NCBI Taxonomy: 235892
Aleuritideae (ncbi_taxid: 235892)
found 164 associated metabolites at tribe taxonomy rank level.
Ancestor: Crotonoideae
Child Taxonomies: Garcia, Karima, Cavacoa, Grossera, Tannodia, Vernicia, Aleurites, Reutealis, Neoholstia, Sandwithia, Pantadenia, Crotonogyne, Cyrtogonone, Neoboutonia, Manniophyton
Gallic acid
Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].
Scoparone
Scoparone is a member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. It has a role as a plant metabolite, an anti-inflammatory agent, an antilipemic drug, an immunosuppressive agent, an antihypertensive agent and an anti-allergic agent. It is a member of coumarins and an aromatic ether. It is functionally related to an esculetin. Scoparone is a natural product found in Haplophyllum ramosissimum, Haplophyllum thesioides, and other organisms with data available. A member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Scoparone is found in anise. Scoparone is found in several citrus oil D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Found in several citrus oils Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].
Campesterol
Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
Oleanolic acid
Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.
Squalene
Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].
Amyrin
Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].
Ellagic acid
Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.
(+)-Syringaresinol
(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.
5,6,7-Trimethoxycoumarin
A member of the class of coumarins that is coumarin substituted by methoxy groups at positions 5, 6 and 7.
Hentriacontane
Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.
Croton factor F1
D009676 - Noxae > D002273 - Carcinogens > D010703 - Phorbol Esters
Elemicin
Elemicin is an olefinic compound. Elemicin is a natural product found in Anemopsis californica, Asarum celsum, and other organisms with data available. Constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is found in many foods, some of which are nutmeg, carrot, parsley, and tarragon. Elemicin is found in carrot. Elemicin is a constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].
Lirioresinol A
Syringaresinol is a lignan that is 7,9:7,9-diepoxylignane substituted by hydroxy groups at positions 4 and 4 and methoxy groups at positions 3, 3, 5 and 5 respectively. It has a role as a plant metabolite. It is a lignan, a polyphenol, an aromatic ether, a furofuran and a polyether. Syringaresinol is a natural product found in Dracaena draco, Ficus septica, and other organisms with data available. A lignan that is 7,9:7,9-diepoxylignane substituted by hydroxy groups at positions 4 and 4 and methoxy groups at positions 3, 3, 5 and 5 respectively. Isolated from Artemisia absinthium (wormwood). Lirioresinol A is found in alcoholic beverages and herbs and spices. Lirioresinol A is found in alcoholic beverages. Lirioresinol A is isolated from Artemisia absinthium (wormwood).
Methyl gallate
Methyl gallate, also known as methyl 3 or methyl galloic acid, is a member of the class of compounds known as galloyl esters. Galloyl esters are organic compounds that contain an ester derivative of 3,4,5-trihydroxybenzoic acid. Methyl gallate is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Methyl gallate can be found in peach and pomegranate, which makes methyl gallate a potential biomarker for the consumption of these food products. Methyl gallate is a phenolic compound. It is the methyl ester of gallic acid . Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.
7-O-Methylapigenin 6-C-beta-D-glucopyranoside
Methyl gallate
Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.
β-Amyrin
Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].
sitosterol
A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
Squalene
Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].
1,7-Bis(hydroxymethyl)-9-methoxyphenanthrene-3,6-diol
Syringaresinol
(+)-syringaresinol is the (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol. It has a role as an antineoplastic agent. It is an enantiomer of a (-)-syringaresinol. (+)-Syringaresinol is a natural product found in Dracaena draco, Diospyros eriantha, and other organisms with data available. See also: Acai fruit pulp (part of). The (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol.
Campesterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
Scoparone
Annotation level-1 D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].
Ellagic Acid
Origin: Plant, Ellagic acids, Benzopyranoids, Pyrans Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.
syringaresinol
Elemicin
Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].
GALOP
C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].
acetyl aleuritolic acid
A pentacyclic triterpenoid isolated from the leaves of Garcia parviflora.
1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-5,5a,7-triol
(1r,2s,5s,6r,7r,11r,12r,13r,14r)-2,6,13,14-tetrahydroxy-13-(hydroxymethyl)-3,7-dimethyl-15-oxatetracyclo[10.2.1.0¹,⁵.0⁶,¹¹]pentadec-3-en-9-one
1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl pentadecanoate
(1s,3s,7s,8s,9r,11s,12s,14s,15r,16r)-15-[(2s,3r,6r)-3,7-dihydroxy-6-methyl-5-methylidene-4-oxoheptan-2-yl]-9-hydroxy-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-14-yl acetate
(7r,8s,26r,28s,29s)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11,13,15,17(22),18,20,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate
(2s,3r,6r)-2-[(2r,4s,5r,7s,8s,11s,12s,14s,15r,16r)-14-(acetyloxy)-5-hydroxy-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0²,⁴.0²,⁸.0¹²,¹⁶]octadec-1(18)-en-15-yl]-7-hydroxy-6-methyl-5-methylidene-4-oxoheptan-3-yl acetate
[(1r,2r,6s,7s,8r,10s,11s,12r,14s,16r,18r)-6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-undecyl-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate
(1s,3s,7s,8s,11s,12s,14s,15r,16r)-15-[(2s,3r)-3-hydroxy-6-methyl-5-methylidene-4-oxoheptan-2-yl]-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-14-yl acetate
5,5a,7b,9a,12,12,13b,15a-octamethyl-tetradecahydro-1h-chryseno[2,1-c]oxepin-3-one
2-({[(10s,11r,12r,13r,15r)-3,4,5,11,12,21,22,23-octahydroxy-8,18-dioxo-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-13-yl]oxy}methyl)prop-2-enenitrile
1,6,14-trihydroxy-8,12-bis(hydroxymethyl)-4,12,15-trimethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl acetate
(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl (1s,3r,6s,7s,8r,11s,12s,15r,16r)-6-hydroxy-7,12,16-trimethyl-15-[(2r)-6-methyl-5-methylidene-4-oxoheptan-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate
1-hydroxy-4,4a,6b,8a,11,11,12b,14a-octamethyl-tetradecahydro-1h-picen-3-one
7β-hydroxysitosterol
{"Ingredient_id": "HBIN013115","Ingredient_name": "7\u03b2-hydroxysitosterol","Alias": "7\u03b2-hydroxy-sitosterol","Ingredient_formula": "C29H50O2","Ingredient_Smile": "CCC(CCC(C)C1CCC2C1(CCC3C2C(C=C4C3(CCC(C4)O)C)O)C)C(C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "39602;34524","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(1r,4r,5s,23r,25r,26r,32r)-10,11,12,15,16,17,32,35,36,40,40-undecahydroxy-25-(2-oxopropoxy)-3,6,21,24,27,33-hexaoxaoctacyclo[30.7.1.0¹,²⁹.0⁴,²³.0⁵,²⁶.0⁸,¹³.0¹⁴,¹⁹.0³⁴,³⁹]tetraconta-8(13),9,11,14,16,18,29,34(39),35,37-decaene-2,7,20,28,31-pentone
(3s,4r,4as,6br,8ar,12ar,12bs,14as,14bs)-3-hydroxy-4a,6b,8a,11,11,12b,14a-heptamethyl-hexadecahydropicene-4-carboxylic acid
(1s,2s,6r,10s,11r,12s,13s,14r,15r)-1,6,14-trihydroxy-8,12-bis(hydroxymethyl)-4,12,15-trimethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl acetate
3-hydroxy-4a,6b,8a,11,11,12b,14a-heptamethyl-hexadecahydropicene-4-carboxylic acid
1-(hydroxymethyl)-9-methoxy-7-methylphenanthrene-3,6-diol
2-hydroxy-6-methoxy-1,1,7-trimethyl-10,10a-dihydro-2h-phenanthrene-3,9-dione
(1s,3s,4s,7s,8s,11s,12s,14s,15r,16r)-15-[(2s,3r,6r)-3,7-dihydroxy-6-methyl-5-methylidene-4-oxoheptan-2-yl]-4-hydroxy-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-14-yl acetate
(2s,3s)-3-(4-hydroxy-3,5-dimethoxyphenyl)-2-(hydroxymethyl)-2h,3h-[1,4]dioxino[2,3-g]chromen-7-one
(2s,3r)-2-[(1s,3s,7s,8s,11s,12s,14s,15r,16r)-14-(acetyloxy)-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-15-yl]-6-methyl-5-methylidene-4-oxoheptan-3-yl acetate
(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1r,2s,4r,5s,6s,10s,11r,12r,14s,16r)-5,6,11-trihydroxy-4-(hydroxymethyl)-8,12,15,15-tetramethyl-7-oxo-3-oxapentacyclo[9.5.0.0²,⁴.0⁶,¹⁰.0¹⁴,¹⁶]hexadec-8-en-14-yl tetradecanoate
(2s,3r,6r)-2-[(1s,3s,7s,8s,11s,12s,14s,15r,16r)-14-(acetyloxy)-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-15-yl]-7-hydroxy-6-methyl-5-methylidene-4-oxoheptan-3-yl acetate
(1r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate
(2r)-6-(2h-1,3-benzodioxol-5-yl)-4,5-dimethoxy-2-(prop-1-en-2-yl)-2h,3h-furo[3,2-g]chromen-7-one
(9ar,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl (1s,3r,6s,7s,8r,11s,12s,15r,16r)-6-hydroxy-7,12,16-trimethyl-15-[(2r)-6-methyl-4-oxohept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate
(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2s,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-4,7-diol
(1r,2s,5s,6r,7s,8r,9r,12r,15r,16r)-1,5,6,7,8-pentahydroxy-8-(hydroxymethyl)-4,11,11,15-tetramethyl-10-oxatetracyclo[7.6.1.0²,⁶.0¹²,¹⁶]hexadec-3-en-13-one
4-[(dodecanoyloxy)methyl]-5,6,11-trihydroxy-8,12,15,15-tetramethyl-7-oxo-3-oxapentacyclo[9.5.0.0²,⁴.0⁶,¹⁰.0¹⁴,¹⁶]hexadec-8-en-14-yl hexadecanoate
7-(hydroxymethyl)-9-methoxy-1-methylphenanthrene-3,6-diol
[2,13,14-tris(acetyloxy)-6-hydroxy-3,7-dimethyl-9-oxo-15-oxatetracyclo[10.2.1.0¹,⁵.0⁶,¹¹]pentadec-3-en-13-yl]methyl acetate
(2r,5r,6s)-5-(acetyloxy)-6-[(1s,3s,7s,8s,11s,12s,14s,15r,16r)-14-(acetyloxy)-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-15-yl]-2-methyl-3-methylidene-4-oxoheptyl acetate
(1r,3as,3bs,5r,5ar,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-5,5a,7-triol
(1r,2s,5s,6r,7r,11r,12r,13s,14r)-2,6,13,14-tetrahydroxy-13-(hydroxymethyl)-3,7-dimethyl-15-oxatetracyclo[10.2.1.0¹,⁵.0⁶,¹¹]pentadec-3-en-9-one
(1r,7r,8s,26r,28s,29r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11,13,15,17(22),18,20,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate
(1r,3r,7s,8s,11s,12s,14s,15r,16r)-15-[(2s,3r,6r)-3,7-dihydroxy-6-methyl-5-methylidene-4-oxoheptan-2-yl]-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-14-yl acetate
13-(acetyloxy)-1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl hexadecanoate
[13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11,13,15,17(22),18,20,34(38),35-nonaen-29-yl]acetic acid
(1s,3s,7s,8s,11s,12s,14s,15r,16r)-7,12,16-trimethyl-6-oxo-15-[(2s)-1-oxopropan-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-14-yl acetate
(2r)-2,8-dihydroxy-5-methoxy-3,3,7-trimethyl-2h-cyclopenta[a]naphthalen-1-one
13-hydroxy-6,7,14-trimethoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione
5,6,11-trihydroxy-4-(hydroxymethyl)-8,12,15,15-tetramethyl-7-oxo-3-oxapentacyclo[9.5.0.0²,⁴.0⁶,¹⁰.0¹⁴,¹⁶]hexadec-8-en-14-yl tetradecanoate
(1s,2s,6r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5,9-dioxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,7-dien-14-yl hexadecanoate
2-({[(1r,4r,5s,23r,25r,26r,32r)-10,11,12,15,16,17,32,35,36,40,40-undecahydroxy-2,7,20,28,31-pentaoxo-3,6,21,24,27,33-hexaoxaoctacyclo[30.7.1.0¹,²⁹.0⁴,²³.0⁵,²⁶.0⁸,¹³.0¹⁴,¹⁹.0³⁴,³⁹]tetraconta-8(13),9,11,14,16,18,29,34(39),35,37-decaen-25-yl]oxy}methyl)prop-2-enenitrile
C38H27NO23 (865.0973832000001)
(1r,3s,4r,4ar,6as,6br,8ar,12ar,12bs,14ar,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicene-1,3-diol
(1s,2s,5s,6r,7s,8s,9r,12r,15r,16r)-1,5,6,7,8-pentahydroxy-8-(hydroxymethyl)-4,11,11,15-tetramethyl-10-oxatetracyclo[7.6.1.0²,⁶.0¹²,¹⁶]hexadec-3-en-13-one
(1s,19r,21s,22r,23r)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate
(1s,3r,6s,7s,8r,11s,12s,14s,15r,16r)-14-(acetyloxy)-6-hydroxy-15-[(2r)-7-hydroxy-6-methyl-5-methylidene-4-oxoheptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid
13-(acetyloxy)-1,6-dihydroxy-8,12-bis(hydroxymethyl)-4,12,15-trimethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl hexadecanoate
(2s,3r)-2-[(1s,3s,7s,8s,11s,12s,14s,15r,16r)-14-(acetyloxy)-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-15-yl]-6-methyl-4-oxohept-5-en-3-yl acetate
1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate
[(4r,5s,7r,25s,26r,29s,30s,31s)-13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11(16),12,14,17,19,21,34(38),35-nonaen-29-yl]acetic acid
[(1r,2r,6s,7s,8r,10s,11s,12r,14s,16r,18s)-6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-undecyl-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate
2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1r,2r,6s,7s,8r,10s,11s,12r,14r,16r,18r)-6,7-dihydroxy-8-(hydroxymethyl)-4,18-dimethyl-16-(prop-1-en-2-yl)-14-undecyl-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-5-one
(3e,4r)-4-(2h-1,3-benzodioxol-5-ylmethyl)-3-[(3,4,5-trimethoxyphenyl)methylidene]oxolan-2-one
[(5r,7r)-13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11(16),12,14,17,19,21,34(38),35-nonaen-29-yl]acetic acid
(1s,3r,6s,7s,8r,11s,12s,14s,15r,16r)-14-(acetyloxy)-6-hydroxy-15-[(2s,3r)-3-hydroxy-6-methyl-5-methylidene-4-oxoheptan-2-yl]-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid
(1s,3s,7s,8s,11s,12s,14s,15r,16r)-15-[(2s,3r)-3-hydroxy-6-methyl-4-oxohept-5-en-2-yl]-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-14-yl acetate
(1r,2s,4r,5s,6s,10s,11r,12r,14s,16r)-4-[(dodecanoyloxy)methyl]-5,6,11-trihydroxy-8,12,15,15-tetramethyl-7-oxo-3-oxapentacyclo[9.5.0.0²,⁴.0⁶,¹⁰.0¹⁴,¹⁶]hexadec-8-en-14-yl hexadecanoate
(1r,4r,4as,6br,8ar,12ar,12bs,14ar,14bs)-1-hydroxy-4,4a,6b,8a,11,11,12b,14a-octamethyl-tetradecahydro-1h-picen-3-one
2-(1-ethenyl-2,4b,6a,9,9,10b,12a-heptamethyl-dodecahydrochrysen-2-yl)propanoic acid
(1s,4r,5r,6r,8r,10s,12s,13s,16r,17s,18s,21r)-18-hydroxy-4,4',6,12,17-pentamethyl-3'-methylidene-9-oxaspiro[hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosane-8,2'-oxolane]-17-carboxylic acid
(1s,4r,5r,6s,9s,11s,12s,15s,16s,20s)-7-hydroxy-7-[(4r)-5-hydroxy-4-methyl-3-methylidenepentan-2-yl]-4,6,11,16-tetramethyl-8-oxahexacyclo[10.9.0.0¹,²⁰.0⁴,¹¹.0⁵,⁹.0¹⁵,²⁰]henicos-18-en-17-one
(1r,2r,6s,7s,8r,10s,11r,12r,14s,16r,18r)-14-heptyl-6,7-dihydroxy-8-(hydroxymethyl)-4,18-dimethyl-16-(prop-1-en-2-yl)-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-5-one
(2s,3r,6r)-2-[(1s,3s,7s,8s,9r,11s,12s,14s,15r,16r)-14-(acetyloxy)-9-hydroxy-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-15-yl]-7-hydroxy-6-methyl-5-methylidene-4-oxoheptan-3-yl acetate
10-(acetyloxy)-2,2,6b,9,9,12a,14a-heptamethyl-1,3,4,5,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydropicene-4a-carboxylic acid
(1s,3s,7s,8s,11s,12s,14s,15r,16r)-15-[(2s,3r,6r)-3,7-dihydroxy-6-methyl-5-methylidene-4-oxoheptan-2-yl]-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-14-yl acetate
(4r,4as,6as,6br,8ar,12ar,12bs,14ar,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-5,6,6a,7,8,9,10,12,12a,13,14,14b-dodecahydro-4h-picen-3-one
(2s,3r,6r)-2-[(1r,3r,7s,8s,11s,12s,14s,15r,16r)-14-(acetyloxy)-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-15-yl]-7-hydroxy-6-methyl-5-methylidene-4-oxoheptan-3-yl acetate
2-[({1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32(37),33,35-decaen-28-yl}oxy)methyl]prop-2-enenitrile
C38H27NO23 (865.0973832000001)
(2s,3r,6s)-2-[(1s,3s,7s,8s,11s,12s,14s,15r,16r)-14-(acetyloxy)-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-15-yl]-7-hydroxy-6-methyl-5-methylidene-4-oxoheptan-3-yl acetate
(1r,2s,6r,7r,11r,12r,13r,14r)-13,14-bis(acetyloxy)-6-hydroxy-3,7,13-trimethyl-9-oxo-15-oxatetracyclo[10.2.1.0¹,⁵.0⁶,¹¹]pentadec-3-en-2-yl acetate
(2r,10ar)-2-hydroxy-6-methoxy-1,1,7-trimethyl-10,10a-dihydro-2h-phenanthrene-3,9-dione
[6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-undecyl-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate
8-[(dodecanoyloxy)methyl]-1,6-dihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl hexadecanoate
(2r,3r)-3-(4-hydroxy-3,5-dimethoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-f]chromen-8-one
(1r,2s,6r,10s,11r,13s,15r)-1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl pentadecanoate
(2s,3r,6r)-2-[(1s,3s,7s,8s,11s,12s,14s,15r,16s)-14-(acetyloxy)-16-(hydroxymethyl)-7,12-dimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-15-yl]-7-hydroxy-6-methyl-5-methylidene-4-oxoheptan-3-yl acetate
(1s,2s,6r,10s,11r,12r,13s,14r,15r)-13-(acetyloxy)-1,6-dihydroxy-8,12-bis(hydroxymethyl)-4,12,15-trimethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl hexadecanoate
[(1r,7r,10r)-10,11,11-trimethyltricyclo[5.3.1.0¹,⁵]undec-4-en-4-yl]methanol
(1r,2s,6r,10s,11r,13s,15r)-1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl octanoate
(2s,3r)-3-(4-hydroxy-3,5-dimethoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-f]chromen-8-one
(3s,4r,4as,6as,6br,8ar,12ar,12bs,14as,14bs)-3-hydroxy-4a,6b,8a,11,11,12b,14a-heptamethyl-hexadecahydropicene-4-carboxylic acid
(2r,6s,7s,8r,10s,11s,12r,16r,18r)-14-heptyl-6,7-dihydroxy-8-(hydroxymethyl)-4,18-dimethyl-16-(prop-1-en-2-yl)-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-5-one
6,7-dihydroxy-8-(hydroxymethyl)-4,18-dimethyl-16-(prop-1-en-2-yl)-14-undecyl-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-5-one
1,5,6,7,8-pentahydroxy-8-(hydroxymethyl)-4,11,11,15-tetramethyl-10-oxatetracyclo[7.6.1.0²,⁶.0¹²,¹⁶]hexadec-3-en-13-one
13-(acetyloxy)-1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5,9-dioxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,7-dien-14-yl hexadecanoate
(1s,3r,7s,8s,11s,12s,14s,15r,16r)-15-[(2s,3r,6r)-3,7-dihydroxy-6-methyl-5-methylidene-4-oxoheptan-2-yl]-7,12,16-trimethyl-6-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-14-yl acetate
(2s,3r,6r)-2-[(1s,3s,7s,8s,9s,11r,12s,13s,15s,16r,17r)-15-(acetyloxy)-7,13,17-trimethyl-6-oxo-10-oxahexacyclo[10.7.0.0¹,³.0³,⁸.0⁹,¹¹.0¹³,¹⁷]nonadec-4-en-16-yl]-7-hydroxy-6-methyl-5-methylidene-4-oxoheptan-3-yl acetate
(4s,4as,6as,6br,8ar,12ar,12bs,14ar,14bs)-4-hydroxy-4,4a,6b,8a,11,11,12b,14a-octamethyl-5,6,6a,7,8,9,10,12,12a,13,14,14b-dodecahydropicen-3-one
(1r,2r,6s,7s,8r,10s,11s,12r,14s,16r,18r)-6,7-dihydroxy-8-(hydroxymethyl)-4,18-dimethyl-16-(prop-1-en-2-yl)-14-undecyl-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-5-one
2-({[(1r,7r,8s,26r,28r,29r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32(37),33,35-decaen-28-yl]oxy}methyl)prop-2-enenitrile
C38H27NO23 (865.0973832000001)