Gene Association: PCCB

UniProt Search: PCCB (PROTEIN_CODING)
Function Description: propionyl-CoA carboxylase subunit beta

found 23 associated metabolites with current gene based on the text mining result from the pubmed database.

butanoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-(2-{[2-(butanoylsulfanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C25H42N7O17P3S (837.1571)


Butyryl-coa, also known as 4:0-coa or butanoyl-coa, is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, butyryl-coa is considered to be a fatty ester lipid molecule. Butyryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Butyryl-coa can be synthesized from coenzyme A and butyric acid. Butyryl-coa is also a parent compound for other transformation products, including but not limited to, (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA, acetoacetyl-CoA, and 2-methylacetoacetyl-CoA. Butyryl-coa can be found in a number of food items such as wild carrot, persian lime, redcurrant, and arrowroot, which makes butyryl-coa a potential biomarker for the consumption of these food products. Butyryl-coa may be a unique E.coli metabolite.

   

Methylmalonyl-CoA

(2S)-3-{[2-(3-{3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido}propanamido)ethyl]sulfanyl}-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

Propionylcarnitine

O-propanoyl-carnitine

C10H19NO4 (217.1314)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents An O-acylcarnitine compound having propanoyl as the acyl substituent. D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents

   

Carglumic acid

(2S)-2-(Carbamoylamino)pentanedioic acid

C6H10N2O5 (190.059)


Carglumic acid is an orphan drug used for the treatment of hyperammonaemia in patients with N-acetylglutamate synthase deficiency. This rare genetic disorder results in elevated blood levels of ammonia, which can eventually cross the blood-brain barrier and cause neurologic problems, cerebral edema, coma, and death. Carglumic acid was approved by the U.S. Food and Drug Administration (FDA) on 18 March 2010. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives C78275 - Agent Affecting Blood or Body Fluid KEIO_ID C078

   

Propionyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(propanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C24H40N7O17P3S (823.1414)


Propionyl-CoA is an intermediate in the metabolism of propanoate. Propionic aciduria is caused by an autosomal recessive disorder of propionyl coenzyme A (CoA) carboxylase deficiency (EC 6.4.1.3). In propionic aciduria, propionyl CoA accumulates within the mitochondria in massive quantities; free carnitine is then esterified, creating propionyl carnitine, which is then excreted in the urine. Because the supply of carnitine in the diet and from synthesis is limited, such patients readily develop carnitine deficiency as a result of the increased loss of acylcarnitine derivatives. This condition demands supplementation of free carnitine above the normal dietary intake to continue to remove (detoxify) the accumulating organic acids. Propionyl-CoA is a substrate for Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acetyl-coenzyme A synthetase 2-like (mitochondrial), Propionyl-CoA carboxylase alpha chain (mitochondrial), Methylmalonate-semialdehyde dehydrogenase (mitochondrial), Trifunctional enzyme beta subunit (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Malonyl-CoA decarboxylase (mitochondrial), Acetyl-coenzyme A synthetase (cytoplasmic), 3-ketoacyl-CoA thiolase (mitochondrial) and Propionyl-CoA carboxylase beta chain (mitochondrial). (PMID: 10650319) [HMDB] Propionyl-CoA is an intermediate in the metabolism of propanoate. Propionic aciduria is caused by an autosomal recessive disorder of propionyl coenzyme A (CoA) carboxylase deficiency (EC 6.4.1.3). In propionic aciduria, propionyl CoA accumulates within the mitochondria in massive quantities; free carnitine is then esterified, creating propionyl carnitine, which is then excreted in the urine. Because the supply of carnitine in the diet and from synthesis is limited, such patients readily develop carnitine deficiency as a result of the increased loss of acylcarnitine derivatives. This condition demands supplementation of free carnitine above the normal dietary intake to continue to remove (detoxify) the accumulating organic acids. Propionyl-CoA is a substrate for Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acetyl-coenzyme A synthetase 2-like (mitochondrial), Propionyl-CoA carboxylase alpha chain (mitochondrial), Methylmalonate-semialdehyde dehydrogenase (mitochondrial), Trifunctional enzyme beta subunit (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Malonyl-CoA decarboxylase (mitochondrial), Acetyl-coenzyme A synthetase (cytoplasmic), 3-ketoacyl-CoA thiolase (mitochondrial) and Propionyl-CoA carboxylase beta chain (mitochondrial). (PMID: 10650319).

   

2-Methylcitric acid

2-hydroxy-1-methylpropane-1,2,3-tricarboxylic acid

C7H10O7 (206.0427)


Methylcitric acid (MCA) is elevated in body fluids of patients with propionic acidaemia (PA; OMIM 232000, 232050), methylmalonic aciduria (MMA; OMIM 251000, 251120) and multiple carboxylase deficiency (OMIM 253260, 253270), which are inherited disorders. MCA is formed by condensation of accumulated propionyl- CoA and oxalacetate by the enzyme si-citrate synthase (EC 4.1.3.7). MCA molecule has two stereogenic centers so that it can occur in the form of four stereoisomers. Only two stereoisomers of MCA, (2S, 3S) and (2R, 3S), were found in human urine (PMID: 17295121). Methylcitric acid (MCA) is elevated in body fluids of patients with propionic acidaemia (PA; OMIM 232000, 232050), methylmalonic aciduria (MMA; OMIM 251000, 251120) and multiple carboxylase deficiency (OMIM 253260, 253270). MCA is formed by condensation of accumulated propionyl- CoA and oxalacetate by the enzyme si-citrate synthase (EC 4.1.3.7). MCA molecule has two stereogenic centers so that it can occur in the form of four stereoisomers. Only two stereoisomers of MCA, (2S, 3S) and (2R, 3S), were found in human urine. (PMID: 17295121) [HMDB] 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1].

   

3-Amino-5-hydroxybenzoic acid

3-Amino-5-hydroxybenzoic acid

C7H7NO3 (153.0426)


   

CoA 4:1;O2

5-O-[hydroxy({hydroxy[(15-hydroxy-16,16-dimethyl-3,5,10,14-tetraoxo-2-oxa-6-thia-9,13-diazaheptadecan-17-yl)oxy]phosphoryl}oxy)phosphoryl]adenosine 3-(dihydrogen phosphate);malonyl-coenzyme A methyl ester

C25H40N7O19P3S (867.1312)


The (R)-enantiomer of methylmalonyl-CoA.

   

Butyryl-CoA

{[5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(butanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


Butyryl-CoA is an intermediate in the metabolism of Butanoate. It is a substrate for Acyl-coenzyme A oxidase 3 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Acyl-coenzyme A oxidase 1 (peroxisomal), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal), Acetyl-CoA acetyltransferase (mitochondrial), Acetyl-CoA acetyltransferase (cytosolic), Acyl-CoA dehydrogenase (short-chain specific, mitochondrial) and Trifunctional enzyme beta subunit (mitochondrial).

   

S-Methylmalonyl-CoA

(2S)-3-[(2-{3-[(2R)-3-[({[({[(3S,4R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

3-Amino-5-hydroxybenzoic acid

3-Amino-5-hydroxybenzoic acid

C7H7NO3 (153.0426)


   

FA 7:2;O5

(2R,3S)-2-hydroxybutane-1,2,3-tricarboxylic acid;3-C-carboxy-2,4-dideoxy-2-methyl-D-threo-pentaric acid

C7H10O7 (206.0427)


   

CoA 4:0

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylpropanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


   

CoA 3:0

3-phosphoadenosine 5-(3-{(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-[(3-oxo-3-{[2-(propanoylsulfanyl)ethyl]amino}propyl)amino]butyl} dihydrogen diphosphate)

C24H40N7O17P3S (823.1414)


   

CAR 3:0

(3S)-3-(propionyloxy)-4-(trimethylammonio)butanoate

C10H19NO4 (217.1314)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents

   

Carglumic Acid

Carglumic Acid

C6H10N2O5 (190.059)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives C78275 - Agent Affecting Blood or Body Fluid

   

Propionyl-CoA

Propionyl-CoA

C24H40N7O17P3S (823.1414)


An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of propionic acid.

   

Butyryl-CoA

Butyryl-CoA

C25H42N7O17P3S (837.1571)


A short-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of butyric acid.

   

(S)-methylmalonyl-CoA

(S)-methylmalonyl-CoA

C25H40N7O19P3S (867.1312)


The (S)-enantiomer of methylmalonyl-CoA.

   

(2S,3S)-2-methylcitric acid

(2S,3S)-2-methylcitric acid

C7H10O7 (206.0427)


The (2S,3S)-diastereomer of 2-methylcitric acid.

   

3-Ahba

3-Amino-5-hydroxybenzoic acid

C7H7NO3 (153.0426)


   

2-Methylcitric acid

2-Methylcitric acid

C7H10O7 (206.0427)


2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1].

   

(2R,3S)-2-methylcitric acid

(2R,3S)-2-methylcitric acid

C7H10O7 (206.0427)