Fucoxanthin

(3S,3′S,5R,5′R,6S,6′R)-3′-(Acetyloxy)-6′,7′-didehydro-5,6-epoxy-5,5′,6,6′,7,8-hexahydro-3,5′-dihydroxy-8-oxo-β,β-carotene

C42H58O6 (658.4233168)


Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia [HMDB] Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3351-86-8 (retrieved 2024-11-06) (CAS RN: 3351-86-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

beta-Carotene

1,3,3-trimethyl-2-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4381776)


Beta-carotene is a cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. It has a role as a biological pigment, a provitamin A, a plant metabolite, a human metabolite, a mouse metabolite, a cofactor, a ferroptosis inhibitor and an antioxidant. It is a cyclic carotene and a carotenoid beta-end derivative. Beta-carotene, with the molecular formula C40H56, belongs to the group of carotenoids consisting of isoprene units. The presence of long chains of conjugated double bonds donates beta-carotene with specific colors. It is the most abundant form of carotenoid and it is a precursor of the vitamin A. Beta-carotene is composed of two retinyl groups. It is an antioxidant that can be found in yellow, orange and green leafy vegetables and fruits. Under the FDA, beta-carotene is considered as a generally recognized as safe substance (GRAS). Beta-Carotene is a natural product found in Epicoccum nigrum, Lonicera japonica, and other organisms with data available. Beta-Carotene is a naturally-occurring retinol (vitamin A) precursor obtained from certain fruits and vegetables with potential antineoplastic and chemopreventive activities. As an anti-oxidant, beta carotene inhibits free-radical damage to DNA. This agent also induces cell differentiation and apoptosis of some tumor cell types, particularly in early stages of tumorigenesis, and enhances immune system activity by stimulating the release of natural killer cells, lymphocytes, and monocytes. (NCI04) beta-Carotene is a metabolite found in or produced by Saccharomyces cerevisiae. A carotenoid that is a precursor of VITAMIN A. Beta carotene is administered to reduce the severity of photosensitivity reactions in patients with erythropoietic protoporphyria (PORPHYRIA, ERYTHROPOIETIC). See also: Lycopene (part of); Broccoli (part of); Lycium barbarum fruit (part of). Beta-Carotene belongs to the class of organic compounds known as carotenes. These are a type of polyunsaturated hydrocarbon molecules containing eight consecutive isoprene units. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Beta-carotene is therefore considered to be an isoprenoid lipid molecule. Beta-carotene is a strongly coloured red-orange pigment abundant in fungi, plants, and fruits. It is synthesized biochemically from eight isoprene units and therefore has 40 carbons. Among the carotenes, beta-carotene is distinguished by having beta-rings at both ends of the molecule. Beta-Carotene is biosynthesized from geranylgeranyl pyrophosphate. It is the most common form of carotene in plants. In nature, Beta-carotene is a precursor (inactive form) to vitamin A. Vitamin A is produed via the action of beta-carotene 15,15-monooxygenase on carotenes. In mammals, carotenoid absorption is restricted to the duodenum of the small intestine and dependent on a class B scavenger receptor (SR-B1) membrane protein, which is also responsible for the absorption of vitamin E. One molecule of beta-carotene can be cleaved by the intestinal enzyme Beta-Beta-carotene 15,15-monooxygenase into two molecules of vitamin A. Beta-Carotene contributes to the orange color of many different fruits and vegetables. Vietnamese gac and crude palm oil are particularly rich sources, as are yellow and orange fruits, such as cantaloupe, mangoes, pumpkin, and papayas, and orange root vegetables such as carrots and sweet potatoes. Excess beta-carotene is predominantly stored in the fat tissues of the body. The most common side effect of excessive beta-carotene consumption is carotenodermia, a physically harmless condition that presents as a conspicuous orange skin tint arising from deposition of the carotenoid in the outermost layer of the epidermis. Yellow food colour, dietary supplement, nutrient, Vitamin A precursor. Nutriceutical with antioxidation props. beta-Carotene is found in many foods, some of which are summer savory, gram bean, sunburst squash (pattypan squash), and other bread product. A cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins

   

Lutein

(1R,4R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol

C40H56O2 (568.4280076)


Lutein is a common carotenoid xanthophyll found in nature. Carotenoids are among the most common pigments in nature and are natural lipid-soluble antioxidants. Lutein is one of the two carotenoids (the other is zeaxanthin) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli, and eggs, are associated with a significant reduction in the risk for cataracts (up to 20\\\\\%) and age-related macular degeneration (up to 40\\\\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations (PMID: 11023002). Lutein is a carotenol. It has a role as a food colouring and a plant metabolite. It derives from a hydride of a (6R)-beta,epsilon-carotene. Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis. Lutein is a natural product found in Eupatorium cannabinum, Hibiscus syriacus, and other organisms with data available. Lutein is lutein (LOO-teen) is a oxygenated carotenoid found in vegetables and fruits. lutein is found in the macula of the eye, where it is believed to act as a yellow filter. Lutein acts as an antioxidant, protecting cells against the damaging effects of free radicals. A xanthophyll found in the major LIGHT-HARVESTING PROTEIN COMPLEXES of plants. Dietary lutein accumulates in the MACULA LUTEA. See also: Calendula Officinalis Flower (part of); Corn (part of); Chicken; lutein (component of) ... View More ... Pigment from egg yolk and leaves. Found in all higher plants. Nutriceutical with anticancer and antioxidation props. Potentially useful for the treatment of age-related macular degeneration (AMD) of the eye Lutein A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-40-2 (retrieved 2024-07-12) (CAS RN: 127-40-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.307899)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

zeinoxanthin

(1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-[(1R)-2,6,6-trimethylcyclohex-2-en-1-yl]octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]cyclohex-3-en-1-ol

C40H56O (552.4330926)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Canthaxanthin

2,4,4-trimethyl-3-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-2-en-1-one

C40H52O2 (564.3967092)


Canthaxanthin, also known as Cantaxanthin, Cantaxanthine, or Canthaxanthine is a keto-carotenoid, a pigment widely distributed in nature. Carotenoids belong to a larger class of phytochemicals known as terpenoids. Canthaxanin is also classified as a xanthophyll. Xanthophylls are yellow pigments and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. Both are carotenoids. Xanthophylls and carotenes are similar in structure, but xanthophylls contain oxygen atoms while carotenes are purely hydrocarbons, which do not contain oxygen. Their content of oxygen causes xanthophylls to be more polar (in molecular structure) than carotenes and causes their separation from carotenes in many types of chromatography. (Carotenes are usually more orange in color than xanthophylls. Canthaxanthin is naturally found in bacteria, algae and some fungi. Canthaxanthin is associated with E number E161g and is approved for use as a food coloring agent in different countries, including the United States and the EU. Canthaxanthin is used as poultry feed additive to yield red color in skin and yolks. The European Union permits the use of canthaxanthin in feedstuff at a maximum content of 25 mg/kg of final feedstuff while the United States allows the use of this pigment in broiler chicken and salmonid fish feeds. Canthoxanthin was first isolated in edible chanterelle mushroom (Cantharellus cinnabarinus), from which it derived its name. It has also been found in green algae, bacteria, archea (a halophilic archaeon called Haloferax alexandrines), fungi and bioaccumulates in tissues and egg yolk from wild birds and at low levels in crustaceans and fish such as carp, golden grey mullet, and seabream. Canthaxanthin is not found in wild Atlantic Salmon, but is a minor carotenoid in Pacific Salmon. Canthaxanthin is used in farm-raised trout to give a red/orange color to their flesh similar to wild trout. Canthaxanthin has been used as a food additive for egg yolk, in cosmetics and as a pigmenting agent for human skin applications. It has also been used as a feed additive in fish and crustacean farms. Canthaxanthin is a potent lipid-soluble antioxidant (PMID: 2505240). Canthaxanthin increases resistance to lipid peroxidation primarily by enhancing membrane alpha-tocopherol levels and secondarily by providing weak direct antioxidant activity. Canthaxanthin biosynthesis in bacteria and algae proceeds from beta-carotene via the action of an enzyme known as a beta-carotene ketolase, that is able to add a carbonyl group to carbon 4 and 4 of the beta carotene molecule. Food colouring. Constituent of the edible mushroom (Cantharellus cinnabarinus), sea trout, salmon and brine shrimp. It is used in broiler chicken feed to enhance the yellow colour of chicken skin D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

echinenone

Echinenone/ (Myxoxanthin)

C40H54O (550.4174434)


A carotenone that is beta-carotene in which the 4 position has undergone formal oxidation to afford the corresponding ketone. Isolated as orange-red crystals, it is widely distributed in marine invertebrates. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

1,4-Dithiane

Tetrahydro-1,4-dithiin

C4H8S2 (120.0067408)


1,4-Dithiane, also known as p-dithiane or fema 3831, belongs to the class of organic compounds known as dithianes. Dithianes are compounds containing a dithiane moiety, which is composed of a cyclohexane core structure wherein two methylene units are replaced by sulfur centres. A dithiane that is cyclohexane in which the -CH2- units at positions 1 and 2 have been replaced by sulfur atoms. 1,4-Dithiane is possibly neutral. 1,4-Dithiane is a fishy, garlic, and onion tasting compound. 1,4-Dithiane has been detected, but not quantified, in garden tomato. This could make 1,4-dithiane a potential biomarker for the consumption of these foods. Food additive listed in the EAFUS food additive database (Jan. 2001). Flavouring used in seasonings. 1,4-Dithiane is found in garden tomato.

   

Fucosterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(E,2R)-5-propan-2-ylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosus. Fucosterol is found in lemon grass and coconut. Fucosterol is found in coconut. Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosu Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].

   

24-Methylenecholesterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylideneheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548466)


24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72). 24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol. 24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol having the structure of cholesterol with a methylene group at C-24. Constituent of clams and oysters 24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].

   

Diadinoxanthin

(3S,3R,5R,6S)-7,8-Didehydro-5,6-epoxy-5,6-dihydro-beta,beta-carotene-3,3-diol

C40H54O3 (582.4072734)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Squalen

2,6,10,15,19,23-Hexamethyltetracosa-2,6,10,14,18,22-hexaene

C30H50 (410.39123)


   

zeinoxanthin

3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-2-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-ol

C40H56O (552.4330926)


Zeinoxanthin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Zeinoxanthin can be found in a number of food items such as mentha (mint), peppermint, barley, and feijoa, which makes zeinoxanthin a potential biomarker for the consumption of these food products.

   

Fucosterol

(24E)-24-n-propylidenecholesterol;(3beta,24E)-stigmasta-5,24(28)-dien-3-ol;(E)-stigmasta-5,24(28)-dien-3beta-ol;24E-ethylidene-cholest-5-en-3beta-ol;fucosterin;trans-24-ethylidenecholesterol

C29H48O (412.37049579999996)


A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24 (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol can be found in horseradish tree and sunflower, which makes (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol a potential biomarker for the consumption of these food products. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].

   

Squalene

InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

C25:2 Highly branched isoprenoid

2,10,14-trimethyl-6-methylene-7-(3-methyl-pent-4-enyl)-pentadecane

C25H48 (348.37558079999997)


   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

1H-Indazole-3-Carbaldehyde

1H-Indazole-3-Carbaldehyde

C8H6N2O (146.0480106)


   

β-Carotene

1-(1,2,3,4,5-Pentahydroxypent-1-yl)-1,2,3,4-tetrahydro-beta-carboline-3-carboxylate

C40H56 (536.4381776)


The novel carbohydrate-derived b-carboline, 1-pentahydroxypentyl-1,2,3,4-tetrahydro-b-carboline-3-carboxylic acid, was identified in fruit- and vegetable-derived products such as juices, jams, and tomato sauces. This compound occurred as two diastereoisomers, a cis isomer (the major compound) and a trans isomer, ranging from undetectable amounts to 6.5 ug/g. Grape, tomato, pineapple, and tropical juices exhibited the highest amount of this alkaloid (up to 3.8 mg/L), whereas apple, banana, and peach juices showed very low or nondetectable levels. This tetrahydro-b-carboline was also found in jams (up to 0.45 ug/g), and a relative high amount was present in tomato concentrate (6.5 ug/g) and sauce (up to 1.8 ug/g). This b-carboline occurred in fruit-derived products as a glycoconjugate from a chemical condensation of d-glucose and l-tryptophan that is highly favored at low pH values and high temperature. Production, processing treatments, and storage of fruit juices and jams can then release this b-carboline. Fruit-derived products and other foods containing this compound might be an exogenous dietary source of this glucose-derived tetrahydro-b-carboline.(PMID: 12137498) [HMDB] Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.307899)


Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Fucoxanthin

InChI=1/C42H58O6/c1-29(18-14-19-31(3)22-23-37-38(6,7)26-35(47-33(5)43)27-40(37,10)46)16-12-13-17-30(2)20-15-21-32(4)36(45)28-42-39(8,9)24-34(44)25-41(42,11)48-42/h12-22,34-35,44,46H,24-28H2,1-11H3/b13-12+,18-14+,20-15+,29-16+,30-17+,31-19+,32-21+/t23?,34-

C42H58O6 (658.4233168000001)


Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. An epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities.

   

canthaxanthin

canthaxanthin

C40H52O2 (564.3967092)


A carotenone that consists of beta,beta-carotene bearing two oxo substituents at positions 4 and 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Plastoquinone

Plastoquinone-9

C53H80O2 (748.615798)


   
   

(2s)-2-{[(2r)-5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene]amino}-3-{[(2s)-2-{[(2r)-5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene]amino}-3-{[(2s)-2-{[(2r)-5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene]amino}-3-hydroxypropanoyl]oxy}propanoyl]oxy}propanoic acid

(2s)-2-{[(2r)-5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene]amino}-3-{[(2s)-2-{[(2r)-5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene]amino}-3-{[(2s)-2-{[(2r)-5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene]amino}-3-hydroxypropanoyl]oxy}propanoyl]oxy}propanoic acid

C48H65N15O19 (1155.458094)


   

2,10-dimethyl-6-methylidene-7-(3-methylpent-4-en-1-yl)pentadecane

2,10-dimethyl-6-methylidene-7-(3-methylpent-4-en-1-yl)pentadecane

C24H46 (334.3599316)


   

2,6,14-trimethyl-10-methylidene-9-(3-methylpent-4-en-1-yl)pentadec-6-ene

2,6,14-trimethyl-10-methylidene-9-(3-methylpent-4-en-1-yl)pentadec-6-ene

C25H46 (346.3599316)


   

5-hydroxy-3,4-bis(4-hydroxy-3-nitrophenyl)pyrrol-2-one

5-hydroxy-3,4-bis(4-hydroxy-3-nitrophenyl)pyrrol-2-one

C16H9N3O8 (371.0389634)


   

6,14-dimethyl-10-methylidene-9-(3-methylpent-4-en-1-yl)pentadeca-2,6-diene

6,14-dimethyl-10-methylidene-9-(3-methylpent-4-en-1-yl)pentadeca-2,6-diene

C24H42 (330.3286332)


   

3-[1h-indol-3-yl(phenyl)methyl]-1h-indole

3-[1h-indol-3-yl(phenyl)methyl]-1h-indole

C23H18N2 (322.14699079999997)


   

2,6,10,14-tetramethyl-9-(3-methylpent-4-en-1-yl)pentadeca-2,10-diene

2,6,10,14-tetramethyl-9-(3-methylpent-4-en-1-yl)pentadeca-2,10-diene

C25H46 (346.3599316)


   

(2e,4e,6e,8e,10e)-13-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-2,7,11-trimethyl-12-oxotrideca-2,4,6,8,10-pentaenal

(2e,4e,6e,8e,10e)-13-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-2,7,11-trimethyl-12-oxotrideca-2,4,6,8,10-pentaenal

C25H34O4 (398.24569640000004)


   

(6z,9e,10r)-2,6,10,14-tetramethyl-9-[(3s)-3-methylpent-4-en-1-ylidene]pentadeca-2,6,13-triene

(6z,9e,10r)-2,6,10,14-tetramethyl-9-[(3s)-3-methylpent-4-en-1-ylidene]pentadeca-2,6,13-triene

C25H42 (342.3286332)


   

2-(hexadeca-6,9,12-trienoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl icosa-5,8,11,14,17-pentaenoate

2-(hexadeca-6,9,12-trienoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl icosa-5,8,11,14,17-pentaenoate

C45H70O10 (770.496872)


   

(5e,7r,9e)-2,6,10,14-tetramethyl-7-[(3r)-3-methylpent-4-en-1-yl]pentadeca-5,9-diene

(5e,7r,9e)-2,6,10,14-tetramethyl-7-[(3r)-3-methylpent-4-en-1-yl]pentadeca-5,9-diene

C25H46 (346.3599316)


   

2,6,10,14-tetramethyl-9-(3-methylpent-4-en-1-yl)pentadeca-2,6,10-triene

2,6,10,14-tetramethyl-9-(3-methylpent-4-en-1-yl)pentadeca-2,6,10-triene

C25H44 (344.3442824)


   

5-hydroxy-3-(4-hydroxyphenyl)-4-phenylpyrrol-2-one

5-hydroxy-3-(4-hydroxyphenyl)-4-phenylpyrrol-2-one

C16H11NO3 (265.07388960000003)


   

2,6,10-trimethyl-7-(3-methylpent-4-en-1-yl)pentadeca-5,9-diene

2,6,10-trimethyl-7-(3-methylpent-4-en-1-yl)pentadeca-5,9-diene

C24H44 (332.3442824)


   

2,6,10,14-tetramethyl-7-(3-methylpent-4-en-1-yl)pentadeca-2,5,9,13-tetraene

2,6,10,14-tetramethyl-7-(3-methylpent-4-en-1-yl)pentadeca-2,5,9,13-tetraene

C25H42 (342.3286332)


   

3,4-bis(4-hydroxy-3-nitrophenyl)-5-nitroso-1h-pyrrol-2-ol

3,4-bis(4-hydroxy-3-nitrophenyl)-5-nitroso-1h-pyrrol-2-ol

C16H10N4O8 (386.049862)


   

2-[(5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene)amino]-3-({2-[(5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene)amino]-3-hydroxypropanoyl}oxy)propanoic acid

2-[(5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene)amino]-3-({2-[(5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene)amino]-3-hydroxypropanoyl}oxy)propanoic acid

C32H44N10O13 (776.3089174)


   

(7s,10s)-2,10,14-trimethyl-6-methylidene-7-[(3r)-3-methylpent-4-en-1-yl]pentadecane

(7s,10s)-2,10,14-trimethyl-6-methylidene-7-[(3r)-3-methylpent-4-en-1-yl]pentadecane

C25H48 (348.37558079999997)


   

2-[(5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene)amino]-3-({2-[(5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene)amino]-3-({2-[(5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene)amino]-3-hydroxypropanoyl}oxy)propanoyl}oxy)propanoic acid

2-[(5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene)amino]-3-({2-[(5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene)amino]-3-({2-[(5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene)amino]-3-hydroxypropanoyl}oxy)propanoyl}oxy)propanoic acid

C48H65N15O19 (1155.458094)


   

(2e,6e,9r)-6,14-dimethyl-10-methylidene-9-[(3r)-3-methylpent-4-en-1-yl]pentadeca-2,6-diene

(2e,6e,9r)-6,14-dimethyl-10-methylidene-9-[(3r)-3-methylpent-4-en-1-yl]pentadeca-2,6-diene

C24H42 (330.3286332)


   

3-(4-hydroxy-3-nitrophenyl)-5-nitroso-4-phenyl-1h-pyrrol-2-ol

3-(4-hydroxy-3-nitrophenyl)-5-nitroso-4-phenyl-1h-pyrrol-2-ol

C16H11N3O5 (325.0698676)


   

(5e,7s,9e)-2,6,10,14-tetramethyl-7-[(3s)-3-methylpent-4-en-1-yl]pentadeca-2,5,9,13-tetraene

(5e,7s,9e)-2,6,10,14-tetramethyl-7-[(3s)-3-methylpent-4-en-1-yl]pentadeca-2,5,9,13-tetraene

C25H42 (342.3286332)


   

3-({5-[(3-{[5-({3-[(5-aminopentyl)(hydroxy)carbamoyl]-1-hydroxypropylidene}amino)pentyl](hydroxy)carbamoyl}-1-hydroxypropylidene)amino]pentyl}(hydroxy)carbamoyl)propanoic acid

3-({5-[(3-{[5-({3-[(5-aminopentyl)(hydroxy)carbamoyl]-1-hydroxypropylidene}amino)pentyl](hydroxy)carbamoyl}-1-hydroxypropylidene)amino]pentyl}(hydroxy)carbamoyl)propanoic acid

C27H50N6O10 (618.358824)


   

24-α-ethylcholesterol

24-α-ethylcholesterol

C29H50O (414.386145)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H46O (398.3548466)


   

(2s)-2-(hexadeca-6,9,12-trienoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl icosa-5,8,11,14,17-pentaenoate

(2s)-2-(hexadeca-6,9,12-trienoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl icosa-5,8,11,14,17-pentaenoate

C45H70O10 (770.496872)


   

2,6,10,14-tetramethyl-9-(3-methylpent-4-en-1-ylidene)pentadeca-2,6,13-triene

2,6,10,14-tetramethyl-9-(3-methylpent-4-en-1-ylidene)pentadeca-2,6,13-triene

C25H42 (342.3286332)


   

(3e,5e,7e,9e,11e,13e,15e)-18-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-1-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

(3e,5e,7e,9e,11e,13e,15e)-18-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-1-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O5 (616.4127526)


   

(3ar,3br,9ar,9bs,11ar)-1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(3ar,3br,9ar,9bs,11ar)-1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.386145)


   

(6r,9r,10e)-2,6,10,14-tetramethyl-9-[(3r)-3-methylpent-4-en-1-yl]pentadeca-2,10-diene

(6r,9r,10e)-2,6,10,14-tetramethyl-9-[(3r)-3-methylpent-4-en-1-yl]pentadeca-2,10-diene

C25H46 (346.3599316)


   

(2e,4e,6e,8e,10e,12e)-15-[(1s,4s,6s)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-4,9,13-trimethyl-14-oxopentadeca-2,4,6,8,10,12-hexaenal

(2e,4e,6e,8e,10e,12e)-15-[(1s,4s,6s)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-4,9,13-trimethyl-14-oxopentadeca-2,4,6,8,10,12-hexaenal

C27H36O4 (424.2613456)


   

(2s)-2-[(6z,9z,12z,15z)-octadeca-6,9,12,15-tetraenoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (3z,6z,9z,12z,15z)-octadeca-3,6,9,12,15-pentaenoate

(2s)-2-[(6z,9z,12z,15z)-octadeca-6,9,12,15-tetraenoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (3z,6z,9z,12z,15z)-octadeca-3,6,9,12,15-pentaenoate

C45H68O10 (768.4812228000001)


   

(2s)-2-(octadeca-6,9,12,15-tetraenoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-3,6,9,12,15-pentaenoate

(2s)-2-(octadeca-6,9,12,15-tetraenoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-3,6,9,12,15-pentaenoate

C45H68O10 (768.4812228000001)


   

(7s,10s)-2,10-dimethyl-6-methylidene-7-[(3r)-3-methylpent-4-en-1-yl]pentadecane

(7s,10s)-2,10-dimethyl-6-methylidene-7-[(3r)-3-methylpent-4-en-1-yl]pentadecane

C24H46 (334.3599316)


   

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H54O2 (566.4123584)


   

2,6,14-trimethyl-10-methylidene-9-(3-methylpent-4-en-1-yl)pentadeca-2,6,13-triene

2,6,14-trimethyl-10-methylidene-9-(3-methylpent-4-en-1-yl)pentadeca-2,6,13-triene

C25H42 (342.3286332)


   

(5e,7r,9e)-2,6,10-trimethyl-7-[(3r)-3-methylpent-4-en-1-yl]pentadeca-5,9-diene

(5e,7r,9e)-2,6,10-trimethyl-7-[(3r)-3-methylpent-4-en-1-yl]pentadeca-5,9-diene

C24H44 (332.3442824)


   

5-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-phenylpyrrol-2-one

5-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-phenylpyrrol-2-one

C16H10N2O5 (310.058969)


   

(2s)-2-{[(2r)-5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene]amino}-3-{[(2s)-2-{[(2r)-5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene]amino}-3-hydroxypropanoyl]oxy}propanoic acid

(2s)-2-{[(2r)-5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene]amino}-3-{[(2s)-2-{[(2r)-5-carbamimidamido-2-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}-1-hydroxypentylidene]amino}-3-hydroxypropanoyl]oxy}propanoic acid

C32H44N10O13 (776.3089174)


   

(5e,7r,9e,13e)-2,6,10-trimethyl-7-[(3r)-3-methylpent-4-en-1-yl]pentadeca-2,5,9,13-tetraene

(5e,7r,9e,13e)-2,6,10-trimethyl-7-[(3r)-3-methylpent-4-en-1-yl]pentadeca-2,5,9,13-tetraene

C24H40 (328.31298400000003)


   

(6e,9e,10r)-2,6,10,14-tetramethyl-9-[(3s)-3-methylpent-4-en-1-ylidene]pentadeca-2,6,13-triene

(6e,9e,10r)-2,6,10,14-tetramethyl-9-[(3s)-3-methylpent-4-en-1-ylidene]pentadeca-2,6,13-triene

C25H42 (342.3286332)


   

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H46O (398.3548466)


   

3-(1h-indol-3-yl)-1'h-[3,3'-biindol]-2-ol

3-(1h-indol-3-yl)-1'h-[3,3'-biindol]-2-ol

C24H17N3O (363.1371552)


   

5-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-(4-hydroxyphenyl)pyrrol-2-one

5-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-(4-hydroxyphenyl)pyrrol-2-one

C16H10N2O6 (326.05388400000004)


   

2-[(1,3-dihydroxy-2-{[1-hydroxy-2-({1-hydroxy-2-[(1-hydroxydodecylidene)amino]-5-(n-hydroxyacetamido)pentylidene}amino)-5-(n-hydroxyacetamido)pentylidene]amino}propylidene)amino]-5-(n-hydroxyacetamido)pentanoic acid

2-[(1,3-dihydroxy-2-{[1-hydroxy-2-({1-hydroxy-2-[(1-hydroxydodecylidene)amino]-5-(n-hydroxyacetamido)pentylidene}amino)-5-(n-hydroxyacetamido)pentylidene]amino}propylidene)amino]-5-(n-hydroxyacetamido)pentanoic acid

C36H65N7O13 (803.464012)


   
   

2,6,14-trimethyl-10-methylidene-9-(3-methylpent-4-en-1-yl)pentadeca-2,6-diene

2,6,14-trimethyl-10-methylidene-9-(3-methylpent-4-en-1-yl)pentadeca-2,6-diene

C25H44 (344.3442824)


   

(2s)-2-[(6z,9z,12z)-hexadeca-6,9,12-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (5z,8z,11z,14z,17z)-icosa-5,8,11,14,17-pentaenoate

(2s)-2-[(6z,9z,12z)-hexadeca-6,9,12-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (5z,8z,11z,14z,17z)-icosa-5,8,11,14,17-pentaenoate

C45H70O10 (770.496872)


   

2,6,10,14-tetramethyl-7-(3-methylpent-4-en-1-yl)pentadeca-5,9-diene

2,6,10,14-tetramethyl-7-(3-methylpent-4-en-1-yl)pentadeca-5,9-diene

C25H46 (346.3599316)


   

(3s,6r,9s,12s,15r)-3-[(2s)-butan-2-yl]-5,8,11,14,17-pentahydroxy-9-[(1r)-1-hydroxyethyl]-12-(hydroxymethyl)-6,15-bis(2-methylpropyl)-19-[(2z)-non-2-en-1-yl]-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-2-one

(3s,6r,9s,12s,15r)-3-[(2s)-butan-2-yl]-5,8,11,14,17-pentahydroxy-9-[(1r)-1-hydroxyethyl]-12-(hydroxymethyl)-6,15-bis(2-methylpropyl)-19-[(2z)-non-2-en-1-yl]-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-2-one

C37H65N5O9 (723.478204)


   

(5e,7s,10s)-2,6,10,14-tetramethyl-7-[(3r)-3-methylpent-4-en-1-yl]pentadec-5-ene

(5e,7s,10s)-2,6,10,14-tetramethyl-7-[(3r)-3-methylpent-4-en-1-yl]pentadec-5-ene

C25H48 (348.37558079999997)


   

(6e,9r,10e)-2,6,10,14-tetramethyl-9-[(3r)-3-methylpent-4-en-1-yl]pentadeca-2,6,10-triene

(6e,9r,10e)-2,6,10,14-tetramethyl-9-[(3r)-3-methylpent-4-en-1-yl]pentadeca-2,6,10-triene

C25H44 (344.3442824)


   

2,6,10-trimethyl-7-(3-methylpent-4-en-1-yl)pentadeca-2,5,9,13-tetraene

2,6,10-trimethyl-7-(3-methylpent-4-en-1-yl)pentadeca-2,5,9,13-tetraene

C24H40 (328.31298400000003)


   

(6e,9s)-2,6,14-trimethyl-10-methylidene-9-[(3s)-3-methylpent-4-en-1-yl]pentadeca-2,6,13-triene

(6e,9s)-2,6,14-trimethyl-10-methylidene-9-[(3s)-3-methylpent-4-en-1-yl]pentadeca-2,6,13-triene

C25H42 (342.3286332)


   

(6e,9r)-2,6,14-trimethyl-10-methylidene-9-[(3r)-3-methylpent-4-en-1-yl]pentadec-6-ene

(6e,9r)-2,6,14-trimethyl-10-methylidene-9-[(3r)-3-methylpent-4-en-1-yl]pentadec-6-ene

C25H46 (346.3599316)


   

2,6,10,14-tetramethyl-7-(3-methylpent-4-en-1-yl)pentadec-5-ene

2,6,10,14-tetramethyl-7-(3-methylpent-4-en-1-yl)pentadec-5-ene

C25H48 (348.37558079999997)


   

5-hydroxy-4-(4-hydroxy-3-nitrophenyl)-3-(1h-indol-3-yl)pyrrol-2-one

5-hydroxy-4-(4-hydroxy-3-nitrophenyl)-3-(1h-indol-3-yl)pyrrol-2-one

C18H11N3O5 (349.0698676)


   

(6s,7s,10r)-2,6,10,14-tetramethyl-7-[(3r)-3-methylpentyl]pentadecane

(6s,7s,10r)-2,6,10,14-tetramethyl-7-[(3r)-3-methylpentyl]pentadecane

C25H52 (352.4068792)


   

(1r,5r,7s)-7-pentyl-6-oxa-2,4-diazabicyclo[3.2.2]nonan-3-imine

(1r,5r,7s)-7-pentyl-6-oxa-2,4-diazabicyclo[3.2.2]nonan-3-imine

C11H21N3O (211.1684536)


   

2-({1,3-dihydroxy-2-[(1-hydroxy-2-{[1-hydroxy-5-(n-hydroxyacetamido)-2-{[(7z)-1-hydroxytetradec-7-en-1-ylidene]amino}pentylidene]amino}-5-(n-hydroxyacetamido)pentylidene)amino]propylidene}amino)-5-(n-hydroxyacetamido)pentanoic acid

2-({1,3-dihydroxy-2-[(1-hydroxy-2-{[1-hydroxy-5-(n-hydroxyacetamido)-2-{[(7z)-1-hydroxytetradec-7-en-1-ylidene]amino}pentylidene]amino}-5-(n-hydroxyacetamido)pentylidene)amino]propylidene}amino)-5-(n-hydroxyacetamido)pentanoic acid

C38H67N7O13 (829.4796612)


   

4-(4-hydroxy-3-nitrophenyl)-5-nitroso-3-phenyl-1h-pyrrol-2-ol

4-(4-hydroxy-3-nitrophenyl)-5-nitroso-3-phenyl-1h-pyrrol-2-ol

C16H11N3O5 (325.0698676)


   

2-(octadeca-6,9,12,15-tetraenoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-3,6,9,12,15-pentaenoate

2-(octadeca-6,9,12,15-tetraenoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-3,6,9,12,15-pentaenoate

C45H68O10 (768.4812228000001)


   

(6e,9r)-2,6,14-trimethyl-10-methylidene-9-[(3r)-3-methylpent-4-en-1-yl]pentadeca-2,6-diene

(6e,9r)-2,6,14-trimethyl-10-methylidene-9-[(3r)-3-methylpent-4-en-1-yl]pentadeca-2,6-diene

C25H44 (344.3442824)