4-Coumaroyl-CoA (BioDeep_00000004328)

 

Secondary id: BioDeep_00000229472, BioDeep_00000630346, BioDeep_00001869228

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-{2-[(2-{[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}-3,3-dimethylbutanimidic acid

化学式: C30H42N7O18P3S (913.1519822000001)
中文名称: 反式对香豆酰辅酶A
谱图信息: 最多检出来源 Macaca mulatta(otcml) 0.23%

Reviewed

Last reviewed on 2024-07-12.

Cite this Page

4-Coumaroyl-CoA. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/4-coumaroyl-coa (retrieved 2024-09-19) (BioDeep RN: BioDeep_00000004328). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(C)(COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)C(C(=O)NCCC(=O)NCCSC(=O)C=CC4=CC=C(C=C4)O)O
InChI: InChI=1S/C30H42N7O18P3S/c1-30(2,25(42)28(43)33-10-9-20(39)32-11-12-59-21(40)8-5-17-3-6-18(38)7-4-17)14-52-58(49,50)55-57(47,48)51-13-19-24(54-56(44,45)46)23(41)29(53-19)37-16-36-22-26(31)34-15-35-27(22)37/h3-8,15-16,19,23-25,29,38,41-42H,9-14H2,1-2H3,(H,32,39)(H,33,43)(H,47,48)(H,49,50)(H2,31,34,35)(H2,44,45,46)/b8-5+/t19-,23-,24-,25+,29-/m1/s1

描述信息

4-Coumaroyl-CoA (CAS: 30802-00-7), also known as p-coumaroyl-CoA, belongs to the class of organic compounds known as 2-enoyl CoAs. These are organic compounds containing a coenzyme A substructure linked to a 2-enoyl chain. 4-Coumaroyl-CoA is a strong basic compound (based on its pKa).

(E)-p-Coumaroyl-CoA, also known as trans-p-coumaroyl-CoA, is an important intermediate in various biological pathways, particularly in plants. It plays a key role in the biosynthesis of numerous secondary metabolites, including flavonoids and lignins. Structurally, it consists of a Coenzyme A (CoA) molecule esterified with trans-p-coumaric acid, a type of hydroxycinnamic acid. This compound is involved in the phenylpropanoid pathway, where it serves as a precursor for the synthesis of a wide range of compounds with diverse biological functions. The presence of the CoA group allows it to participate in enzymatic reactions, facilitating the transfer of the p-coumaroyl group to other molecules, thereby contributing to the synthesis of complex biochemical compounds.


Coenzyme A, S-[(2E)-3-(4-hydroxyphenyl)-2-propenoate]. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=119785-99-8 (retrieved 2024-07-12) (CAS RN: 119785-99-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

16 个代谢物同义名

4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-{2-[(2-{[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}-3,3-dimethylbutanimidic acid; 4-[({[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy(hydroxy)phosphoryl}oxy(hydroxy)phosphoryl)oxy]-2-hydroxy-N-{2-[(2-{[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}-3,3-dimethylbutanimidic acid; trans-4-Coumaroyl-coenzyme A; (e)-p-Coumaroyl-coenzyme A; (e)-4-Coumaroyl-coenzyme A; 4-Coumaroyl-coenzyme A; 4-Hydroxycinnamoyl-CoA; p-Coumaroyl-coenzyme A; p-Coumaroylcoenzyme A; trans-4-Coumaroyl-CoA; 4-Coumaroylcoenzyme A; (e)-4-Coumaroyl-CoA; (e)-p-Coumaroyl-CoA; p-Coumaroyl-CoA; 4-coumaroyl-CoA; p-Coumaroyl CoA



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(20)

代谢反应

1015 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(339)

INOH(0)

PlantCyc(672)

COVID-19 Disease Map(0)

PathBank(3)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Frederick G Sunstrum, Hannah L Liu, Sharon Jancsik, Lufiani L Madilao, Joerg Bohlmann, Sandra Irmisch. 4-Coumaroyl-CoA ligases in the biosynthesis of the anti-diabetic metabolite montbretin A. PloS one. 2021; 16(10):e0257478. doi: 10.1371/journal.pone.0257478. [PMID: 34618820]
  • Chomphunuch Songsiriritthigul, Natsajee Nualkaew, James Ketudat-Cairns, Chun Jung Chen. The crystal structure of benzophenone synthase from Garcinia mangostana L. pericarps reveals the basis for substrate specificity and catalysis. Acta crystallographica. Section F, Structural biology communications. 2020 Dec; 76(Pt 12):597-603. doi: 10.1107/s2053230x20014818. [PMID: 33263571]
  • Guangjin Li, Shuhua Zhu, Wenxue Wu, Chang Zhang, Yong Peng, Qingguo Wang, Jingying Shi. Exogenous nitric oxide induces disease resistance against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit. Journal of the science of food and agriculture. 2017 Jul; 97(9):3030-3038. doi: 10.1002/jsfa.8146. [PMID: 27859285]
  • Huili Guo, Yadong Yang, Feiyan Xue, Hong Zhang, Tiran Huang, Wenbin Liu, Huan Liu, Fenqiang Zhang, Mingfeng Yang, Chunmei Liu, Heshu Lu, Yansheng Zhang, Lanqing Ma. Effect of flexible linker length on the activity of fusion protein 4-coumaroyl-CoA ligase::stilbene synthase. Molecular bioSystems. 2017 Feb; 13(3):598-606. doi: 10.1039/c6mb00563b. [PMID: 28181620]
  • María Torres, Purificación Corchete. Gene expression and flavonolignan production in fruits and cell cultures of Silybum marianum. Journal of plant physiology. 2016 Mar; 192(?):111-7. doi: 10.1016/j.jplph.2016.02.004. [PMID: 26905197]
  • Rubén Álvarez-Álvarez, Alma Botas, Silvia M Albillos, Angel Rumbero, Juan F Martín, Paloma Liras. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microbial cell factories. 2015 Nov; 14(?):178. doi: 10.1186/s12934-015-0373-7. [PMID: 26553209]
  • Chien-Yuan Lin, Jack P Wang, Quanzi Li, Hsi-Chuan Chen, Jie Liu, Philip Loziuk, Jina Song, Cranos Williams, David C Muddiman, Ronald R Sederoff, Vincent L Chiang. 4-Coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa. Molecular plant. 2015 Jan; 8(1):176-87. doi: 10.1016/j.molp.2014.12.003. [PMID: 25578281]
  • Mwafaq Ibdah, Anna Berim, Stefan Martens, Andrea Lorena Herrera Valderrama, Luisa Palmieri, Efraim Lewinsohn, David R Gang. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh. Phytochemistry. 2014 Nov; 107(?):24-31. doi: 10.1016/j.phytochem.2014.07.027. [PMID: 25152451]
  • Alexander M Walker, Robert P Hayes, Buhyun Youn, Wilfred Vermerris, Scott E Sattler, ChulHee Kang. Elucidation of the structure and reaction mechanism of sorghum hydroxycinnamoyltransferase and its structural relationship to other coenzyme a-dependent transferases and synthases. Plant physiology. 2013 Jun; 162(2):640-51. doi: 10.1104/pp.113.217836. [PMID: 23624856]
  • Mohankumar Saraladevi Resmi, Priyanka Verma, Rajesh S Gokhale, Eppurathu Vasudevan Soniya. Identification and characterization of a type III polyketide synthase involved in quinolone alkaloid biosynthesis from Aegle marmelos Correa. The Journal of biological chemistry. 2013 Mar; 288(10):7271-81. doi: 10.1074/jbc.m112.429886. [PMID: 23329842]
  • Jean-Etienne Bassard, Ludovic Richert, Jan Geerinck, Hugues Renault, Frédéric Duval, Pascaline Ullmann, Martine Schmitt, Etienne Meyer, Jerôme Mutterer, Wout Boerjan, Geert De Jaeger, Yves Mely, Alain Goossens, Danièle Werck-Reichhart. Protein-protein and protein-membrane associations in the lignin pathway. The Plant cell. 2012 Nov; 24(11):4465-82. doi: 10.1105/tpc.112.102566. [PMID: 23175744]
  • Ana Saballos, Scott E Sattler, Emiliano Sanchez, Timothy P Foster, Zhanguo Xin, ChulHee Kang, Jeffrey F Pedersen, Wilfred Vermerris. Brown midrib2 (Bmr2) encodes the major 4-coumarate:coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench). The Plant journal : for cell and molecular biology. 2012 Jun; 70(5):818-30. doi: 10.1111/j.1365-313x.2012.04933.x. [PMID: 22313236]
  • Seitaro Matsumoto, Masaharu Mizutani, Kanzo Sakata, Bun-Ichi Shimizu. Molecular cloning and functional analysis of the ortho-hydroxylases of p-coumaroyl coenzyme A/feruloyl coenzyme A involved in formation of umbelliferone and scopoletin in sweet potato, Ipomoea batatas (L.) Lam. Phytochemistry. 2012 Feb; 74(?):49-57. doi: 10.1016/j.phytochem.2011.11.009. [PMID: 22169019]
  • Yechun Wang, Hankuil Yi, Melissa Wang, Oliver Yu, Joseph M Jez. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase. Journal of the American Chemical Society. 2011 Dec; 133(51):20684-7. doi: 10.1021/ja2085993. [PMID: 22129213]
  • Almuth Hammerbacher, Steven G Ralph, Joerg Bohlmann, Trevor M Fenning, Jonathan Gershenzon, Axel Schmidt. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant physiology. 2011 Oct; 157(2):876-90. doi: 10.1104/pp.111.181420. [PMID: 21865488]
  • Wen-Jie Yang, Yan-Min Wu, Yi-Xiong Tang. [Expressing and functional analysis of GmMYBJ6 from soybean]. Yi chuan = Hereditas. 2009 Jun; 31(6):645-53. doi: 10.3724/sp.j.1005.2009.00645. [PMID: 19586866]
  • Tsuyoshi Abe, Hiroyuki Morita, Hisashi Noma, Toshiyuki Kohno, Hiroshi Noguchi, Ikuro Abe. Structure function analysis of benzalacetone synthase from Rheum palmatum. Bioorganic & medicinal chemistry letters. 2007 Jun; 17(11):3161-6. doi: 10.1016/j.bmcl.2007.03.029. [PMID: 17383877]
  • Ikuro Abe, Tatsuya Watanabe, Weiwei Lou, Hiroshi Noguchi. Active site residues governing substrate selectivity and polyketide chain length in aloesone synthase. The FEBS journal. 2006 Jan; 273(1):208-18. doi: 10.1111/j.1742-4658.2005.05059.x. [PMID: 16367761]
  • M Baltas, C Lapeyre, F Bedos-Belval, M Maturano, P Saint-Aguet, L Roussel, H Duran, J Grima-Pettenati. Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from Arabidopsis thaliana. Plant physiology and biochemistry : PPB. 2005 Aug; 43(8):746-53. doi: 10.1016/j.plaphy.2005.06.003. [PMID: 16122934]
  • Satoshi Oguro, Tomoyoshi Akashi, Shin-Ichi Ayabe, Hiroshi Noguchi, Ikuro Abe. Probing biosynthesis of plant polyketides with synthetic N-acetylcysteamine thioesters. Biochemical and biophysical research communications. 2004 Dec; 325(2):561-7. doi: 10.1016/j.bbrc.2004.10.057. [PMID: 15530429]
  • Ikuro Abe, Tatsuya Watanabe, Hiroshi Noguchi. Enzymatic formation of long-chain polyketide pyrones by plant type III polyketide synthases. Phytochemistry. 2004 Sep; 65(17):2447-53. doi: 10.1016/j.phytochem.2004.08.005. [PMID: 15381408]
  • Tri J Raharjo, Wen-Te Chang, Marianne C Verberne, Anja M G Peltenburg-Looman, Huub J M Linthorst, Robert Verpoorte. Cloning and over-expression of a cDNA encoding a polyketide synthase from Cannabis sativa. Plant physiology and biochemistry : PPB. 2004 Apr; 42(4):291-7. doi: 10.1016/j.plaphy.2004.02.011. [PMID: 15120113]
  • David R Gang, Till Beuerle, Pascaline Ullmann, Daniéle Werck-Reichhart, Eran Pichersky. Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant physiology. 2002 Nov; 130(3):1536-44. doi: 10.1104/pp.007146. [PMID: 12428018]
  • M E Verhoeyen, A Bovy, G Collins, S Muir, S Robinson, C H R de Vos, S Colliver. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. Journal of experimental botany. 2002 Oct; 53(377):2099-106. doi: 10.1093/jxb/erf044. [PMID: 12324533]
  • Till Beuerle, Eran Pichersky. Enzymatic synthesis and purification of aromatic coenzyme a esters. Analytical biochemistry. 2002 Mar; 302(2):305-12. doi: 10.1006/abio.2001.5574. [PMID: 11878812]
  • N Obel, H V Scheller. Enzymatic synthesis and purification of caffeoyl-CoA, p-coumaroyl-CoA, and feruloyl-CoA. Analytical biochemistry. 2000 Nov; 286(1):38-44. doi: 10.1006/abio.2000.4760. [PMID: 11038271]
  • Y Helariutta, M Kotilainen, P Elomaa, N Kalkkinen, K Bremer, T H Teeri, V A Albert. Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification. Proceedings of the National Academy of Sciences of the United States of America. 1996 Aug; 93(17):9033-8. doi: 10.1073/pnas.93.17.9033. [PMID: 8799149]
  • R E Kneusel, U Matern, K Nicolay. Formation of trans-caffeoyl-CoA from trans-4-coumaroyl-CoA by Zn2+-dependent enzymes in cultured plant cells and its activation by an elicitor-induced pH shift. Archives of biochemistry and biophysics. 1989 Mar; 269(2):455-62. doi: 10.1016/0003-9861(89)90129-x. [PMID: 2919878]
  • . . . . doi: . [PMID: 11432743]
  • . . . . doi: . [PMID: 12122678]
  • . . . . doi: . [PMID: 18093914]