Sanchinoside B2 (BioDeep_00000000583)

   

PANOMIX_OTCML-2023


代谢物信息卡片


(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-oxidanyl-hept-5-en-2-yl]-3,12-bis(oxidanyl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]oxane-3,4,5-

化学式: C36H62O9 (638.4394)
中文名称: 人参皂苷 Rh1, 人参皂苷Rh1
谱图信息: 最多检出来源 Viridiplantae(plant) 22.67%

分子结构信息

SMILES: C1C[C@H](O)C(C)(C)[C@]2([H])[C@@H](O[C@H]3[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O3)C[C@@]3(C)[C@]4(C)CC[C@@]([C@](O)(C)CC/C=C(\C)/C)([H])[C@@]4([H])[C@H](O)C[C@]3([H])[C@@]12C
InChI: InChI=1S/C36H62O9/c1-19(2)10-9-13-36(8,43)20-11-15-34(6)26(20)21(38)16-24-33(5)14-12-25(39)32(3,4)30(33)22(17-35(24,34)7)44-31-29(42)28(41)27(40)23(18-37)45-31/h10,20-31,37-43H,9,11-18H2,1-8H3/t20-,21+,22-,23+,24+,25-,26-,27+,28-,29+,30-,31+,33+,34+,35+,36-/m0/s1

描述信息

(20S)-ginsenoside Rh1 is a tetracyclic triterpenoid that is (20S)-protopanaxadiol which is substituted by beta-D-glucoside at the 6alpha position. It has a role as a plant metabolite. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a tetracyclic triterpenoid, a ginsenoside, a 3beta-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane.
Ginsenoside Rh1 is a natural product found in Panax vietnamensis, Panax ginseng, and other organisms with data available.
A tetracyclic triterpenoid that is (20S)-protopanaxadiol which is substituted by beta-D-glucoside at the 6alpha position.
Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β.
Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β.
Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β.

同义名列表

23 个代谢物同义名

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-oxidanyl-hept-5-en-2-yl]-3,12-bis(oxidanyl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]oxane-3,4,5-; (2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol; (2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,10R,12R,14R,17S)-3,12-dihydroxy-17-[(2R)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol; (2R,3R,4S,5S,6R)-2-{[(1S,3aR,3bR,5S,5aR,7S,9aR,9bR,11R,11aR)-7,11-dihydroxy-1-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-hexadecahydro-1H-cyclopenta[a]phenanthren-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; .BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,6.ALPHA.,12.BETA.)-3,12,20-TRIHYDROXYDAMMAR-24-EN-6-YL; beta-D-Glucopyranoside, (3beta,6alpha,12beta)-3,12,20-trihydroxydammar-24-en-6-yl; (3beta,6alpha,12beta)-3,12,20-Trihydroxydammar-24-en-6-yl beta-D-glucopyranoside; 3beta,12beta,20-trihydroxydammar-24-en-6alpha-yl-beta-D-glucopyranoside; Prosapogenin A2; Sanchinoside B2; Sanchinoside Rh1; Ginsenoside Rh1, analytical standard; GINSENOSIDE RH1, (20S)-; (20S)-ginsenoside Rh1; 20(S)-Ginsenoside Rh1; ginsenoside G-Rh(1); ginsenoside Rh(1); S-GINSENOSIDE RH1; Sanchinoside Rh1; UNII-XBR6F7G8FU; Sanchinoside B2; Prosapogenin A2; ginsenoside-Rh1; ginsenoside Rh1; XBR6F7G8FU



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

  • ginsenosides biosynthesis: β-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + oleanolate

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ANXA5, BCL2, CAT, MAPK8, NR3C1, PIK3CA, PTGS2, RB1, STAT3, TLR4
Peripheral membrane protein 3 ANXA5, CYP1B1, PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 4 BCL2, CYP1B1, HMOX1, PTGS2
Nucleus 9 BCL2, HMOX1, JUN, MAPK8, MMP2, NR3C1, RB1, RBL2, STAT3
cytosol 10 ANXA5, BCL2, CAT, HMOX1, MAPK8, NR3C1, PIK3CA, RB1, RBL2, STAT3
centrosome 1 NR3C1
nucleoplasm 7 HMOX1, JUN, MAPK8, NR3C1, RB1, RBL2, STAT3
RNA polymerase II transcription regulator complex 2 JUN, STAT3
Cell membrane 2 TLR4, TNF
Cytoplasmic side 1 HMOX1
lamellipodium 1 PIK3CA
Synapse 2 MAPK8, NR3C1
cell surface 2 TLR4, TNF
Golgi membrane 1 INS
neuronal cell body 1 TNF
sarcolemma 1 ANXA5
plasma membrane 6 IGHE, MMP2, PIK3CA, STAT3, TLR4, TNF
Membrane 7 ANXA5, BCL2, CAT, CYP1B1, HMOX1, NR3C1, TLR4
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 4 ANXA5, CAT, MMP9, RBL2
endoplasmic reticulum 3 BCL2, HMOX1, PTGS2
extracellular space 7 HMOX1, IGHE, IL4, INS, MMP2, MMP9, TNF
perinuclear region of cytoplasm 3 HMOX1, PIK3CA, TLR4
intercalated disc 1 PIK3CA
mitochondrion 5 BCL2, CAT, CYP1B1, MMP2, NR3C1
protein-containing complex 4 BCL2, CAT, NR3C1, PTGS2
intracellular membrane-bounded organelle 2 CAT, CYP1B1
Microsome membrane 2 CYP1B1, PTGS2
Single-pass type I membrane protein 2 IGHE, TLR4
Secreted 2 IL4, INS
extracellular region 8 ANXA5, CAT, IGHE, IL4, INS, MMP2, MMP9, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
mitochondrial matrix 2 CAT, NR3C1
transcription regulator complex 3 JUN, RBL2, STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NR3C1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 3 ANXA5, TLR4, TNF
Secreted, extracellular space, extracellular matrix 1 MMP9
nucleolus 1 RBL2
Early endosome 1 TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton, spindle 1 NR3C1
focal adhesion 2 ANXA5, CAT
spindle 2 NR3C1, RB1
extracellular matrix 1 MMP2
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
PML body 1 RB1
collagen-containing extracellular matrix 3 ANXA5, MMP2, MMP9
nuclear speck 1 NR3C1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
sarcomere 1 MMP2
receptor complex 1 TLR4
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
chromatin 5 JUN, NR3C1, RB1, RBL2, STAT3
IgE immunoglobulin complex 1 IGHE
phagocytic cup 2 TLR4, TNF
Chromosome 2 NR3C1, RBL2
nuclear chromosome 1 JUN
[Isoform 2]: Cell membrane 1 IGHE
endosome lumen 1 INS
Nucleus, nucleoplasm 1 NR3C1
euchromatin 1 JUN
myelin sheath 1 BCL2
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 2 CAT, MMP9
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
tertiary granule lumen 1 MMP9
transport vesicle 1 INS
[Isoform 1]: Secreted, extracellular space, extracellular matrix 1 MMP2
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
SWI/SNF complex 1 RB1
Single-pass type IV membrane protein 1 HMOX1
vesicle membrane 1 ANXA5
basal dendrite 1 MAPK8
[Isoform 3]: Cell membrane 1 IGHE
[Isoform Alpha]: Cytoplasm 1 NR3C1
transcription factor AP-1 complex 1 JUN
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
catalase complex 1 CAT
[Isoform Beta]: Nucleus 1 NR3C1
[Isoform Alpha-B]: Nucleus 1 NR3C1
chromatin lock complex 1 RB1
Rb-E2F complex 1 RB1
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Weiwei Zheng, Peiliang Shen, Chang Yu, Yu Tang, Cheng Qian, Chunmei Yang, Mingliang Gao, Yuanyuan Wu, Suyun Yu, Weiwei Tang, Guiping Wan, Aiyun Wang, Yin Lu, Yang Zhao. Ginsenoside Rh1, a novel casein kinase II subunit alpha (CK2α) inhibitor, retards metastasis via disrupting HHEX/CCL20 signaling cascade involved in tumor cell extravasation across endothelial barrier. Pharmacological research. 2023 Nov; 198(?):106986. doi: 10.1016/j.phrs.2023.106986. [PMID: 37944834]
  • Xianwen Ye, Haixia Zhang, Qian Li, Hongmin Ren, Xinfang Xu, Xiangri Li. Structural-Activity Relationship of Rare Ginsenosides from Red Ginseng in the Treatment of Alzheimer's Disease. International journal of molecular sciences. 2023 May; 24(10):. doi: 10.3390/ijms24108625. [PMID: 37239965]
  • Jingqi Zhao, Yuan Liang, Ziyi Zhu, Yingyi Wang, Tianzhu Guan, Jie Zhang, Tiehua Zhang. Complexation mechanism between 20(R, S)-ginsenoside Rh1 and serum albumin: Multi-spectroscopy, in vitro cytotoxicity, and in silico investigations. Journal of food science. 2022 Mar; 87(3):929-938. doi: 10.1111/1750-3841.16053. [PMID: 35106766]
  • Qiang Li, Chunmiao Zhai, Guodong Wang, Jia Zhou, Weiguang Li, Liquan Xie, Zhanli Shi. Ginsenoside Rh1 attenuates ovalbumin-induced asthma by regulating Th1/Th2 cytokines balance. Bioscience, biotechnology, and biochemistry. 2021 Jul; 85(8):1809-1817. doi: 10.1093/bbb/zbab099. [PMID: 34057179]
  • Zi Long, Junshu Fan, Guangyuan Wu, Xiyu Liu, Hao Wu, Jiangzheng Liu, Yao Chen, Shuhao Su, Xiaodong Cheng, Zhongrui Xu, Hongfei Su, Meng Cao, Chunping Zhang, Chunxu Hai, Xin Wang. Gestational bisphenol A exposure induces fatty liver development in male offspring mice through the inhibition of HNF1b and upregulation of PPARγ. Cell biology and toxicology. 2021 02; 37(1):65-84. doi: 10.1007/s10565-020-09535-3. [PMID: 32623698]
  • Wen-Ya Su, Ying Li, Xuan Chen, Xin Li, Heng Wei, Zhi Liu, Qiong Shen, Chen Chen, Ying-Ping Wang, Wei Li. Ginsenoside Rh1 Improves Type 2 Diabetic Nephropathy through AMPK/PI3K/Akt-Mediated Inflammation and Apoptosis Signaling Pathway. The American journal of Chinese medicine. 2021; 49(5):1215-1233. doi: 10.1142/s0192415x21500580. [PMID: 34049473]
  • Diem Thi Ngoc Huynh, Naehwan Baek, Sohyun Sim, Chang-Seon Myung, Kyung-Sun Heo. Minor Ginsenoside Rg2 and Rh1 Attenuates LPS-Induced Acute Liver and Kidney Damages via Downregulating Activation of TLR4-STAT1 and Inflammatory Cytokine Production in Macrophages. International journal of molecular sciences. 2020 Sep; 21(18):. doi: 10.3390/ijms21186656. [PMID: 32932915]
  • Ji In Kang, Yoonjung Choi, Chang-Hau Cui, Daeyoup Lee, Sun Chang Kim, Ho Min Kim. Pro-angiogenic Ginsenosides F1 and Rh1 Inhibit Vascular Leakage by Modulating NR4A1. Scientific reports. 2019 03; 9(1):4502. doi: 10.1038/s41598-019-41115-2. [PMID: 30872732]
  • Feifei Yang, Jing Zhou, Xiao Hu, Stephanie Kyoungchun Yu, Chunyu Liu, Ruile Pan, Qi Chang, Xinmin Liu, Yonghong Liao. Preparation and evaluation of self-microemulsions for improved bioavailability of ginsenoside-Rh1 and Rh2. Drug delivery and translational research. 2017 10; 7(5):731-737. doi: 10.1007/s13346-017-0402-7. [PMID: 28677033]
  • Cong Lu, Zhe Shi, Liming Dong, Jingwei Lv, Pan Xu, Yinghui Li, Lina Qu, Xinmin Liu. Exploring the Effect of Ginsenoside Rh1 in a Sleep Deprivation-Induced Mouse Memory Impairment Model. Phytotherapy research : PTR. 2017 May; 31(5):763-770. doi: 10.1002/ptr.5797. [PMID: 28244162]
  • Kentaro Igami, Yosuke Shimojo, Hisatomi Ito, Toshitsugu Miyazaki, Fusako Nakano, Yoshiki Kashiwada. Fermented Ginseng Contains an Agonist of Peroxisome Proliferator Activated Receptors α and γ. Journal of medicinal food. 2016 Sep; 19(9):817-22. doi: 10.1089/jmf.2016.3673. [PMID: 27627700]
  • Tanya Biswas, Alok Kalra, A K Mathur, R K Lal, Manju Singh, Archana Mathur. Elicitors' influenced differential ginsenoside production and exudation into medium with concurrent Rg3/Rh2 panaxadiol induction in Panax quinquefolius cell suspensions. Applied microbiology and biotechnology. 2016 Jun; 100(11):4909-22. doi: 10.1007/s00253-015-7264-z. [PMID: 26795963]
  • Li-Yuan Ma, Qi-Le Zhou, Xiu-Wei Yang. New SIRT1 activator from alkaline hydrolysate of total saponins in the stems-leaves of Panax ginseng. Bioorganic & medicinal chemistry letters. 2015 Nov; 25(22):5321-5. doi: 10.1016/j.bmcl.2015.09.039. [PMID: 26420067]
  • Wei Wei, Pingping Wang, Yongjun Wei, Qunfang Liu, Chengshuai Yang, Guoping Zhao, Jianmin Yue, Xing Yan, Zhihua Zhou. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts. Molecular plant. 2015 Sep; 8(9):1412-24. doi: 10.1016/j.molp.2015.05.010. [PMID: 26032089]
  • Kyung-Chul Shin, Hye-Ji Lee, Deok-Kun Oh. Substrate specificity of β-glucosidase from Gordonia terrae for ginsenosides and its application in the production of ginsenosides Rg₃, Rg₂, and Rh₁ from ginseng root extract. Journal of bioscience and bioengineering. 2015 May; 119(5):497-504. doi: 10.1016/j.jbiosc.2014.10.004. [PMID: 25457989]
  • S L Luo, L Z Dang, K Q Zhang, L M Liang, G H Li. Cloning and heterologous expression of UDP-glycosyltransferase genes from Bacillus subtilis and its application in the glycosylation of ginsenoside Rh1. Letters in applied microbiology. 2015 Jan; 60(1):72-8. doi: 10.1111/lam.12339. [PMID: 25327709]
  • Sri Fatmawati, Taslim Ersam, Hongshan Yu, Chunzhi Zhang, Fengxie Jin, Kuniyoshi Shimizu. 20(S)-Ginsenoside Rh2 as aldose reductase inhibitor from Panax ginseng. Bioorganic & medicinal chemistry letters. 2014 Sep; 24(18):4407-4409. doi: 10.1016/j.bmcl.2014.08.009. [PMID: 25152999]
  • Jun Li, Juan Du, Dong Liu, Binbin Cheng, Fanfu Fang, Li Weng, Chen Wang, Changquan Ling. Ginsenoside Rh1 potentiates dexamethasone's anti-inflammatory effects for chronic inflammatory disease by reversing dexamethasone-induced resistance. Arthritis research & therapy. 2014 May; 16(3):R106. doi: 10.1186/ar4556. [PMID: 24887434]
  • Jingang Hou, Jianjie Xue, Mira Lee, Jiaojiao Yu, Changkeun Sung. Long-term administration of ginsenoside Rh1 enhances learning and memory by promoting cell survival in the mouse hippocampus. International journal of molecular medicine. 2014 Jan; 33(1):234-40. doi: 10.3892/ijmm.2013.1552. [PMID: 24212564]
  • Wan Gu, Kyung-Ah Kim, Dong-Hyun Kim. Ginsenoside Rh1 ameliorates high fat diet-induced obesity in mice by inhibiting adipocyte differentiation. Biological & pharmaceutical bulletin. 2013; 36(1):102-7. doi: 10.1248/bpb.b12-00558. [PMID: 23302642]
  • Jin-Ju Jeong, Baek Kim, Dong-Hyun Kim. Ginsenoside Rh1 eliminates the cytoprotective phenotype of human immunodeficiency virus type 1-transduced human macrophages by inhibiting the phosphorylation of pyruvate dehydrogenase lipoamide kinase isozyme 1. Biological & pharmaceutical bulletin. 2013; 36(7):1088-94. doi: 10.1248/bpb.b13-00013. [PMID: 23811558]
  • Yusheng Gai, Zhigang Ma, Xiaofeng Yu, Shaochun Qu, Dayuan Sui. Effect of ginsenoside Rh1 on myocardial injury and heart function in isoproterenol-induced cardiotoxicity in rats. Toxicology mechanisms and methods. 2012 Oct; 22(8):584-91. doi: 10.3109/15376516.2012.702798. [PMID: 22694660]
  • Se-Eun Jang, Il-Hoon Jung, Eun-Ha Joh, Myung Joo Han, Dong-Hyun Kim. Antibiotics attenuate anti-scratching behavioral effect of ginsenoside Re in mice. Journal of ethnopharmacology. 2012 Jun; 142(1):105-112. doi: 10.1016/j.jep.2012.04.022. [PMID: 22855946]
  • Liang Feng, Chang-Jiang Hu, Ling-Ying Yu. [Pharmacokinetics of ginsenosides Rg1 and its metabolites in rats]. Yao xue xue bao = Acta pharmaceutica Sinica. 2010 May; 45(5):636-40. doi: NULL. [PMID: 20931768]
  • Li Lai, Haiping Hao, Yitong Liu, Chaonan Zheng, Qiong Wang, Guangji Wang, Xijin Chen. Characterization of pharmacokinetic profiles and metabolic pathways of 20(S)-ginsenoside Rh1 in vivo and in vitro. Planta medica. 2009 Jun; 75(8):797-802. doi: 10.1055/s-0029-1185400. [PMID: 19266426]
  • Li Lai, Yitong Liu, Haiping Hao, Guangji Wang, Xijing Chen, Hongcan Ren. Determination of 20(S)-ginsenoside Rh1 and its aglycone 20(S)-protopanaxatriol in rat plasma by sensitive LC-APCI-MS method and its application to pharmacokinetic study. European journal of mass spectrometry (Chichester, England). 2009; 15(1):57-65. doi: 10.1255/ejms.974. [PMID: 19174594]
  • Jiang Zeng, Xiu-ming Cui, Jia-ming Zhou, Zhi-yong Jiang, Xue-mei Zhang, Ji-jun Chen. [Studies on chemical constituents from rhizomes of Panax notoginseng]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2007 Nov; 30(11):1388-91. doi: . [PMID: 18323204]
  • Guangtong Chen, Min Yang, Zhiqiang Lu, Jinqiang Zhang, Huilian Huang, Yan Liang, Shuhong Guan, Yan Song, Lijun Wu, De-an Guo. Microbial transformation of 20(S)-protopanaxatriol-type saponins by Absidia coerulea. Journal of natural products. 2007 Jul; 70(7):1203-6. doi: 10.1021/np070053v. [PMID: 17629326]
  • Yong-Wook Shin, Eun-Ah Bae, Sung-Soo Kim, Young-Chul Lee, Boo-Young Lee, Dong-Hyun Kim. The effects of ginsenoside Re and its metabolite, ginsenoside Rh1, on 12-O-tetradecanoylphorbol 13-acetate- and oxazolone-induced mouse dermatitis models. Planta medica. 2006 Mar; 72(4):376-8. doi: 10.1055/s-2005-916217. [PMID: 16557482]
  • Eun-Ah Bae, Ji-Eun Shin, Dong-Hyun Kim. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biological & pharmaceutical bulletin. 2005 Oct; 28(10):1903-8. doi: 10.1248/bpb.28.1903. [PMID: 16204943]
  • Jianguo Sun, Guangji Wang, Xie Haitang, Li Hao, Pan Guoyu, Ian Tucker. Simultaneous rapid quantification of ginsenoside Rg1 and its secondary glycoside Rh1 and aglycone protopanaxatriol in rat plasma by liquid chromatography-mass spectrometry after solid-phase extraction. Journal of pharmaceutical and biomedical analysis. 2005 Jun; 38(1):126-32. doi: 10.1016/j.jpba.2004.12.007. [PMID: 15907630]
  • Mona Abdel Tawab, Ute Bahr, Michael Karas, Mario Wurglics, Manfred Schubert-Zsilavecz. Degradation of ginsenosides in humans after oral administration. Drug metabolism and disposition: the biological fate of chemicals. 2003 Aug; 31(8):1065-71. doi: 10.1124/dmd.31.8.1065. [PMID: 12867496]
  • Sung-Ryong Ko, Kang-Ju Choi, Kei Suzuki, Yukio Suzuki. Enzymatic preparation of ginsenosides Rg2, Rh1, and F1. Chemical & pharmaceutical bulletin. 2003 Apr; 51(4):404-8. doi: 10.1248/cpb.51.404. [PMID: 12672992]
  • Sung-Ryong Ko, Kang-Ju Choi, Kei Uchida, Yukio Suzuki. Enzymatic preparation of ginsenosides Rg2, Rh1, and F1 from protopanaxatriol-type ginseng saponin mixture. Planta medica. 2003 Mar; 69(3):285-6. doi: 10.1055/s-2003-38476. [PMID: 12677539]
  • Yegao Chen, Eryi Zhan, Hongfen Chen, Xiuqiong Duan, Liqun Guo. [Saponins with low sugar chain from the leaves of Panax notoginseng (Burk) F. H. Chen]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2002 Mar; 25(3):176-8. doi: . [PMID: 12583159]
  • Y Wang, B X Wang, T H Liu, M Minami, T Nagata, T Ikejima. Metabolism of ginsenoside Rg1 by intestinal bacteria. II. Immunological activity of ginsenoside Rg1 and Rh1. Acta pharmacologica Sinica. 2000 Sep; 21(9):792-6. doi: ". [PMID: 11501159]