NCBI Taxonomy: 1498467

Chonemorphinae (ncbi_taxid: 1498467)

found 192 associated metabolites at subtribe taxonomy rank level.

Ancestor: Apocyneae

Child Taxonomies: Chonemorpha, Vallariopsis, Trachelospermum

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Bergenin

NCGC00346587-02_C14H16O9_Pyrano[3,2-c][2]benzopyran-6(2H)-one, 3,4,4a,10b-tetrahydro-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-, (2R,3S,4S,4aR,10bS)-

C14H16O9 (328.0794286)


Bergenin is a trihydroxybenzoic acid. It has a role as a metabolite. Bergenin is a natural product found in Ficus racemosa, Ardisia paniculata, and other organisms with data available. A natural product found in Cenostigma gardnerianum. C26170 - Protective Agent > C275 - Antioxidant Annotation level-1 Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2]. Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2].

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

(+)-taxifolin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O7 (304.05830019999996)


Taxifolin, also known as dihydroquercetin or (+)-taxifolin, is a member of the class of compounds known as flavanonols. Flavanonols are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a hydroxyl group and a ketone at the carbon C2 and C3, respectively. Taxifolin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Taxifolin can be found in a number of food items such as sweet rowanberry, arrowroot, evening primrose, and walnut, which makes taxifolin a potential biomarker for the consumption of these food products. Taxifolin is a flavanonol, a type of flavonoid . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].

   

Apigenin 7-O-beta-D-rutinoside

7-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C27H30O14 (578.163548)


Apigenin 7-o-beta-d-rutinoside, also known as rhoifolin or apigenin-7-O-rhamnoglucoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apigenin 7-o-beta-d-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 7-o-beta-d-rutinoside can be found in carrot, orange mint, and wild carrot, which makes apigenin 7-o-beta-d-rutinoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB080_Rhoifolin_pos_30eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_10eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_20eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_50eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_40eV_CB000032.txt [Raw Data] CB080_Rhoifolin_neg_50eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_10eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_20eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_40eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_30eV_000023.txt Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

   

Matairesinol

(3R,4R)-Dihydro-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-2(3H)-furanone; (-)-Matairesinol; (8R,8R)-(-)-Matairesinol

C20H22O6 (358.1416312)


Matairesinol belongs to the class of organic compounds known as dibenzylbutyrolactone lignans. These are lignan compounds containing a 3,4-dibenzyloxolan-2-one moiety. Matairesinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, matairesinol is found, on average, in the highest concentration in a few different foods such as sesame, burdocks, and flaxseeds, and in a lower concentration in oats, asparagus, and poppies. Matairesinol has also been detected, but not quantified in, several different foods, such as silver lindens, tamarinds, cherry tomato, skunk currants, and fireweeds. This could make matairesinol a potential biomarker for the consumption of these foods. Matairesinol is composed of gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). (-)-matairesinol is a lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). It has a role as a phytoestrogen, a plant metabolite, an angiogenesis inhibitor and an anti-asthmatic agent. It is a polyphenol, a lignan and a gamma-lactone. Matairesinol is a natural product found in Crossosoma bigelovii, Brassica oleracea var. sabauda, and other organisms with data available. See also: Arctium lappa fruit (part of); Pumpkin Seed (part of). Matairesinol is a plant lignan. It occurs with secoisolariciresinol in numerous foods such as oil seeds, whole grains, vegetables, and fruits. (-)-Matairesinol is found in many foods, some of which are caraway, pecan nut, cereals and cereal products, and longan. A lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

(-)-Arctigenin

(3R,4R)-4-[(3,4-DIMETHOXYPHENYL)METHYL]DIHYDRO-3-[(4-HYDROXY-3-METHOXYPHENYL)METHYL]-2(3H)-FURANONE;2(3H)-FURANONE,4-[(3,4-DIMETHOXYPHENYL)METHYL]DIHYDRO-3-[(4-HYDROXY-3-METHOXYPHENYL)METHYL]-,(3R,4R);(-)-ARCTIGENIN;ARCTIGENIN;ARCTIGENIN(P)

C21H24O6 (372.1572804)


(-)-Arctigenin is found in burdock. (-)-Arctigenin is isolated from Cnicus benedictus, Forsythia viridissima, Arctium lappa, Ipomoea cairica and others (CCD).Arctigenin is a lignan found in certain plants of the Asteraceae , including the Greater burdock (Arctium lappa) and Saussurea heteromalla. It has shown antiviral and anticancer effects. It is the aglycone of arctiin. (Wikipedia (-)-Arctigenin is a lignan. Arctigenin is a natural product found in Centaurea cineraria, Forsythia suspensa, and other organisms with data available. See also: Arctium lappa Root (part of); Arctium lappa fruit (part of); Pumpkin Seed (part of) ... View More ... Isolated from Cnicus benedictus, Forsythia viridissima, Arctium lappa, Ipomoea cairica and others (CCD) Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].

   

Norathyriol

1,3,6,7-TETRAHYDROXY-9H-XANTHEN-9-ONE

C13H8O6 (260.0320868)


A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

Trachelogenin

2(3H)-FURANONE, 4-((3,4-DIMETHOXYPHENYL)METHYL)DIHYDRO-3-HYDROXY-3-((4-HYDROXY-3-METHOXYPHENYL)METHYL)-, (3S-CIS)-

C21H24O7 (388.1521954)


Trachelogenin is a lignan. Trachelogenin is a natural product found in Volutaria tubuliflora, Ipomoea cairica, and other organisms with data available.

   

Rhoifolin

7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one

C27H30O14 (578.163548)


Apigenin 7-O-neohesperidoside is an apigenin derivative having an alpha-(1->2)-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as a metabolite. It is a neohesperidoside, a dihydroxyflavone and a glycosyloxyflavone. It is functionally related to an apigenin. Rhoifolin is a natural product found in Ligustrum robustum, Lonicera japonica, and other organisms with data available. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

   

Rhoifolin

7-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C27H30O14 (578.163548)


Isolated from Citrus aurantium (Seville orange). Rhoifolin is found in many foods, some of which are citrus, grapefruit/pummelo hybrid, german camomile, and lemon. Rhoifolin is found in citrus. Rhoifolin is isolated from Citrus aurantium (Seville orange). Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

   

Glucodistylin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O12 (466.1111212)


Glucodistylin is a polyphenol compound found in foods of plant origin (PMID: 20428313). A polyphenol compound found in foods of plant origin (PhenolExplorer)

   

Dambonitol

(1R,2s,3S,4R,5s,6S)-4,6-dimethoxycyclohexane-1,2,3,5-tetrol

C8H16O6 (208.0946836)


Latex used for manufacture of chewing gum. Latex used for manuf. of chewing gum.

   

(7'R,8'R)-4,7'-Epoxy-3',5-dimethoxy-4',9,9'-lignanetriol 9'-glucoside

2-{[2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101014)


(7R,8R)-4,7-Epoxy-3,5-dimethoxy-4,9,9-lignanetriol 9-glucoside is found in alcoholic beverages. (7R,8R)-4,7-Epoxy-3,5-dimethoxy-4,9,9-lignanetriol 9-glucoside is isolated from Riesling wine. Isolated from Riesling wine. (7R,8R)-4,7-Epoxy-3,5-dimethoxy-4,9,9-lignanetriol 9-glucoside is found in alcoholic beverages.

   

Tracheloside

4-[(3,4-dimethoxyphenyl)methyl]-3-hydroxy-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C27H34O12 (550.2050164)


Constituent of Carthamus tinctorius (safflower). Tracheloside is found in safflower, fats and oils, and herbs and spices. Tracheloside is found in fats and oils. Tracheloside is a constituent of Carthamus tinctorius (safflower) Tracheloside is an antiestrogenic lignin. Tracheloside promotes keratinocyte proliferation through ERK1/2 stimulation. Tracheloside is a good candidate to promote wound healing[1]. Tracheloside is an antiestrogenic lignin. Tracheloside promotes keratinocyte proliferation through ERK1/2 stimulation. Tracheloside is a good candidate to promote wound healing[1].

   

(2R)-2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydrochromen-4-one

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O7 (304.05830019999996)


Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].

   

Arctiin

4-[(3,4-dimethoxyphenyl)methyl]-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C27H34O11 (534.2101014)


   

bergenin

5,6,12,14-tetrahydroxy-4-(hydroxymethyl)-13-methoxy-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(14),10,12-trien-9-one

C14H16O9 (328.0794286)


   

beta-Amyrin

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Beta-amryin, also known as B-amryin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amryin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amryin can be found in pigeon pea, which makes beta-amryin a potential biomarker for the consumption of this food product.

   

beta-Amyrin acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967092)


Beta-amyrin acetate, also known as B-amyrin acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrin acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Beta-amyrin acetate can be found in burdock and guava, which makes beta-amyrin acetate a potential biomarker for the consumption of these food products. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

l-Arctigenin

4-[(3,4-dimethoxyphenyl)methyl]-3-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C21H24O6 (372.1572804)


   

Quercetin 3-O-rhamnoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O11 (448.100557)


   

Matairesinoside

4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C26H32O11 (520.1944522)


Matairesinoside is a member of the class of compounds known as lignan glycosides. Lignan glycosides are aromatic polycyclic compounds containing a carbohydrate component glycosidically linked to a lignan moiety. They include 1-aryltetralin lactones. Matairesinoside is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Matairesinoside can be found in safflower, which makes matairesinoside a potential biomarker for the consumption of this food product. Matairesinoside is a lignan with antibacterial and antioxidant activities. Matairesinoside also shows virus-cell fusion inhibitory activity[1][2]. Matairesinoside is a lignan with antibacterial and antioxidant activities. Matairesinoside also shows virus-cell fusion inhibitory activity[1][2].

   

Trachelogenin

4-[(3,4-dimethoxyphenyl)methyl]-3-hydroxy-3-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C21H24O7 (388.1521954)


Trachelogenin is a member of the class of compounds known as dibenzylbutyrolactone lignans. Dibenzylbutyrolactone lignans are lignan compounds containing a 3,4-dibenzyloxolan-2-one moiety. Trachelogenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Trachelogenin can be found in burdock and grape wine, which makes trachelogenin a potential biomarker for the consumption of these food products.

   

Tracheloside

(3S,4S)-4-(3,4-Dimethoxybenzyl)-3-hydroxy-3-(3-methoxy-4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)benzyl)dihydrofuran-2(3H)-one

C27H34O12 (550.2050164)


Tracheloside is a glycoside and a lignan. It has a role as a metabolite. Tracheloside is a natural product found in Carthamus oxyacanthus, Trachelospermum asiaticum, and other organisms with data available. A natural product found particularly in Carthamus tinctorius and Trachelospermum. Tracheloside is an antiestrogenic lignin. Tracheloside promotes keratinocyte proliferation through ERK1/2 stimulation. Tracheloside is a good candidate to promote wound healing[1]. Tracheloside is an antiestrogenic lignin. Tracheloside promotes keratinocyte proliferation through ERK1/2 stimulation. Tracheloside is a good candidate to promote wound healing[1].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   
   

Voacangine

methyl (1S,15S,17S,18S)-17-ethyl-7-methoxy-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4(9),5,7-tetraene-1-carboxylate

C22H28N2O3 (368.20998180000004)


(-)-voacangine is a monoterpenoid indole alkaloid with formula C22H28N2O3, isolated from several plant species. It has a role as an angiogenesis inhibitor, an antineoplastic agent and a plant metabolite. It is a monoterpenoid indole alkaloid, a tertiary amino compound, a methyl ester, an organic heteropentacyclic compound and an alkaloid ester. It is a conjugate base of a (-)-voacangine(1+). Voacangine is a natural product found in Voacanga thouarsii, Voacanga schweinfurthii, and other organisms with data available. A monoterpenoid indole alkaloid with formula C22H28N2O3, isolated from several plant species.

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Methyl chlorogenate

Chlorogenic acid methyl ester

C17H20O9 (368.110727)


   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Lonicerin

7-[[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-2-(3,4-dihydroxyphenyl)-5-hydroxy-4-chromenone

C27H30O15 (594.158463)


Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2]. Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967092)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0950778)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Luteolin 7-O-glucoside

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one mono-beta-D-glucopyranoside

C21H20O11 (448.100557)


   

Coronaridine

methyl (1S,15R,17S,18S)-17-ethyl-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C21H26N2O2 (338.1994176)


(-)-coronaridine is a monoterpenoid indole alkaloid with formula C21H26N2O2. It is isolated from the flowering plant genus, Tabernaemontana. It has a role as an antileishmanial agent, an antineoplastic agent, an apoptosis inducer and a plant metabolite. It is a monoterpenoid indole alkaloid, a methyl ester, an organic heteropentacyclic compound and an alkaloid ester. It is a conjugate base of a (-)-coronaridine(1+). Coronaridine is a natural product found in Voacanga schweinfurthii, Tabernanthe iboga, and other organisms with data available. A monoterpenoid indole alkaloid with formula C21H26N2O2. It is isolated from the flowering plant genus, Tabernaemontana. Coronaridine, an iboga type alkaloid, inhibits the wnt signaling pathway by decreasing β-catenin expression[1]. Coronaridine, an iboga type alkaloid, inhibits the wnt signaling pathway by decreasing β-catenin expression[1].

   

Norathyriol

9H-Xanthen-9-one, 1,3,6,7-tetrahydroxy-

C13H8O6 (260.0320868)


Norathyriol is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7. Isolated from Garcinia mangostana and Maclura pomifera, it exhibits inhibitory activity against protein kinase C. It has a role as an antineoplastic agent, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a member of xanthones and a polyphenol. Norathyriol is a natural product found in Hypericum aucheri, Hypericum elegans, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7. Isolated from Garcinia mangostana and Maclura pomifera, it exhibits inhibitory activity against protein kinase C.

   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967092)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Rhoifolin

7-[[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-5-hydroxy-2-(4-hydroxyphenyl)-4-chromenone

C27H30O14 (578.163548)


Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

   

Matairesinol

NCGC00169701-03_C20H22O6_2(3H)-Furanone, dihydro-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-, (3R,4R)-

C20H22O6 (358.1416312)


Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 INTERNAL_ID 17; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.920 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.921 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].

   

Vanillic Acid

Vanillic acid hexoside

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Arctigenin

Arctigenin

C21H24O6 (372.1572804)


Annotation level-1 Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].

   

Arctiin

(3R,4R)-4-[(3,4-dimethoxyphenyl)methyl]-3-[[3-methoxy-4-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]phenyl]methyl]-2-tetrahydrofuranone

C27H34O11 (534.2101014)


Annotation level-1 Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity. Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity.

   
   

Dambonite

(1R,2s,3S,4R,5s,6S)-4,6-dimethoxycyclohexane-1,2,3,5-tetrol

C8H16O6 (208.0946836)


   

(7'R,8'R)-4,7'-Epoxy-3',5-dimethoxy-4',9,9'-lignanetriol 9'-glucoside

2-{[2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101014)


   

Glucodistylin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O12 (466.1111212)


   

3,4-Bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

3,4-Bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C20H22O6 (358.1416312)


   

Vanillate

4-Hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Taxifolin-3-glucoside

Taxifolin-3-glucoside

C21H22O12 (466.1111212)


   

11-deoxycorticosterone

11-deoxycorticosterone

C21H30O3 (330.21948299999997)


A mineralocorticoid that is progesterone substituted at position 21 by a hydroxy group.

   

7-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5-hydroxychromen-4-one

7-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5-hydroxychromen-4-one

C27H30O15 (594.158463)


   

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-6-methyloxane-3,5-diol

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-6-methyloxane-3,5-diol

C35H58O10 (638.4029768)


   

2-{[6-(1-{7-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}ethoxy)-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[6-(1-{7-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}ethoxy)-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O15 (800.4557978)


   

(4r)-5,5-dimethyl-4-(2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl)oxolan-2-one

(4r)-5,5-dimethyl-4-(2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl)oxolan-2-one

C14H24O8 (320.1471104)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4s,6s)-6-{[(2r,3s,4s,6s)-6-[(1r)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4s,6s)-6-{[(2r,3s,4s,6s)-6-[(1r)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C48H80O18 (944.5344380000001)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl (1r,2r,4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl (1r,2r,4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O16 (814.4350636)


   

(3s,4s)-4-(3-methoxy-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

(3s,4s)-4-(3-methoxy-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C31H40O16 (668.231624)


   

2,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C42H66O18 (858.4248936000001)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C21H20O10 (432.105642)


   

6-{[5-hydroxy-6-({1-hydroxy-1-[1-({4-methoxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl}oxy)-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

6-{[5-hydroxy-6-({1-hydroxy-1-[1-({4-methoxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl}oxy)-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

C57H94O22 (1130.6236423999999)


   

methyl (1s,14s,15s,18r)-15-ethyl-17-methyl-12-oxo-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

methyl (1s,14s,15s,18r)-15-ethyl-17-methyl-12-oxo-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

C21H26N2O3 (354.19433260000005)


   

4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C32H42O16 (682.2472732)


   

(3s,4s)-4-[(3,4-dimethoxyphenyl)methyl]-3-hydroxy-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

(3s,4s)-4-[(3,4-dimethoxyphenyl)methyl]-3-hydroxy-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C33H44O17 (712.2578374)


   

methyl (1r,14r,15e)-15-ethylidene-17-methyl-12-oxo-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

methyl (1r,14r,15e)-15-ethylidene-17-methyl-12-oxo-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

C21H24N2O3 (352.17868339999995)


   

7-{[(2s,3r,4s,5s,6s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one

7-{[(2s,3r,4s,5s,6s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one

C27H30O14 (578.163548)


   

(1r,2r,3r,4r,5r,6s)-4,6-dimethoxycyclohexane-1,2,3,5-tetrol

(1r,2r,3r,4r,5r,6s)-4,6-dimethoxycyclohexane-1,2,3,5-tetrol

C8H16O6 (208.0946836)


   

(3s,4r)-4-[(3,4-dimethoxyphenyl)methyl]-3-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

(3s,4r)-4-[(3,4-dimethoxyphenyl)methyl]-3-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C21H24O6 (372.1572804)


   

3,4-bis[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

3,4-bis[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C32H42O16 (682.2472732)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-1,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-1,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C42H68O16 (828.4507128)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

(3s,4s)-3-hydroxy-3-({4-hydroxy-3-methoxy-5-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]phenyl}methyl)-4-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

(3s,4s)-3-hydroxy-3-({4-hydroxy-3-methoxy-5-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]phenyl}methyl)-4-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C26H32O12 (536.1893672)


   

(2r,3r,4s,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,12-dihydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4s,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,12-dihydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C42H66O17 (842.4299786000001)


   

5,5-dimethyl-4-(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl)oxolan-2-one

5,5-dimethyl-4-(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl)oxolan-2-one

C14H24O8 (320.1471104)


   

3-({4-hydroxy-3-methoxy-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]phenyl}methyl)-4-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

3-({4-hydroxy-3-methoxy-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]phenyl}methyl)-4-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C26H32O11 (520.1944522)


   

(3r,4s)-4-[(3,4-dimethoxyphenyl)methyl]-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

(3r,4s)-4-[(3,4-dimethoxyphenyl)methyl]-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C33H44O16 (696.2629224)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,6s)-6-{[(2r,3s,4s,6s)-6-[(1r)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,6s)-6-{[(2r,3s,4s,6s)-6-[(1r)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C48H80O18 (944.5344380000001)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,6s)-6-{[(2r,3r,4r,6s)-6-{[(2r,3r,4r,6s)-6-[(1s)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-7-{[(2r,3r,4r,5s,6r)-3-hydroxy-5-{[(2s,4r,5r,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,6s)-6-{[(2r,3r,4r,6s)-6-{[(2r,3r,4r,6s)-6-[(1s)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-7-{[(2r,3r,4r,5s,6r)-3-hydroxy-5-{[(2s,4r,5r,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C62H104O24 (1232.6917184)


   

2-[(1-hydroxy-1-{1-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]ethyl}-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-4-methoxy-6-methyloxane-3,5-diol

2-[(1-hydroxy-1-{1-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]ethyl}-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-4-methoxy-6-methyloxane-3,5-diol

C35H58O10 (638.4029768)


   

3-hydroxy-3,4-bis[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

3-hydroxy-3,4-bis[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C32H42O17 (698.2421882000001)


   

2,12-dihydroxy-4,6a,6b,11,12,14b-hexamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,12-dihydroxy-4,6a,6b,11,12,14b-hexamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C42H66O17 (842.4299786000001)


   

(3r,4r)-3,4-bis[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

(3r,4r)-3,4-bis[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C32H42O16 (682.2472732)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,6s)-6-{[(2r,3r,4r,6s)-6-[(1s)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,6s)-6-{[(2r,3r,4r,6s)-6-[(1s)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C48H80O18 (944.5344380000001)


   

(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.386145)


   

(2r,3r,4r,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4r,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C42H66O18 (858.4248936000001)


   

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-[(1s)-1-{[(2s,4r,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}ethyl]-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-6-methyloxane-3,5-diol

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-[(1s)-1-{[(2s,4r,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}ethyl]-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-6-methyloxane-3,5-diol

C34H56O10 (624.3873276)


   

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5r,6r)-4-methoxy-5-{[(2s,4r,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5r,6r)-4-methoxy-5-{[(2s,4r,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

C57H94O22 (1130.6236423999999)


   

(2r,3r,4r,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,3,12-trihydroxy-4-(hydroxymethyl)-6a,6b,11,11,14b-pentamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4r,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,3,12-trihydroxy-4-(hydroxymethyl)-6a,6b,11,11,14b-pentamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O13 (696.3720726)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,6s)-6-[(1s)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-hydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,6s)-6-[(1s)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-hydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C40H66O15 (786.4401486)


   

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

C50H82O19 (986.5450022)


   

2-{[6-({6-[(6-{1-[1-hydroxy-7-({3-hydroxy-5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy}-4-methoxy-2-methyloxan-3-yl)oxy]-4-methoxy-2-methyloxan-3-yl}oxy)-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[6-({6-[(6-{1-[1-hydroxy-7-({3-hydroxy-5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy}-4-methoxy-2-methyloxan-3-yl)oxy]-4-methoxy-2-methyloxan-3-yl}oxy)-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C62H104O24 (1232.6917184)


   
   

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5r,6r)-4-methoxy-5-{[(2s,4r,5r,6r)-4-methoxy-5-{[(2s,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5r,6r)-4-methoxy-5-{[(2s,4r,5r,6r)-4-methoxy-5-{[(2s,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

C64H106O25 (1274.7022826)


   

2-{[6-(1-{7-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}ethoxy)-4-hydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[6-(1-{7-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}ethoxy)-4-hydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C40H66O15 (786.4401486)


   

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1s)-1-{[(2s,4r,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1s)-1-{[(2s,4r,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

C49H80O19 (972.5293530000001)


   

6-[(5-hydroxy-6-{[1-hydroxy-1-(1-hydroxyethyl)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-4-methoxy-2-methyloxan-3-yl acetate

6-[(5-hydroxy-6-{[1-hydroxy-1-(1-hydroxyethyl)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-4-methoxy-2-methyloxan-3-yl acetate

C37H60O11 (680.413541)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.09547200000003)


   

(3s)-4-[(3,4-dimethoxyphenyl)methyl]-3-hydroxy-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

(3s)-4-[(3,4-dimethoxyphenyl)methyl]-3-hydroxy-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C27H34O12 (550.2050164)


   

3-[(3,4-dimethoxyphenyl)methyl]-2,4-dihydroxy-2-[(4-hydroxy-3-methoxyphenyl)methyl]butanimidic acid

3-[(3,4-dimethoxyphenyl)methyl]-2,4-dihydroxy-2-[(4-hydroxy-3-methoxyphenyl)methyl]butanimidic acid

C21H27NO7 (405.17874320000004)


   

4-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

4-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C31H40O16 (668.231624)


   

2-(hydroxymethyl)-6-{4-[3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy}oxane-3,4,5-triol

2-(hydroxymethyl)-6-{4-[3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy}oxane-3,4,5-triol

C26H34O11 (522.2101014)


   

(3r,4s)-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

(3r,4s)-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C20H22O6 (358.1416312)


   

2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3771576)


   

(2r,3r,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,3,12-trihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,3,12-trihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O13 (696.3720726)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O11 (666.3978918)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C42H68O16 (828.4507128)


   

(2r,3r,4s,5s,6r)-2-{[(2r,3s)-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2r,3s)-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101014)


   

3-hydroxy-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

3-hydroxy-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C26H32O12 (536.1893672)


   

2,3,12-trihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,3,12-trihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O13 (696.3720726)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C42H68O16 (828.4507128)


   

4-hydroxy-3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)cyclohex-2-en-1-one

4-hydroxy-3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)cyclohex-2-en-1-one

C19H32O8 (388.20970719999997)


   

(3r,4r)-3-({4-hydroxy-3-methoxy-5-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]phenyl}methyl)-4-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

(3r,4r)-3-({4-hydroxy-3-methoxy-5-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]phenyl}methyl)-4-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C26H32O11 (520.1944522)


   

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

C37H60O11 (680.413541)


   

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

C50H82O19 (986.5450022)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,6s)-6-[(1r)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,6s)-6-[(1r)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O15 (800.4557978)


   

4-[(3,4-dimethoxyphenyl)methyl]-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

4-[(3,4-dimethoxyphenyl)methyl]-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C33H44O16 (696.2629224)


   

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O15 (594.158463)


   

(3s,4s)-3-hydroxy-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

(3s,4s)-3-hydroxy-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C26H32O12 (536.1893672)


   

3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-one

3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-one

C26H32O12 (536.1893672)


   

(2r,3r,4s,5s,6r)-2-{[(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

(1r,15s)-17-ethyl-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene

(1r,15s)-17-ethyl-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene

C20H26N2O (310.2045026)


   

2-[(1-{1-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]ethyl}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-4-methoxy-6-methyloxane-3,5-diol

2-[(1-{1-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]ethyl}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-4-methoxy-6-methyloxane-3,5-diol

C34H56O10 (624.3873276)


   

(13r,14e)-14-ethylidene-12-methylidene-1,10-diazatetracyclo[11.2.2.0³,¹¹.0⁴,⁹]heptadeca-3(11),4,6,8-tetraene

(13r,14e)-14-ethylidene-12-methylidene-1,10-diazatetracyclo[11.2.2.0³,¹¹.0⁴,⁹]heptadeca-3(11),4,6,8-tetraene

C18H20N2 (264.16264)


   

4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl 1,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl 1,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O15 (798.4401486)


   

4-[(3,4-dimethoxyphenyl)methyl]-3-hydroxy-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

4-[(3,4-dimethoxyphenyl)methyl]-3-hydroxy-3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C33H44O17 (712.2578374)


   

2-[(6-{[6-(1-{7-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}ethoxy)-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(6-{[6-(1-{7-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}ethoxy)-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C48H80O18 (944.5344380000001)


   

(3s,4s)-3-hydroxy-3,4-bis[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

(3s,4s)-3-hydroxy-3,4-bis[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C32H42O17 (698.2421882000001)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,6s)-6-[(1r)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,6s)-6-[(1r)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O15 (800.4557978)


   

(4s)-4-hydroxy-3,5,5-trimethyl-4-[(3r)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]cyclohex-2-en-1-one

(4s)-4-hydroxy-3,5,5-trimethyl-4-[(3r)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]cyclohex-2-en-1-one

C19H32O8 (388.20970719999997)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl (1s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl (1s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O15 (798.4401486)


   

4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl 1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl 1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O16 (814.4350636)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,6s)-6-{[(2r,3s,4s,6s)-6-[(1s)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,6s)-6-{[(2r,3s,4s,6s)-6-[(1s)-1-[(1r,3as,3br,5ar,7s,9as,9bs,11as)-7-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethoxy]-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C48H80O18 (944.5344380000001)


   

(14z)-14-ethylidene-12-methylidene-1,10-diazatetracyclo[11.2.2.0³,¹¹.0⁴,⁹]heptadeca-3(11),4,6,8-tetraene

(14z)-14-ethylidene-12-methylidene-1,10-diazatetracyclo[11.2.2.0³,¹¹.0⁴,⁹]heptadeca-3(11),4,6,8-tetraene

C18H20N2 (264.16264)


   

(2s,3r,4s,5s,6r)-2-{4-[(2r,3s)-4-hydroxy-3-[(4-hydroxy-3,5-dimethoxyphenyl)methyl]-2-(hydroxymethyl)butyl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{4-[(2r,3s)-4-hydroxy-3-[(4-hydroxy-3,5-dimethoxyphenyl)methyl]-2-(hydroxymethyl)butyl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C28H40O13 (584.246879)


   

2,3,12-trihydroxy-4-(hydroxymethyl)-6a,6b,11,11,14b-pentamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,3,12-trihydroxy-4-(hydroxymethyl)-6a,6b,11,11,14b-pentamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O13 (696.3720726)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C20H20O11 (436.100557)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

2,12-dihydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,12-dihydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C42H66O17 (842.4299786000001)


   

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{4-[(2r,3s)-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy}oxane-3,4,5-triol

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{4-[(2r,3s)-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy}oxane-3,4,5-triol

C26H34O11 (522.2101014)


   

3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]-4-[(3,4,5-trimethoxyphenyl)methyl]oxolan-2-one

3-[(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]-4-[(3,4,5-trimethoxyphenyl)methyl]oxolan-2-one

C28H36O12 (564.2206656000001)


   

4,6-dimethoxycyclohexane-1,2,3,5-tetrol

4,6-dimethoxycyclohexane-1,2,3,5-tetrol

C8H16O6 (208.0946836)


   

2-{[1-hydroxy-1-(1-hydroxyethyl)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-6-methyloxane-3,5-diol

2-{[1-hydroxy-1-(1-hydroxyethyl)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-6-methyloxane-3,5-diol

C28H46O7 (494.3243366)


   

3-hydroxy-3-({4-hydroxy-3-methoxy-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]phenyl}methyl)-4-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

3-hydroxy-3-({4-hydroxy-3-methoxy-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]phenyl}methyl)-4-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C26H32O12 (536.1893672)


   

2-(4-{4-hydroxy-3-[(4-hydroxy-3,5-dimethoxyphenyl)methyl]-2-(hydroxymethyl)butyl}-2,6-dimethoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol

2-(4-{4-hydroxy-3-[(4-hydroxy-3,5-dimethoxyphenyl)methyl]-2-(hydroxymethyl)butyl}-2,6-dimethoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C28H40O13 (584.246879)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O16 (610.153378)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-2,2,6a,6b,9,12a-hexamethyl-9-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-2,2,6a,6b,9,12a-hexamethyl-9-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C42H68O16 (828.4507128)


   

(2r,3r,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C42H66O18 (858.4248936000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

4-hydroxy-3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl)cyclohex-2-en-1-one

4-hydroxy-3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl)cyclohex-2-en-1-one

C19H30O8 (386.194058)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

(3r,4r)-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]-4-[(3,4,5-trimethoxyphenyl)methyl]oxolan-2-one

(3r,4r)-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]-4-[(3,4,5-trimethoxyphenyl)methyl]oxolan-2-one

C28H36O12 (564.2206656000001)


   

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-6-methyloxane-3,5-diol

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-6-methyloxane-3,5-diol

C28H46O7 (494.3243366)


   

(3r,4r)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

(3r,4r)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C26H32O11 (520.1944522)


   

methyl (1s,14r,15z,18s)-15-ethylidene-17-methyl-12-oxo-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

methyl (1s,14r,15z,18s)-15-ethylidene-17-methyl-12-oxo-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

C21H24N2O3 (352.17868339999995)


   

(15r,16s,18r)-15-ethyl-17-oxa-1,11-diazapentacyclo[13.4.1.0⁴,¹².0⁵,¹⁰.0¹⁶,¹⁸]icosa-4(12),5,7,9-tetraene

(15r,16s,18r)-15-ethyl-17-oxa-1,11-diazapentacyclo[13.4.1.0⁴,¹².0⁵,¹⁰.0¹⁶,¹⁸]icosa-4(12),5,7,9-tetraene

C19H24N2O (296.18885339999997)


   

methyl (1s,15s)-15-ethyl-17-methyl-12-oxo-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

methyl (1s,15s)-15-ethyl-17-methyl-12-oxo-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

C21H26N2O3 (354.19433260000005)


   

6-({5-hydroxy-6-[(1-hydroxy-1-{1-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]ethyl}-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-4-methoxy-2-methyloxan-3-yl}oxy)-4-methoxy-2-methyloxan-3-yl acetate

6-({5-hydroxy-6-[(1-hydroxy-1-{1-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]ethyl}-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-4-methoxy-2-methyloxan-3-yl}oxy)-4-methoxy-2-methyloxan-3-yl acetate

C50H82O19 (986.5450022)


   

(2r,3r,4s,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,12-dihydroxy-4,6a,6b,11,12,14b-hexamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4s,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,12-dihydroxy-4,6a,6b,11,12,14b-hexamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C42H66O17 (842.4299786000001)


   

(2r,3r,4s,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4s,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3771576)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C21H20O11 (448.100557)


   

(2r,3r,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3771576)


   

(4s)-4-hydroxy-3,5,5-trimethyl-4-[(1e,3r)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one

(4s)-4-hydroxy-3,5,5-trimethyl-4-[(1e,3r)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one

C19H30O8 (386.194058)


   

(3r,4r)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

(3r,4r)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C32H42O16 (682.2472732)


   

(2s,3s)-3-[(3,4-dimethoxyphenyl)methyl]-2,4-dihydroxy-2-[(4-hydroxy-3-methoxyphenyl)methyl]butanimidic acid

(2s,3s)-3-[(3,4-dimethoxyphenyl)methyl]-2,4-dihydroxy-2-[(4-hydroxy-3-methoxyphenyl)methyl]butanimidic acid

C21H27NO7 (405.17874320000004)


   

(3s,4s)-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-one

(3s,4s)-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-one

C26H32O12 (536.1893672)


   

(3r,4r)-4-[(3,4-dimethoxyphenyl)methyl]-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

(3r,4r)-4-[(3,4-dimethoxyphenyl)methyl]-3-[(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)methyl]oxolan-2-one

C33H44O16 (696.2629224)


   

(3r,4r)-3-[(4-hydroxy-3-methoxyphenyl)methyl]-4-[(3,4,5-trimethoxyphenyl)methyl]oxolan-2-one

(3r,4r)-3-[(4-hydroxy-3-methoxyphenyl)methyl]-4-[(3,4,5-trimethoxyphenyl)methyl]oxolan-2-one

C22H26O7 (402.1678446)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-1,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-1,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C42H68O16 (828.4507128)


   

methyl (1r,15s,17r,18s)-17-ethyl-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1r,15s,17r,18s)-17-ethyl-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C22H28N2O3 (368.20998180000004)


   

6-[(5-hydroxy-6-{[1-hydroxy-1-(1-{[4-methoxy-5-({4-methoxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}ethyl)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-4-methoxy-2-methyloxan-3-yl acetate

6-[(5-hydroxy-6-{[1-hydroxy-1-(1-{[4-methoxy-5-({4-methoxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}ethyl)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-4-methoxy-2-methyloxan-3-yl acetate

C64H106O25 (1274.7022826)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-2,2,6a,6b,9,12a-hexamethyl-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-2,2,6a,6b,9,12a-hexamethyl-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C42H68O16 (828.4507128)


   

(3s,4r)-4-[(3,4-dimethoxyphenyl)methyl]-3-hydroxy-3-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

(3s,4r)-4-[(3,4-dimethoxyphenyl)methyl]-3-hydroxy-3-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C21H24O7 (388.1521954)


   

6-({5-hydroxy-6-[(1-hydroxy-1-{1-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]ethyl}-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-4-methoxy-2-methyloxan-3-yl}oxy)-4-methoxy-2-methyloxan-3-yl acetate

6-({5-hydroxy-6-[(1-hydroxy-1-{1-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]ethyl}-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-4-methoxy-2-methyloxan-3-yl}oxy)-4-methoxy-2-methyloxan-3-yl acetate

C49H80O19 (972.5293530000001)


   

2,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,11,14b-pentamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,11,14b-pentamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C42H66O18 (858.4248936000001)


   

methyl (15s,17s)-17-ethyl-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (15s,17s)-17-ethyl-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C21H26N2O2 (338.1994176)