Gene Association: PUDP

UniProt Search: PUDP (PROTEIN_CODING)
Function Description: pseudouridine 5'-phosphatase

found 13 associated metabolites with current gene based on the text mining result from the pubmed database.

Stachyose

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-((((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-((((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-3,4,5-triol

C24H42O21 (666.2218)


Stachyose is a tetrasaccharide consisting of two D-galactose units, one D-glucose unit, and one D-fructose unit sequentially linked. Stachyose is a normal human metabolite present in human milk and is naturally found in many vegetables (e.g. green beans, soybeans and other beans) and plants. The glycosylation of serum transferrin from galactosemic patients with a deficiency of galactose-1-phosphate uridyl transferase (EC 2. 7.7 12) is abnormal but becomes normal after treatment with a galactose-free diet. Adhering to a galactose-free diet by strictly avoiding dairy products and known hidden sources of galactose does not completely normalize galactose-1-phosphate (gal-1-P) in erythrocytes from patients with galactosemia, since galactose released from stachyose may be absorbed and contribute to elevated gal-1-P values in erythrocytes of galactosemic patients (PMID:7671975, 9499382). Stachyose is a tetrasaccharide consisting of sucrose having an alpha-D-galactosyl-(1->6)-alpha-D-galactosyl moiety attached at the 6-position of the glucose. It has a role as a plant metabolite and a mouse metabolite. It is a raffinose family oligosaccharide and a tetrasaccharide. It is functionally related to a sucrose and a raffinose. Stachyose is a natural product found in Amaranthus cruentus, Salacia oblonga, and other organisms with data available. See also: Oligosaccharide (related). A tetrasaccharide consisting of sucrose having an alpha-D-galactosyl-(1->6)-alpha-D-galactosyl moiety attached at the 6-position of the glucose. Isolated from soybean meal (Glycine max), tubers of Japanese artichoke (Stachys tubifera) and lentils COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Stachyose, a kind of oligosaccharides, act as a hypoglycemic agent[1]. Stachyose, a kind of oligosaccharides, act as a hypoglycemic agent[1].

   

Salicin

2-(Hydroxymethyl)phenyl-beta-D-glucopyranoside, Salicoside, Salicyl alcohol glucoside, Saligenin beta-D-glucoside

C13H18O7 (286.1052)


Salicin, also known as salicoside or delta-salicin, is an aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. It has a role as a prodrug, an antipyretic, a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is an aryl beta-D-glucoside, an aromatic primary alcohol and a member of benzyl alcohols. It derives from a salicyl alcohol. Salicin belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Salicin exists in all living organisms, ranging from bacteria to humans. Salicin is a bitter tasting compound. Salicin is an aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. It has a role as a prodrug, an antipyretic, a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is an aryl beta-D-glucoside, an aromatic primary alcohol and a member of benzyl alcohols. It is functionally related to a salicyl alcohol. Salicin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicin is a natural product found in Salix candida, Populus tremula, and other organisms with data available. Salicin is an alcoholic β-glycoside that contains D-glucose. Salicin is an anti-inflammatory agent that is produced from willow bark. Salicin is closely related in chemical make-up to aspirin and has a very similar action in the human body. When consumed by humans, Salicin is metabolized into salicylic acid. [HMDB] An aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Salicin is a natural COX inhibitor. Salicin is a natural COX inhibitor.

   

Pseudouridine

5-[(2S,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H12N2O6 (244.0695)


Beta-pseudouridine, also known as p or 5-(b-D-ribofuranosyl)uracil, is a member of the class of compounds known as nucleoside and nucleotide analogues. Nucleoside and nucleotide analogues are analogues of nucleosides and nucleotides. These include phosphonated nucleosides, C-glycosylated nucleoside bases, analogues where the sugar unit is a pyranose, and carbocyclic nucleosides, among others. Beta-pseudouridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Beta-pseudouridine can be found in a number of food items such as eggplant, wax gourd, asparagus, and garden cress, which makes beta-pseudouridine a potential biomarker for the consumption of these food products. Beta-pseudouridine can be found primarily in amniotic fluid, blood, feces, and urine. Beta-pseudouridine exists in all living species, ranging from bacteria to humans. Moreover, beta-pseudouridine is found to be associated with canavan disease. Pseudouridine, also known as psi-uridine or 5-ribosyluracil, belongs to the class of organic compounds known as nucleoside and nucleotide analogues. These are analogues of nucleosides and nucleotides, such as phosphonated nucleosides, C-glycosylated nucleoside bases, analogues where the sugar unit is a pyranose, and carbocyclic nucleosides. Pseudouridine specifically has its uracil attached via a carbon-carbon instead of a nitrogen-carbon glycosidic bond to the ribofuranose. It is the most prevalent of the over one hundred different modified nucleosides found in RNA (PMID: 17113994). Pseudouridine is a solid that is soluble in water. Pseudouridine exists in all living species, ranging from bacteria to humans, and is in all classes of RNA except mRNA. It is formed by enzymes called pseudouridine synthases, which post-transcriptionally isomerize specific uridine residues in RNA. Pseudouridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1445-07-4 (retrieved 2024-07-01) (CAS RN: 1445-07-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4]. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4].

   

Uridine 5'-monophosphate

{[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H13N2O9P (324.0359)


Uridine 5-monophosphate (UMP), also known as uridylic acid or uridylate, belongs to the class of organic compounds known as pyrimidine ribonucleoside monophosphates. These are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. UMP consists of a phosphate group, a pentose sugar ribose, and the nucleobase uracil; hence, it is a ribonucleotide monophosphate. Uridine 5-monophosphate exists in all living species, ranging from bacteria to plants to humans. UMP is a nucleotide that is primarily used as a monomer in RNA biosynthesis. Uridine monophosphate is formed from Orotidine 5-monophosphate (orotidylic acid) in a decarboxylation reaction catalyzed by the enzyme orotidylate decarboxylase. Within humans, uridine 5-monophosphate participates in a number of enzymatic reactions. In particular, uridine 5-monophosphate can be converted into uridine 5-diphosphate through the action of the enzyme UMP-CMP kinase. In addition, uridine 5-monophosphate can be biosynthesized from uridine 5-diphosphate through its interaction with the enzyme soluble calcium-activated nucleotidase 1. In brain research studies, uridine monophosphate has been used as a convenient delivery compound for uridine. Uridine is present in many foods, mainly in the form of RNA. Non-phosphorylated uridine is not bioavailable beyond first-pass metabolism. In a study, gerbils fed a combination of uridine monophosphate, choline, and docosahexaenoic acid (DHA) were found to have significantly improved performance in running mazes over those not fed the supplements, implying an increase in cognitive function (PMID: 18606862). 5′-UMP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-97-9 (retrieved 2024-07-02) (CAS RN: 58-97-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1].

   

Galactinol

Galactinol (1-α-d-galactosyl-myo-inositol)

C12H22O11 (342.1162)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Pseudouridine 5'-phosphate

{[(2R,3S,4R,5S)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H13N2O9P (324.0359)


Pseudouridine (5-ribosyluracil) is a ubiquitous yet enigmatic constituent of structural RNAs (transfer, ribosomal, small nuclear, and small nucleolar). Although pseudouridine (psi) was the first modified nucleoside to be discovered in RNA, and is the most abundant, its biosynthesis and biological roles have remained poorly understood since its identification as a "fifth nucleoside" in RNA. Recently, a combination of biochemical, biophysical, and genetic approaches has helped to illuminate the structural consequences of psi in polyribonucleotides, the biochemical mechanism of U-->psi isomerization in RNA, and the role of modification enzymes (psi synthases) and box H/ACA snoRNAs, a class of eukaryotic small nucleolar RNAs, in the site-specific biosynthesis of psi. Through its unique ability to coordinate a structural water molecule via its free N1-H, psi exerts a subtle but significant "rigidifying" influence on the nearby sugar-phosphate backbone and also enhances base stacking. These effects may underlie the biological role of most (but perhaps not all) of the psi residues in RNA. Certain genetic mutants lacking specific psi residues in tRNA or rRNA exhibit difficulties in translation, display slow growth rates, and fail to compete effectively with wild-type strains in mixed culture. In particular, normal growth is severely compromised in an Escherichia coli mutant deficient in a pseudouridine synthase responsible for the formation of three closely spaced psi residues in the mRNA decoding region of the 23S rRNA. Such studies demonstrate that pseudouridylation of RNA confers an important selective advantage in a natural biological context. PMID: 10902565 [HMDB]. Pseudouridine 5-phosphate is found in many foods, some of which are garland chrysanthemum, chives, broad bean, and green bell pepper. Pseudouridine (5-ribosyluracil) is a ubiquitous yet enigmatic constituent of structural RNAs (transfer, ribosomal, small nuclear, and small nucleolar). Although pseudouridine (psi) was the first modified nucleoside to be discovered in RNA, and is the most abundant, its biosynthesis and biological roles have remained poorly understood since its identification as a "fifth nucleoside" in RNA. Recently, a combination of biochemical, biophysical, and genetic approaches has helped to illuminate the structural consequences of psi in polyribonucleotides, the biochemical mechanism of U-->psi isomerization in RNA, and the role of modification enzymes (psi synthases) and box H/ACA snoRNAs, a class of eukaryotic small nucleolar RNAs, in the site-specific biosynthesis of psi. Through its unique ability to coordinate a structural water molecule via its free N1-H, psi exerts a subtle but significant "rigidifying" influence on the nearby sugar-phosphate backbone and also enhances base stacking. These effects may underlie the biological role of most (but perhaps not all) of the psi residues in RNA. Certain genetic mutants lacking specific psi residues in tRNA or rRNA exhibit difficulties in translation, display slow growth rates, and fail to compete effectively with wild-type strains in mixed culture. In particular, normal growth is severely compromised in an Escherichia coli mutant deficient in a pseudouridine synthase responsible for the formation of three closely spaced psi residues in the mRNA decoding region of the 23S rRNA. Such studies demonstrate that pseudouridylation of RNA confers an important selective advantage in a natural biological context. PMID: 10902565.

   

Galactinol

(1S,2R,3R,4S,5S,6R)-6-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexane-1,2,3,4,5-pentol

C12H22O11 (342.1162)


Galactinol belongs to the class of organic compounds known as O-glycosyl compounds. These are glycoside in which a sugar group is bonded through one carbon to another group via an O-glycosidic bond. Galactinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Galactinol is an intermediate in galactose metabolism. Galactinol is the fourth-to-last step in the synthesis of D-galactose and the third-to-last step in the synthesis of D-glucose and D-fructose. Galactinol is converted from UDP-galactose via the enzyme inositol 3-alpha-galactosyltransferase (EC 2.4.1.123). It is then converted into raffinose via the enzyme raffinose synthase (EC 2.4.1.82). Constituent of sugar-beet juice, castor-oil seed meal and potatoes after cold storage

   

Pseudouridine

Pseudouridine

C9H12N2O6 (244.0695)


Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4]. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4].

   

Salicin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[2-(hydroxymethyl)phenoxy]tetrahydropyran-3,4,5-triol

C13H18O7 (286.1052)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.253 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.247 Salicin is a natural COX inhibitor. Salicin is a natural COX inhibitor.

   

Uridine monophosphate

Uridine 5_-monophosphate

C9H13N2O9P (324.0359)


A pyrimidine ribonucleoside 5-monophosphate having uracil as the nucleobase. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1].

   

Lupeose

(2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl]oxy-6-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxymethyl]tetra

C24H42O21 (666.2218)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Stachyose, a kind of oligosaccharides, act as a hypoglycemic agent[1]. Stachyose, a kind of oligosaccharides, act as a hypoglycemic agent[1].

   

Pseudouridine

Pseudouridine

C9H12N2O6 (244.0695)


A C-glycosyl pyrimidine that consists of uracil having a beta-D-ribofuranosyl residue attached at position 5. The C-glycosyl isomer of the nucleoside uridine. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4]. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4].

   

Pseudouridine 5-phosphate

Pseudouridine 5-phosphate

C9H13N2O9P (324.0359)


A C-nucleoside phosphate consisting of pseudouridine having a monophosphate group at the 5-position.