Diadinoxanthin (BioDeep_00000013131)
Secondary id: BioDeep_00000276603
PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C40H54O3 (582.4073)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 6.58%
分子结构信息
SMILES: C1C(C)(C)[C@@]2(O[C@]2(C)C[C@H]1O)/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C#CC1=C(C)C[C@@H](O)CC1(C)C
InChI: InChI=1S/C40H54O3/c1-29(17-13-19-31(3)21-22-36-33(5)25-34(41)26-37(36,6)7)15-11-12-16-30(2)18-14-20-32(4)23-24-40-38(8,9)27-35(42)28-39(40,10)43-40/h11-20,23-24,34-35,41-42H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,24-23+,29-15+,30-16+,31-19+,32-20+/t34-,35+,39+,40-/m1/s1
描述信息
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
同义名列表
7 个代谢物同义名
Diadinoxanthin; (3S,5R,6S,3R)-5,6-Epoxy-7,8-didehydro-5,6-dihydro-beta,beta-caroten-3,3-diol; Diadinoxanthin A; (3S,3R,5R,6S)-7,8-Didehydro-5,6-epoxy-5,6-dihydro-beta,beta-carotene-3,3-diol; (3S,3R,5S,6R)-7,8-Didehydro-5,6-epoxy-5,6-dihydro-beta,beta-carotene-3,3-diol; Diadinoxanthin B; Diadinoxanthin
数据库引用编号
13 个数据库交叉引用编号
- ChEBI: CHEBI:177613
- KEGG: C19921
- PubChem: 6449888
- Metlin: METLIN73431
- LipidMAPS: LMPR01070719
- KNApSAcK: C00022941
- KNApSAcK: C00022942
- CAS: 18457-54-0
- CAS: 280774-91-6
- PMhub: MS000027531
- PubChem: 135626387
- KNApSAcK: 177613
- LOTUS: LTS0158400
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
2 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- diadinoxanthin and fucoxanthin biosynthesis:
acetyl-CoA + fucoxanthinol ⟶ coenzyme A + fucoxanthin
- diadinoxanthin and diatoxanthin interconversion:
H+ + NADPH + O2 + diatoxanthin ⟶ H2O + NADP+ + diadinoxanthin
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
108 个相关的物种来源信息
- 186623 - Actinopteri: LTS0158400
- 7898 - Actinopterygii: LTS0158400
- 33852 - Bacillariaceae: LTS0158400
- 33849 - Bacillariophyceae: LTS0158400
- 2836 - Bacillariophyta: LTS0158400
- 314015 - Bathygobius soporator: 10.1021/NP990580H
- 6544 - Bivalvia: LTS0158400
- 66919 - Capsalidae: LTS0158400
- 658124 - Chattonellaceae: LTS0158400
- 7711 - Chordata: LTS0158400
- 2825 - Chrysophyceae: LTS0158400
- 45948 - Corbicula: LTS0158400
- 141464 - Corbicula japonica: 10.1021/NP058053N
- 141464 - Corbicula japonica: LTS0158400
- 33836 - Coscinodiscophyceae: LTS0158400
- 1176409 - Cyrenidae: LTS0158400
- 39119 - Dictyochophyceae: LTS0158400
- 2864 - Dinophyceae: LTS0158400
- 3038 - Euglena: LTS0158400
- 3039 - Euglena gracilis: 10.1021/NP049892X
- 3039 - Euglena gracilis: LTS0158400
- 130315 - Euglena sanguinea: 10.1016/0305-1978(93)90088-9
- 130315 - Euglena sanguinea: LTS0158400
- 3040 - Euglena viridis: 10.1016/0031-9422(88)80213-9
- 3040 - Euglena viridis: LTS0158400
- 1131320 - Euglenaceae: LTS0158400
- 3035 - Euglenida: LTS0158400
- 2704141 - Euglenophyceae: LTS0158400
- 33682 - Euglenozoa: LTS0158400
- 2759 - Eukaryota: LTS0158400
- 73024 - Eutreptiella: LTS0158400
- 73025 - Eutreptiella gymnastica:
- 73025 - Eutreptiella gymnastica: 10.1016/S0031-9422(00)94529-1
- 73025 - Eutreptiella gymnastica: 10.1016/S0031-9422(82)85046-2
- 73025 - Eutreptiella gymnastica: LTS0158400
- 33853 - Fragilariophyceae: LTS0158400
- 8220 - Gobiidae: LTS0158400
- 45204 - Gobius: LTS0158400
- 210452 - Grammatophora: LTS0158400
- 210454 - Grammatophora oceanica: 10.1016/0305-1978(88)90067-1
- 210454 - Grammatophora oceanica: LTS0158400
- 1543679 - Grammatophoraceae: LTS0158400
- 66801 - Gymnodiniaceae: LTS0158400
- 2955 - Gymnodinium: LTS0158400
- 39447 - Gymnodinium catenatum: 10.1111/J.0022-3646.1991.00591.X
- 39447 - Gymnodinium catenatum: LTS0158400
- 60594 - Gyrodinium:
- 60594 - Gyrodinium: 10.1111/J.1529-8817.1979.TB00719.X
- 60594 - Gyrodinium: 10.1111/J.1529-8817.1979.TB04411.X
- 60594 - Gyrodinium: LTS0158400
- 2608109 - Haptista: LTS0158400
- 2830 - Haptophyta: LTS0158400
- 2828 - Heterosigma: LTS0158400
- 2829 - Heterosigma akashiwo: 10.1016/0305-1978(84)90065-6
- 2829 - Heterosigma akashiwo: LTS0158400
- 589449 - Mediophyceae: LTS0158400
- 74490 - Meretrix: LTS0158400
- 311198 - Meretrix petechialis: 10.1021/JF1006243
- 311198 - Meretrix petechialis: LTS0158400
- 33208 - Metazoa: LTS0158400
- 6447 - Mollusca: LTS0158400
- 37945 - Monogenea: LTS0158400
- 50949 - Navicula: LTS0158400
- 67474 - Naviculaceae: LTS0158400
- 2857 - Nitzschia: LTS0158400
- 651811 - Nitzschia: 10.1016/0305-1978(88)90067-1
- 2696291 - Ochrophyta: LTS0158400
- 35678 - Pelagococcus: LTS0158400
- 35679 - Pelagococcus subviridis: 10.1016/0031-9422(89)80345-0
- 35679 - Pelagococcus subviridis: LTS0158400
- 35675 - Pelagophyceae: LTS0158400
- 418920 - Phaeocystaceae: LTS0158400
- 33656 - Phaeocystis: 10.1016/0305-1978(88)90042-7
- 33656 - Phaeocystis: LTS0158400
- 38749 - Phaeodactylaceae: LTS0158400
- 2849 - Phaeodactylum: LTS0158400
- 2850 - Phaeodactylum tricornutum: 10.1016/0305-1978(88)90067-1
- 2850 - Phaeodactylum tricornutum: LTS0158400
- 6157 - Platyhelminthes: LTS0158400
- 2608131 - Prymnesiophyceae: LTS0158400
- 38410 - Raphidophyceae: LTS0158400
- 63457 - Rhinogobius: LTS0158400
- 933223 - Rhinogobius brunneus: 10.1021/NP990580H
- 933223 - Rhinogobius brunneus: LTS0158400
- 2842 - Skeletonema: LTS0158400
- 2843 - Skeletonema costatum: 10.1016/0305-1978(88)90067-1
- 2843 - Skeletonema costatum: LTS0158400
- 216823 - Skeletonema menzelii: 10.1016/0305-1978(88)90067-1
- 216823 - Skeletonema menzelii: LTS0158400
- 33848 - Skeletonemataceae: LTS0158400
- 210450 - Striatellaceae: LTS0158400
- 32443 - Teleostei: LTS0158400
- 35127 - Thalassiosira: LTS0158400
- 49261 - Thalassiosira eccentrica: 10.1016/0305-1978(88)90067-1
- 49261 - Thalassiosira eccentrica: LTS0158400
- 420259 - Thalassiosira gravida: 10.1016/0305-1978(88)90067-1
- 159749 - Thalassiosira oceanica: 10.1016/0305-1978(88)90067-1
- 159749 - Thalassiosira oceanica: LTS0158400
- 35128 - Thalassiosira pseudonana: 10.1016/0305-1978(88)90067-1
- 35128 - Thalassiosira pseudonana: LTS0158400
- 49265 - Thalassiosira rotula: 10.1016/0305-1978(88)90067-1
- 49265 - Thalassiosira rotula: LTS0158400
- 29202 - Thalassiosiraceae: LTS0158400
- 2922 - Thoracosphaera: LTS0158400
- 2923 - Thoracosphaera heimii: 10.1016/0305-1978(90)90002-W
- 2923 - Thoracosphaera heimii: LTS0158400
- 1691972 - Thoracosphaeraceae: LTS0158400
- 6592 - Veneridae: LTS0158400
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Reimund Goss, Daniela Volke, Lina Emilia Werner, Ronja Kunz, Marcel Kansy, Ralf Hoffmann, Christian Wilhelm. Isolation of fucoxanthin chlorophyll protein complexes of the centric diatom Thalassiosira pseudonana associated with the xanthophyll cycle enzyme diadinoxanthin de-epoxidase.
IUBMB life.
2023 Jan; 75(1):66-76. doi:
10.1002/iub.2650
. [PMID: 35557488] - Jochen M Buck, Peter G Kroth, Bernard Lepetit. Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum.
The Plant journal : for cell and molecular biology.
2021 12; 108(6):1721-1734. doi:
10.1111/tpj.15539
. [PMID: 34651379] - Yuri Tanno, Shota Kato, Senji Takahashi, Shun Tamaki, Shinichi Takaichi, Yutaka Kodama, Kintake Sonoike, Tomoko Shinomura. Light dependent accumulation of β-carotene enhances photo-acclimation of Euglena gracilis.
Journal of photochemistry and photobiology. B, Biology.
2020 Aug; 209(?):111950. doi:
10.1016/j.jphotobiol.2020.111950
. [PMID: 32682285] - Monika Olchawa-Pajor, Monika Bojko, Wojciech Strzałka, Kazimierz Strzałka, Dariusz Latowski. Violaxanthin conversion by recombinant diatom and plant de-epoxidases, expressed in Escherichia coli - comparative analysis.
Acta biochimica Polonica.
2019 Jul; 66(3):249-255. doi:
10.18388/abp.2019_2831
. [PMID: 31279328] - Yanyan Su. The effect of different light regimes on pigments in Coscinodiscus granii.
Photosynthesis research.
2019 Jun; 140(3):301-310. doi:
10.1007/s11120-018-0608-7
. [PMID: 30478709] - Monika Bojko, Monika Olchawa-Pajor, Reimund Goss, Susann Schaller-Laudel, Kazimierz Strzałka, Dariusz Latowski. Diadinoxanthin de-epoxidation as important factor in the short-term stabilization of diatom photosynthetic membranes exposed to different temperatures.
Plant, cell & environment.
2019 04; 42(4):1270-1286. doi:
10.1111/pce.13469
. [PMID: 30362127] - Ulrike Eilers, Lars Dietzel, Jürgen Breitenbach, Claudia Büchel, Gerhard Sandmann. Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum.
Journal of plant physiology.
2016 Mar; 192(?):64-70. doi:
10.1016/j.jplph.2016.01.006
. [PMID: 26851888] - Wiktor Tokarek, Stanisław Listwan, Joanna Pagacz, Piotr Leśniak, Dariusz Latowski. Column chromatography as a useful step in purification of diatom pigments.
Acta biochimica Polonica.
2016; 63(3):443-7. doi:
10.18388/abp.2016_1369
. [PMID: 27486920] - Susann Schaller-Laudel, Daniela Volke, Matthias Redlich, Marcel Kansy, Ralf Hoffmann, Christian Wilhelm, Reimund Goss. The diadinoxanthin diatoxanthin cycle induces structural rearrangements of the isolated FCP antenna complexes of the pennate diatom Phaeodactylum tricornutum.
Plant physiology and biochemistry : PPB.
2015 Nov; 96(?):364-76. doi:
10.1016/j.plaphy.2015.09.002
. [PMID: 26368016] - Monika Bojko, Monika Olchawa-Pajor, Urszula Tuleja, Paulina Kuczyńska, Wojciech Strzałka, Dariusz Latowski, Kazimierz Strzałka. Expression of three diadinoxanthin de-epoxidase genes of Phaeodacylum tricornutum in Escherichia coli Origami b and BL21 strain.
Acta biochimica Polonica.
2013; 60(4):857-60. doi:
. [PMID: 24432346]
- Hongyan Wu, Suzanne Roy, Meriem Alami, Beverley R Green, Douglas A Campbell. Photosystem II photoinactivation, repair, and protection in marine centric diatoms.
Plant physiology.
2012 Sep; 160(1):464-76. doi:
10.1104/pp.112.203067
. [PMID: 22829321] - Dariusz Latowski, Reimund Goss, Monika Bojko, Kazimierz Strzałka. Violaxanthin and diadinoxanthin de-epoxidation in various model lipid systems.
Acta biochimica Polonica.
2012; 59(1):101-3. doi:
. [PMID: 22428134]
- Bernard Lepetit, Daniela Volke, Matthias Gilbert, Christian Wilhelm, Reimund Goss. Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms.
Plant physiology.
2010 Dec; 154(4):1905-20. doi:
10.1104/pp.110.166454
. [PMID: 20935178] - Reimund Goss, Torsten Jakob. Regulation and function of xanthophyll cycle-dependent photoprotection in algae.
Photosynthesis research.
2010 Nov; 106(1-2):103-22. doi:
10.1007/s11120-010-9536-x
. [PMID: 20224940] - Reimund Goss, Jana Nerlich, Bernard Lepetit, Susann Schaller, Astrid Vieler, Christian Wilhelm. The lipid dependence of diadinoxanthin de-epoxidation presents new evidence for a macrodomain organization of the diatom thylakoid membrane.
Journal of plant physiology.
2009 Nov; 166(17):1839-54. doi:
10.1016/j.jplph.2009.05.017
. [PMID: 19604599] - Irina Grouneva, Torsten Jakob, Christian Wilhelm, Reimund Goss. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana.
Plant & cell physiology.
2008 Aug; 49(8):1217-25. doi:
10.1093/pcp/pcn097
. [PMID: 18587148] - Reimund Goss, Dariusz Latowski, Joanna Grzyb, Astrid Vieler, Martin Lohr, Christian Wilhelm, Kazimierz Strzalka. Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane.
Biochimica et biophysica acta.
2007 Jan; 1768(1):67-75. doi:
10.1016/j.bbamem.2006.06.006
. [PMID: 16843433] - Alexander A Venn, Michael A Wilson, Henry G Trapido-Rosenthal, Brendan J Keely, Angela E Douglas. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium.
Plant, cell & environment.
2006 Dec; 29(12):2133-42. doi:
10.1111/j.1365-3040.2006.001587.x
. [PMID: 17081247] - Reimund Goss, Elizabeth Ann Pinto, Christian Wilhelm, Michael Richter. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae.
Journal of plant physiology.
2006 Oct; 163(10):1008-21. doi:
10.1016/j.jplph.2005.09.008
. [PMID: 16971213] - Christian Wilhelm, Claudia Büchel, Joachim Fisahn, Reimund Goss, Torsten Jakob, Julie Laroche, Johann Lavaud, Martin Lohr, Ulf Riebesell, Katja Stehfest, Klaus Valentin, Peter G Kroth. The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae.
Protist.
2006 Jun; 157(2):91-124. doi:
10.1016/j.protis.2006.02.003
. [PMID: 16621693] - Reimund Goss, Martin Lohr, Dariusz Latowski, Joanna Grzyb, Astrid Vieler, Christian Wilhelm, Kazimierz Strzalka. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation.
Biochemistry.
2005 Mar; 44(10):4028-36. doi:
10.1021/bi047464k
. [PMID: 15751979] - Johann Lavaud, Bernard Rousseau, Anne-Lise Etienne. Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms.
Biochemistry.
2003 May; 42(19):5802-8. doi:
10.1021/bi027112i
. [PMID: 12741838] - Heiko Mewes, Michael Richter. Supplementary ultraviolet-B radiation induces a rapid reversal of the diadinoxanthin cycle in the strong light-exposed diatom Phaeodactylum tricornutum.
Plant physiology.
2002 Nov; 130(3):1527-35. doi:
10.1104/pp.006775
. [PMID: 12428017] - Johann Lavaud, Bernard Rousseau, Hans J van Gorkom, Anne-Lise Etienne. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum.
Plant physiology.
2002 Jul; 129(3):1398-406. doi:
10.1104/pp.002014
. [PMID: 12114593] - M Bertrand, B Schoefs, P Siffel, K Rohacek, I Molnar. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum.
FEBS letters.
2001 Nov; 508(1):153-6. doi:
10.1016/s0014-5793(01)03050-2
. [PMID: 11707287]