • S Singh, S S Pandey, K Shanker, A Kalra. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots. Journal of applied microbiology. 2020 Apr; 128(4):1128-1142. doi: 10.1111/jam.14546. [PMID: 31821696]
  • Thomas J Flynn, Sanah N Vohra. Simultaneous determination of intestinal permeability and potential drug interactions of complex mixtures using Caco-2 cells and high-resolution mass spectrometry: Studies with Rauwolfia serpentina extract. Chemico-biological interactions. 2018 Jun; 290(?):37-43. doi: 10.1016/j.cbi.2018.05.006. [PMID: 29782822]
  • Yang Qu, Antje M K Thamm, Matthew Czerwinski, Sayaka Masada, Kyung Hee Kim, Graham Jones, Ping Liang, Vincenzo De Luca. Geissoschizine synthase controls flux in the formation of monoterpenoid indole alkaloids in a Catharanthus roseus mutant. Planta. 2018 Mar; 247(3):625-634. doi: 10.1007/s00425-017-2812-7. [PMID: 29147812]
  • Xiao-Ning Zhang, Jia Liu, Yang Liu, Yu Wang, Ann Abozeid, Zhi-Guo Yu, Zhong-Hua Tang. Metabolomics Analysis Reveals that Ethylene and Methyl Jasmonate Regulate Different Branch Pathways to Promote the Accumulation of Terpenoid Indole Alkaloids in Catharanthus roseus. Journal of natural products. 2018 02; 81(2):335-342. doi: 10.1021/acs.jnatprod.7b00782. [PMID: 29406718]
  • Roukia Benyammi, Cédric Paris, Majda Khelifi-Slaoui, Djamila Zaoui, Ouarda Belabbassi, Nouara Bakiri, Myassa Meriem Aci, Boualem Harfi, Sonia Malik, Abdullah Makhzoum, Stéphane Desobry, Lakhdar Khelifi. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots. Pharmaceutical biology. 2016 Oct; 54(10):2033-43. doi: 10.3109/13880209.2016.1140213. [PMID: 26983347]
  • Gui-Guang Cheng, Dan Li, Bo Hou, Xiao-Nian Li, Lu Liu, Ying-Ying Chen, Paul-Keilah Lunga, Afsar Khan, Ya-Ping Liu, Zhi-Li Zuo, Xiao-Dong Luo. Melokhanines A-J, Bioactive Monoterpenoid Indole Alkaloids with Diverse Skeletons from Melodinus khasianus. Journal of natural products. 2016 09; 79(9):2158-66. doi: 10.1021/acs.jnatprod.6b00011. [PMID: 27584856]
  • Kotaro Yamamoto, Katsutoshi Takahashi, Hajime Mizuno, Aya Anegawa, Kimitsune Ishizaki, Hidehiro Fukaki, Miwa Ohnishi, Mami Yamazaki, Tsutomu Masujima, Tetsuro Mimura. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS. Proceedings of the National Academy of Sciences of the United States of America. 2016 Apr; 113(14):3891-6. doi: 10.1073/pnas.1521959113. [PMID: 27001858]
  • Pengfei Zhou, Jiazeng Yang, Jianhua Zhu, Shuijie He, Wenjin Zhang, Rongmin Yu, Jiachen Zi, Liyan Song, Xuesong Huang. Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Applied microbiology and biotechnology. 2015 Sep; 99(17):7035-45. doi: 10.1007/s00253-015-6651-9. [PMID: 25981997]
  • Anna Stavrinides, Evangelos C Tatsis, Emilien Foureau, Lorenzo Caputi, Franziska Kellner, Vincent Courdavault, Sarah E O'Connor. Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chemistry & biology. 2015 Mar; 22(3):336-41. doi: 10.1016/j.chembiol.2015.02.006. [PMID: 25772467]
  • Yanan Gai, Han Chen, Wenyuan Liu, Feng Feng, Ning Xie. The metabolism of YiGan San and subsequent pharmacokinetic evaluation of four metabolites in rat based on liquid chromatography with tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2014 Dec; 972(?):22-8. doi: 10.1016/j.jchromb.2014.09.033. [PMID: 25306115]
  • Francisco Fernández-Pérez, Lorena Almagro, Maria A Pedreño, Laura V Gómez Ros. Synergistic and cytotoxic action of indole alkaloids produced from elicited cell cultures of Catharanthus roseus. Pharmaceutical biology. 2013 Mar; 51(3):304-10. doi: 10.3109/13880209.2012.722646. [PMID: 23137274]
  • Wanhong Liu, Rong Chen, Min Chen, Haoxing Zhang, Meifang Peng, Chunxian Yang, Xingjia Ming, Xiaozhong Lan, Zhihua Liao. Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata. Planta. 2012 Jul; 236(1):239-50. doi: 10.1007/s00425-012-1608-z. [PMID: 22331368]
  • Bo Hong, Wen-Jing Li, Chun-Jie Zhao. [Chemical constituents of Rauvolfia verticillata]. Yao xue xue bao = Acta pharmaceutica Sinica. 2012 Jun; 47(6):764-8. doi: . [PMID: 22919724]
  • Vishakha Sharma, Swati Chaudhary, Suchi Srivastava, Richa Pandey, Sushil Kumar. Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. Journal of genetics. 2012; 91(1):49-69. doi: . [PMID: 22546825]
  • Qifang Pan, Quan Wang, Fang Yuan, Shihai Xing, Jingya Zhao, Young Hae Choi, Robert Verpoorte, Yuesheng Tian, Guofeng Wang, Kexuan Tang. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PloS one. 2012; 7(8):e43038. doi: 10.1371/journal.pone.0043038. [PMID: 22916202]
  • Guilherme Guimarães, Luísa Cardoso, Helena Oliveira, Conceição Santos, Patrícia Duarte, Mariana Sottomayor. Cytogenetic characterization and genome size of the medicinal plant Catharanthus roseus (L.) G. Don. AoB PLANTS. 2012; 2012(?):pls002. doi: 10.1093/aobpla/pls002. [PMID: 22479673]
  • Mai Li, Christie A M Peebles, Jacqueline V Shanks, Ka-Yiu San. Effect of sodium nitroprusside on growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root cultures. Biotechnology progress. 2011 May; 27(3):625-30. doi: 10.1002/btpr.605. [PMID: 21567990]
  • J S Thakur, R K Agarwal, M D Kharya. Enhancing hepatoprotective bioactives of phyllanthus amarus through immobilization by growth promoters and media changes. Indian journal of pharmaceutical sciences. 2011 May; 73(3):271-5. doi: 10.4103/0250-474x.93510. [PMID: 22457549]
  • Monika Jaggi, Santosh Kumar, Alok Krishna Sinha. Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Applied microbiology and biotechnology. 2011 May; 90(3):1005-16. doi: 10.1007/s00253-011-3131-8. [PMID: 21318361]
  • Mohammad Jamshed Ahmad Siddiqui, Zhari Ismail, Noor Hafizoh Saidan. Simultaneous determination of secondary metabolites from Vinca rosea plant extractives by reverse phase high performance liquid chromatography. Pharmacognosy magazine. 2011 Apr; 7(26):92-6. doi: 10.4103/0973-1296.80662. [PMID: 21716929]
  • Christie A M Peebles, Guy W Sander, Erik H Hughes, Ryan Peacock, Jacqueline V Shanks, Ka-Yiu San. The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metabolic engineering. 2011 Mar; 13(2):234-40. doi: 10.1016/j.ymben.2010.11.005. [PMID: 21144909]
  • L Almagro, A J López Perez, M A Pedreño. New method to enhance ajmalicine production in Catharanthus roseus cell cultures based on the use of cyclodextrins. Biotechnology letters. 2011 Feb; 33(2):381-5. doi: 10.1007/s10529-010-0430-6. [PMID: 20953668]
  • Lihong He, Li Yang, Aizhen Xiong, Shujuan Zhao, Zhengtao Wang, Zhibi Hu. Simultaneous quantification of four indole alkaloids in Catharanthus roseus cell line C20hi by UPLC-MS. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2011; 27(4):433. doi: 10.2116/analsci.27.433. [PMID: 21478621]
  • Weerawat Runguphan, Xudong Qu, Sarah E O'Connor. Integrating carbon-halogen bond formation into medicinal plant metabolism. Nature. 2010 Nov; 468(7322):461-4. doi: 10.1038/nature09524. [PMID: 21048708]
  • N K Srivastava, A K Srivastava. Influence of Some Heavy Metals on Growth, Alkaloid Content and Composition in Catharanthus roseus L. Indian journal of pharmaceutical sciences. 2010 Nov; 72(6):775-8. doi: 10.4103/0250-474x.84592. [PMID: 21969751]
  • Grégory Guirimand, Vincent Courdavault, Arnaud Lanoue, Samira Mahroug, Anthony Guihur, Nathalie Blanc, Nathalie Giglioli-Guivarc'h, Benoit St-Pierre, Vincent Burlat. Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"?. BMC plant biology. 2010 Aug; 10(?):182. doi: 10.1186/1471-2229-10-182. [PMID: 20723215]
  • David M Pereira, Federico Ferreres, Jorge M A Oliveira, Luís Gaspar, Joana Faria, Patrícia Valentão, Mariana Sottomayor, Paula B Andrade. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2010 Jul; 17(8-9):646-52. doi: 10.1016/j.phymed.2009.10.008. [PMID: 19962870]
  • Joachim Stockigt, Bodo Hammes, Martin Ruppert. Construction and expression of a dual vector for chemo-enzymatic synthesis of plant indole alkaloids in Escherichia coli. Natural product research. 2010 May; 24(8):759-66. doi: 10.1080/14786410903247304. [PMID: 20432158]
  • Jon Anders Stavang, Rolf Inge Pettersen, Micael Wendell, Knut Asbjørn Solhaug, Olavi Junttila, Roar Moe, Jorunn E Olsen. Thermoperiodic growth control by gibberellin does not involve changes in photosynthetic or respiratory capacities in pea. Journal of experimental botany. 2010 Feb; 61(4):1015-29. doi: 10.1093/jxb/erp366. [PMID: 20022920]
  • Federico Ferreres, David M Pereira, Patrícia Valentão, Jorge M A Oliveira, Joana Faria, Luís Gaspar, Mariana Sottomayor, Paula B Andrade. Simple and reproducible HPLC-DAD-ESI-MS/MS analysis of alkaloids in Catharanthus roseus roots. Journal of pharmaceutical and biomedical analysis. 2010 Jan; 51(1):65-9. doi: 10.1016/j.jpba.2009.08.005. [PMID: 19720492]
  • Mohammed Fazil Ahmed, Syed Mohammed Kazim, Syed Safiullah Ghori, Syeda Sughra Mehjabeen, Shaik Rasheed Ahmed, Shaik Mehboob Ali, Mohammed Ibrahim. Antidiabetic Activity of Vinca rosea Extracts in Alloxan-Induced Diabetic Rats. International journal of endocrinology. 2010; 2010(?):841090. doi: 10.1155/2010/841090. [PMID: 20652054]
  • Sheba Goklany, Ralph H Loring, James Glick, Carolyn W T Lee-Parsons. Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding. Biotechnology progress. 2009 Sep; 25(5):1289-96. doi: 10.1002/btpr.204. [PMID: 19722248]
  • Barbora Pomahacová, Jaroslav Dusek, Jirina Dusková, Kazufumi Yazaki, Sittiruk Roytrakul, Robert Verpoorte. Improved accumulation of ajmalicine and tetrahydroalstonine in Catharanthus cells expressing an ABC transporter. Journal of plant physiology. 2009 Sep; 166(13):1405-12. doi: 10.1016/j.jplph.2009.02.015. [PMID: 19403195]
  • Shijun Lu, Buu N Tran, Jamie L Nelsen, Kenneth M Aldous. Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2009 Aug; 877(24):2499-505. doi: 10.1016/j.jchromb.2009.06.024. [PMID: 19577523]
  • Francisco León, Eman Habib, Jessica E Adkins, Edward B Furr, Christopher R McCurdy, Stephen J Cutler. Phytochemical characterization of the leaves of Mitragyna speciosa grown in U.S.A. Natural product communications. 2009 Jul; 4(7):907-10. doi: . [PMID: 19731590]
  • Paul Klausmeyer, Qin Zhou, Dominic A Scudiero, Badarch Uranchimeg, Giovanni Melillo, John H Cardellina, Robert H Shoemaker, Ching-Jer Chang, Thomas G McCloud. Cytotoxic and HIF-1alpha inhibitory compounds from Crossosoma bigelovii. Journal of natural products. 2009 May; 72(5):805-12. doi: 10.1021/np8006342. [PMID: 19405508]
  • Bernard Y K Binder, Christie A M Peebles, Jacqueline V Shanks, Ka-Yiu San. The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnology progress. 2009 May; 25(3):861-5. doi: 10.1002/btpr.97. [PMID: 19479674]
  • Felipe Vázquez-Flota, Elizabeta Hernández-Domínguez, Ma de Lourdes Miranda-Ham, Miriam Monforte-González. A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnology letters. 2009 Apr; 31(4):591-5. doi: 10.1007/s10529-008-9881-4. [PMID: 19030782]
  • Mei-Liang Zhou, Ji-Rong Shao, Yi-Xiong Tang. Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Biotechnology and applied biochemistry. 2009 Apr; 52(Pt 4):313-23. doi: 10.1042/ba20080239. [PMID: 19281450]
  • Weerawat Runguphan, Sarah E O'Connor. Metabolic reprogramming of periwinkle plant culture. Nature chemical biology. 2009 Mar; 5(3):151-3. doi: 10.1038/nchembio.141. [PMID: 19151732]
  • Eliel Ruiz-May, Rosa M Galaz-Avalos, Víctor M Loyola-Vargas. Differential secretion and accumulation of terpene indole alkaloids in hairy roots of Catharanthus roseus treated with methyl jasmonate. Molecular biotechnology. 2009 Mar; 41(3):278-85. doi: 10.1007/s12033-008-9111-2. [PMID: 18841500]
  • Aniça Amini, Gaëlle Glévarec, Françoise Andreu, Marc Rideau, Joël Crèche. Low levels of gibberellic acid control the biosynthesis of ajmalicine in Catharanthus roseus cell suspension cultures. Planta medica. 2009 Feb; 75(2):187-91. doi: 10.1055/s-0028-1112198. [PMID: 19096998]
  • M K Goel, S Mehrotra, A K Kukreja, K Shanker, S P S Khanuja. In vitro propagation of Rauwolfia serpentina using liquid medium, assessment of genetic fidelity of micropropagated plants, and simultaneous quantitation of reserpine, ajmaline, and ajmalicine. Methods in molecular biology (Clifton, N.J.). 2009; 547(?):17-33. doi: 10.1007/978-1-60327-287-2_2. [PMID: 19521832]
  • Vincent Courdavault, Vincent Burlat, Benoit St-Pierre, Nathalie Giglioli-Guivarc'h. Proteins prenylated by type I protein geranylgeranyltransferase act positively on the jasmonate signalling pathway triggering the biosynthesis of monoterpene indole alkaloids in Catharanthus roseus. Plant cell reports. 2009 Jan; 28(1):83-93. doi: 10.1007/s00299-008-0610-1. [PMID: 18813931]
  • L Dhooghe, K Mesia, E Kohtala, L Tona, L Pieters, A J Vlietinck, S Apers. Development and validation of an HPLC-method for the determination of alkaloids in the stem bark extract of Nauclea pobeguinii. Talanta. 2008 Jul; 76(2):462-8. doi: 10.1016/j.talanta.2008.03.036. [PMID: 18585307]
  • C Abdul Jaleel, B Sankar, P V Murali, M Gomathinayagam, G M A Lakshmanan, R Panneerselvam. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloids and surfaces. B, Biointerfaces. 2008 Mar; 62(1):105-11. doi: 10.1016/j.colsurfb.2007.09.026. [PMID: 17996429]
  • Cheruth Abdul Jaleel, Ragupathi Gopi, Rajaram Panneerselvam. Alterations in lipid peroxidation, electrolyte leakage, and proline metabolism in Catharanthus roseus under treatment with triadimefon, a systemic fungicide. Comptes rendus biologies. 2007 Dec; 330(12):905-12. doi: 10.1016/j.crvi.2007.10.001. [PMID: 18068649]
  • C Abdul Jaleel, P Manivannan, B Sankar, A Kishorekumar, R Gopi, R Somasundaram, R Panneerselvam. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids and surfaces. B, Biointerfaces. 2007 Nov; 60(2):201-6. doi: 10.1016/j.colsurfb.2007.06.010. [PMID: 17643970]
  • Shilpa Ramani, Jayabaskaran Chelliah. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC plant biology. 2007 Nov; 7(?):61. doi: 10.1186/1471-2229-7-61. [PMID: 17988378]
  • C Abdul Jaleel, P Manivannan, B Sankar, A Kishorekumar, R Gopi, R Somasundaram, R Panneerselvam. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and surfaces. B, Biointerfaces. 2007 Oct; 60(1):7-11. doi: 10.1016/j.colsurfb.2007.05.012. [PMID: 17681765]
  • Wen-jie Xu, Zong-heng Li, Yong-mei Shi, Yi-huai Zou. [Clinical research of effect of Yishen Yangnao capsule on vascular dementia]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2007 Apr; 32(8):732-5. doi: ". [PMID: 17608233]
  • Carolyn W T Lee-Parsons, Amber J Royce. Precursor limitations in methyl jasmonate-induced Catharanthus roseus cell cultures. Plant cell reports. 2006 Jun; 25(6):607-12. doi: 10.1007/s00299-005-0109-y. [PMID: 16432630]
  • Samira Mahroug, Vincent Courdavault, Martine Thiersault, Benoit St-Pierre, Vincent Burlat. Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs. Planta. 2006 May; 223(6):1191-200. doi: 10.1007/s00425-005-0167-y. [PMID: 16322983]
  • E Elisabetsky, L Costa-Campos. The alkaloid alstonine: a review of its pharmacological properties. Evidence-based complementary and alternative medicine : eCAM. 2006 Mar; 3(1):39-48. doi: 10.1093/ecam/nek011. [PMID: 16550222]
  • Christie A M Peebles, Seung-Beom Hong, Susan I Gibson, Jacqueline V Shanks, Ka-Yiu San. Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase. Biotechnology and bioengineering. 2006 Feb; 93(3):534-40. doi: 10.1002/bit.20739. [PMID: 16240438]
  • Carolyn W T Lee-Parsons, Seda Ertürk. Ajmalicine production in methyl jasmonate-induced Catharanthus roseus cell cultures depends on Ca2+ level. Plant cell reports. 2005 Dec; 24(11):677-82. doi: 10.1007/s00299-005-0026-0. [PMID: 16094527]
  • Christie A M Peebles, Seung-Beom Hong, Susan I Gibson, Jacqueline V Shanks, Ka-Yiu San. Transient effects of overexpressing anthranilate synthase alpha and beta subunits in Catharanthus roseus hairy roots. Biotechnology progress. 2005 Sep; 21(5):1572-6. doi: 10.1021/bp050210l. [PMID: 16209565]
  • Zoia Mincheva, Martine Courtois, Françoise Andreu, Marc Rideau, Marie-Claude Viaud-Massuard. Fosmidomycin analogues as inhibitors of monoterpenoid indole alkaloid production in Catharanthus roseus cells. Phytochemistry. 2005 Aug; 66(15):1797-803. doi: 10.1016/j.phytochem.2005.06.002. [PMID: 16054176]
  • Denise I Jacobs, Marco Gaspari, Jan van der Greef, Robert van der Heijden, Robert Verpoorte. Proteome analysis of the medicinal plant Catharanthus roseus. Planta. 2005 Jul; 221(5):690-704. doi: 10.1007/s00425-004-1474-4. [PMID: 15682277]
  • Tepy Usia, Tadashi Watabe, Shigetoshi Kadota, Yasuhiro Tezuka. Cytochrome P450 2D6 (CYP2D6) inhibitory constituents of Catharanthus roseus. Biological & pharmaceutical bulletin. 2005 Jun; 28(6):1021-4. doi: 10.1248/bpb.28.1021. [PMID: 15930738]
  • Steve Hisiger, Mario Jolicoeur. Plant cell culture monitoring using an in situ multiwavelength fluorescence probe. Biotechnology progress. 2005 Mar; 21(2):580-9. doi: 10.1021/bp049726f. [PMID: 15801802]
  • Akira Iwase, Hideki Aoyagi, Masaru Ohme-Takagi, Hideo Tanaka. Development of a novel system for producing ajmalicine and serpentine using direct culture of leaves in Catharanthus roseus intact plant. Journal of bioscience and bioengineering. 2005 Mar; 99(3):208-15. doi: 10.1263/jbb.99.208. [PMID: 16233779]
  • Ajaswrata Dutta, Jyoti Batra, Sashi Pandey-Rai, Digvijay Singh, Sushil Kumar, Jayanti Sen. Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don. Planta. 2005 Jan; 220(3):376-83. doi: 10.1007/s00425-004-1380-9. [PMID: 15714355]
  • Magdi El-Sayed, Rob Verpoorte. Methyljasmonate accelerates catabolism of monoterpenoid indole alkaloids in Catharanthus roseus during leaf processing. Fitoterapia. 2005 Jan; 76(1):83-90. doi: 10.1016/j.fitote.2004.10.019. [PMID: 15664467]
  • Martine Courtois, Zoia Mincheva, Françoise Andreu, Marc Rideau, Marie-Claude Viaud-Massuard. Synthesis and biological evaluation with plant cells of new fosmidomycin analogues containing a benzoxazolone or oxazolopyridinone ring. Journal of enzyme inhibition and medicinal chemistry. 2004 Dec; 19(6):559-65. doi: 10.1080/14756360400004615. [PMID: 15662959]
  • Singh Digvijay, Pandey-Rai Shashi, Srivastava Suchi, Rai Sanjay Kumar, Mishra Raghavendra, Kumar Sushil. Simultaneous quantification of some pharmaceutical Catharanthus roseus leaf and root terpenoid indole alkaloids and their precursors in single runs by reversed-phase liquid chromatography. Journal of AOAC International. 2004 Nov; 87(6):1287-96. doi: . [PMID: 15675438]
  • Jyoti Batra, Ajaswrata Dutta, Digvijay Singh, Sushil Kumar, Jayanti Sen. Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant cell reports. 2004 Sep; 23(3):148-54. doi: 10.1007/s00299-004-0815-x. [PMID: 15221274]
  • Felipe Vázquez-Flota, Mildred Carrillo-Pech, Yereni Minero-García, María De Lourdes Miranda-Ham. Alkaloid metabolism in wounded Catharanthus roseus seedlings. Plant physiology and biochemistry : PPB. 2004 Jul; 42(7-8):623-8. doi: 10.1016/j.plaphy.2004.06.010. [PMID: 15331091]
  • M A Favali, R Musetti, S Benvenuti, A Bianchi, L Pressacco. Catharanthus roseus L. plants and explants infected with phytoplasmas: alkaloid production and structural observations. Protoplasma. 2004 Mar; 223(1):45-51. doi: 10.1007/s00709-003-0024-4. [PMID: 15004742]
  • Ramesh K Satdive, Devanand P Fulzele, Susan Eapen. Studies on production of ajmalicine in shake flasks by multiple shoot cultures of Catharanthus roseus. Biotechnology progress. 2003 May; 19(3):1071-5. doi: 10.1021/bp020138g. [PMID: 12790683]
  • Seung-Beom Hong, Erik H Hughes, Jacqueline V Shanks, Ka-Yiu San, Susan I Gibson. Role of the non-mevalonate pathway in indole alkaloid production by Catharanthus roseus hairy roots. Biotechnology progress. 2003 May; 19(3):1105-8. doi: 10.1021/bp034031k. [PMID: 12790690]
  • C G Sudha, B Obul Reddy, G A Ravishankar, S Seeni. Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnology letters. 2003 Apr; 25(8):631-6. doi: 10.1023/a:1023012114628. [PMID: 12882157]
  • R Y K Yang, O Bayraktar, H T Pu. Plant-cell bioreactors with simultaneous electropermeabilization and electrophoresis. Journal of biotechnology. 2003 Jan; 100(1):13-22. doi: 10.1016/s0168-1656(02)00226-2. [PMID: 12413782]
  • Felipe Vázquez-Flota, Vincenzo De Luca, Mildred Carrillo-Pech, Adriana Canto-Flick, Maria de Lourdes Miranda-Ham. Vindoline biosynthesis is transcriptionally blocked in Catharanthus roseus cell suspension cultures. Molecular biotechnology. 2002 Sep; 22(1):1-8. doi: 10.1385/mb:22:1:001. [PMID: 12353909]
  • C Tikhomiroff, M Jolicoeur. Screening of Catharanthus roseus secondary metabolites by high-performance liquid chromatography. Journal of chromatography. A. 2002 Apr; 955(1):87-93. doi: 10.1016/s0021-9673(02)00204-2. [PMID: 12061566]
  • J Zhao, Q Hu, Y Q Guo, W H Zhu. Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Applied microbiology and biotechnology. 2001 Jun; 55(6):693-8. doi: 10.1007/s002530000568. [PMID: 11525616]
  • C W Lee, M L Shuler. The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnology and bioengineering. 2000 Jan; 67(1):61-71. doi: 10.1002/(sici)1097-0290(20000105)67:1<61::aid-bit7>3.0.co;2-j. [PMID: 10581436]
  • J E Schlatmann, H J ten Hoopen, J J Heijnen. A simple structured model for maintenance, biomass formation, and ajmalicine production by nondividing Catharanthus roseus cells. Biotechnology and bioengineering. 1999; 66(3):147-57. doi: 10.1002/(sici)1097-0290(1999)66:3<147::aid-bit2>3.0.co;2-n. [PMID: 10577468]
  • R Bhadra, J A Morgan, J V Shanks. Transient studies of light-adapted cultures of hairy roots of Catharanthus roseus: growth and indole alkaloid accumulation. Biotechnology and bioengineering. 1998 Dec; 60(6):670-8. doi: 10.1002/(sici)1097-0290(19981220)60:6<670::aid-bit4>3.0.co;2-j. [PMID: 10099477]
  • G Xue, S Yuan. [Separation and preparation of indole alkaloids in Lycorma delicatula White. by HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1996 Sep; 21(9):554-5, 576. doi: ". [PMID: 9772647]
  • N Misra, R Luthra, S Kumar. Enzymology of indole alkaloid biosynthesis in Catharanthus roseus. Indian journal of biochemistry & biophysics. 1996 Aug; 33(4):261-73. doi: . [PMID: 8936815]
  • D P Fulzele, M R Heble. Large-scale cultivation of Catharanthus roseus cells: production of ajmalicine in a 20-l airlift bioreactor. Journal of biotechnology. 1994 Jun; 35(1):1-7. doi: 10.1016/0168-1656(94)90185-6. [PMID: 7765026]
  • N Wang, S Wang, J Tian, X Li, L Zhu. Suspension culture of Catharanthus roseus crown gall cell induced by Agrobacterium C58. Chinese journal of biotechnology. 1994; 10(3):203-9. doi: ". [PMID: 7893941]
  • P Chopin, M Briley. Effects of four non-cholinergic cognitive enhancers in comparison with tacrine and galanthamine on scopolamine-induced amnesia in rats. Psychopharmacology. 1992; 106(1):26-30. doi: 10.1007/bf02253584. [PMID: 1738791]
  • G T Tan, J M Pezzuto, A D Kinghorn, S H Hughes. Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. Journal of natural products. 1991 Jan; 54(1):143-54. doi: 10.1021/np50073a012. [PMID: 1710653]
  • S Auriola, T Naaranlahti, R Kostiainen, S P Lapinjoki. Identification of indole alkaloids of Catharanthus roseus with liquid chromatography/mass spectrometry using collision-induced dissociation with the thermospray ion repeller. Biomedical & environmental mass spectrometry. 1990 Jul; 19(7):400-4. doi: 10.1002/bms.1200190704. [PMID: 2400851]
  • F DiCosmo, A Quesnel, M Misawa, S G Tallevi. Increased synthesis of ajmalicine and catharanthine by cell suspension cultures of Catharanthus roseus in response to fungal culture-filtrates. Applied biochemistry and biotechnology. 1987 Mar; 14(2):101-6. doi: 10.1007/bf02798428. [PMID: 3619437]
  • B Meyer. [A multicenter study of tinnitus. Epidemiology and therapy]. Annales d'oto-laryngologie et de chirurgie cervico faciale : bulletin de la Societe d'oto-laryngologie des hopitaux de Paris. 1986; 103(3):185-8. doi: ". [PMID: 3530094]
  • G Brevetti, M Chiariello, S Verrienti, M Spena, M Desiderati, M Condorelli. Beneficial effect of papaverine plus raubasine in peripheral arterial insufficiency. Angiology. 1983 Aug; 34(8):517-26. doi: 10.1177/000331978303400803. [PMID: 6614583]
  • A B Kocialski, F J Marozzi, M H Malone. Effects of certain nonsteroid anti-inflammatory drugs, tolbutamide, and tetrahydroalstonine on blood glucose and carrageen in-induced pedal edema in rats. Journal of pharmaceutical sciences. 1972 Aug; 61(8):1202-5. doi: 10.1002/jps.2600610805. [PMID: 5050366]
  • J S WEI. [A STUDY OF THE CONSTITUENTS OF THE ROOTS OF RAUWOLFIA YUNNANENSIS TSIANG. I. ISOLATION OF AJMALICINE AND RESERPINE]. Yao xue xue bao = Acta pharmaceutica Sinica. 1965 Jul; 12(?):429-34. doi: ". [PMID: 14342702]