Gene Association: ESCO2

UniProt Search: ESCO2 (PROTEIN_CODING)
Function Description: establishment of sister chromatid cohesion N-acetyltransferase 2

found 16 associated metabolites with current gene based on the text mining result from the pubmed database.

Epicatechin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.079)


Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position. Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids . (-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin. Epicatechin has been used in trials studying the treatment of Pre-diabetes. (-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ... A catechin with (2R,3R)-configuration. [Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.

   

Chalconaringenin

2-Propen-1-one, 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-, (2E)-

C15H12O5 (272.0685)


2,4,4,6-tetrahydroxychalcone is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2 ,4, 4, and 6 respectively. It has a role as a metabolite, an anti-allergic agent and an anti-inflammatory agent. It is a polyphenol and a member of chalcones. It is functionally related to a trans-chalcone. Naringenin chalcone is a natural product found in Populus koreana, Populus tremula, and other organisms with data available. Isolated from tomato fruit cuticles. Chalconaringenin is found in many foods, some of which are cherry tomato, lettuce, greenthread tea, and lemon. A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2 ,4, 4, and 6 respectively. Chalconaringenin is found in garden tomato. Chalconaringenin is isolated from tomato fruit cuticle Naringenin chalcone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5071-40-9 (retrieved 2024-07-12) (CAS RN: 25515-46-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

2-Phenylglycine

DL-alpha-Aminophenylacetic acid

C8H9NO2 (151.0633)


2-Phenylglycine, also known as a-amino-a-toluate or L-PHG amino acid, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Outside of the human body, 2-Phenylglycine has been detected, but not quantified in cow milk. This could make 2-phenylglycine a potential biomarker for the consumption of these foods. 2-Phenylglycine is a metabolite described in normal human urine (PMID 14473597) and plasma (PMID 5888801). 2-Phenylglycine is a metabolite described in normal human urine (PMID 14473597) and plasma (PMID 5888801) [HMDB]

   

1204-06-4

3-Indoleacrylic acid

C11H9NO2 (187.0633)


trans-3-Indoleacrylic acid is an endogenous metabolite.

   

Phenylglyoxylic acid

Phenylglyoxylic acid, potassium salt

C8H6O3 (150.0317)


Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394). For the biological monitoring of workers exposure to solvent used in industry, its concentration is measured in human urine samples. (PMID 2739101). Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394) D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids KEIO_ID B041 Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

4-Coumaroyl-CoA

4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-{2-[(2-{[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}-3,3-dimethylbutanimidic acid

C30H42N7O18P3S (913.152)


4-Coumaroyl-CoA (CAS: 30802-00-7), also known as p-coumaroyl-CoA, belongs to the class of organic compounds known as 2-enoyl CoAs. These are organic compounds containing a coenzyme A substructure linked to a 2-enoyl chain. 4-Coumaroyl-CoA is a strong basic compound (based on its pKa). (E)-p-Coumaroyl-CoA, also known as trans-p-coumaroyl-CoA, is an important intermediate in various biological pathways, particularly in plants. It plays a key role in the biosynthesis of numerous secondary metabolites, including flavonoids and lignins. Structurally, it consists of a Coenzyme A (CoA) molecule esterified with trans-p-coumaric acid, a type of hydroxycinnamic acid. This compound is involved in the phenylpropanoid pathway, where it serves as a precursor for the synthesis of a wide range of compounds with diverse biological functions. The presence of the CoA group allows it to participate in enzymatic reactions, facilitating the transfer of the p-coumaroyl group to other molecules, thereby contributing to the synthesis of complex biochemical compounds. Coenzyme A, S-[(2E)-3-(4-hydroxyphenyl)-2-propenoate]. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=119785-99-8 (retrieved 2024-07-12) (CAS RN: 119785-99-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Leucocyanidin

(2R,3S)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,4,5,7-tetrol

C15H14O7 (306.0739)


Leucocyanidin is an active anti-ulcerogenic ingredient was extracted from Litchi Chinensis. Leucocyanidin demonstrates a significant protective effect against Aspirin-induced erosions in rat models[1]. Leucocyanidin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=480-17-1 (retrieved 2024-09-18) (CAS RN: 480-17-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Leucocyanidin

(2R,3S,4S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,4,5,7-tetrol

C15H14O7 (306.0739)


Leucocyanidin is a leucoanthocyanidin. Leucocyanidin is a natural product found in Euphorbia hirta, Koenigia coriaria, and Cassia roxburghii with data available. Leucocyanidin is an active anti-ulcerogenic ingredient was extracted from Litchi Chinensis. Leucocyanidin demonstrates a significant protective effect against Aspirin-induced erosions in rat models[1]. Leucocyanidin is an active anti-ulcerogenic ingredient was extracted from Litchi Chinensis. Leucocyanidin demonstrates a significant protective effect against Aspirin-induced erosions in rat models[1].

   

Indoleacrylic acid

(2E)-3-(1H-indol-3-yl)prop-2-enoic acid

C11H9NO2 (187.0633)


Indoleacrylic acid (CAS: 1204-06-4), also known as indoleacrylate, IA, and IAcrA, is a member of the class of compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of pyrrole ring fused to benzene to form 2,3-benzopyrrole. Indoleacrylic acid is practically insoluble (in water) and a weak acidic compound (based on its pKa). Within the cell, indoleacrylic acid is primarily located in the membrane (predicted from logP). Indoleacrylic acid is best known as a plant growth hormone (a natural auxin), whereas its biological role in animals is still unknown. A two-stage production of this compound is likely: intestinal microorganisms catabolize tryptophan to indole derivatives which are then absorbed and converted into indoleacrylic acid and its glycine conjugate, indolylacryloylglycine (IAcrGly). Indolylacryloylglycine excretion in urine is especially pronounced in some myopathies, namely in boys with Duchenne muscular dystrophy (PMID: 10707769). It has been recently found that indoleacrylic acid promotes intestinal epithelial barrier function and mitigates inflammatory responses. Stimulating indoleacrylic acid production could promote anti-inflammatory responses and have therapeutic benefits (PMID: 28704649). Urinary Indole-3-acrylate is produced by Clostridium sporogenes (PMID: 29168502). Indoleacrylic acid is also a metabolite of Peptostreptococcus (PMID: 28704649, 29168502). trans-3-Indoleacrylic acid is an endogenous metabolite.

   

Leucocyanidin

2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,4,5,7-tetrol

C15H14O7 (306.0739)


Leucocyanidin, also known as 3,3,4,4,5,7-flavanhexol or resivit, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, leucocyanidin is considered to be a flavonoid lipid molecule. Leucocyanidin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Leucocyanidin can be found in a number of food items such as climbing bean, black mulberry, corn salad, and caraway, which makes leucocyanidin a potential biomarker for the consumption of these food products. Leucocyanidin is a colorless chemical compound that is a member of the class of natural products known as leucoanthocyanidins . Leucocyanidin is an active anti-ulcerogenic ingredient was extracted from Litchi Chinensis. Leucocyanidin demonstrates a significant protective effect against Aspirin-induced erosions in rat models[1]. Leucocyanidin is an active anti-ulcerogenic ingredient was extracted from Litchi Chinensis. Leucocyanidin demonstrates a significant protective effect against Aspirin-induced erosions in rat models[1].

   

3-Indoleacrylic acid

Indole-3-acrylic acid

C11H9NO2 (187.0633)


trans-3-Indoleacrylic acid is an endogenous metabolite.

   

BENZOYLFORMIC ACID

Phenylglyoxylic acid

C8H6O3 (150.0317)


D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

CoA 9:5;O

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-4-({3-[(2-{[3-(4-hydroxyphenyl)prop-2-enoyl]sulfanyl}ethyl)amino]-3-oxopropyl}amino)-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C30H42N7O18P3S (913.152)


   

Resivit

rel-(2R,3S,4S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,4,5,7-tetrol

C15H14O7 (306.0739)


Leucocyanidin is an active anti-ulcerogenic ingredient was extracted from Litchi Chinensis. Leucocyanidin demonstrates a significant protective effect against Aspirin-induced erosions in rat models[1]. Leucocyanidin is an active anti-ulcerogenic ingredient was extracted from Litchi Chinensis. Leucocyanidin demonstrates a significant protective effect against Aspirin-induced erosions in rat models[1].

   

H-Phg-OH

2-Aminophenylacetic acid

C8H9NO2 (151.0633)


   

4-coumaroyl-CoA

4-coumaroyl-CoA

C30H42N7O18P3S (913.152)


The S-(4-coumaroyl) derivative of coenzyme A.