Gene Association: PGD

UniProt Search: PGD (PROTEIN_CODING)
Function Description: phosphogluconate dehydrogenase

found 28 associated metabolites with current gene based on the text mining result from the pubmed database.

Tomentosin

2H-Cyclohepta(b)furan-2-one, 3,3a,4,7,8,8a-hexahydro-7-methyl-3-methylene-6-(3-oxobutyl)-, (3aR,7S,8aR)-

C15H20O3 (248.1412)


Tomentosin is a sesquiterpene lactone. Tomentosin is a natural product found in Apalochlamys spectabilis, Leucophyta brownii, and other organisms with data available.

   

2,3-Diphosphoglyceric acid

2,3-DIPHOSPHO-D-GLYCERIC ACID PENTASODIUM SALT

C3H8O10P2 (265.9593)


2,3-Bisphosphoglycerate (2,3-BPG, also known as 2,3-diphosphoglycerate or 2,3-DPG) is a three carbon isomer of the glycolytic intermediate 1,3-bisphosphoglycerate and is present at high levels in the human red blood cell (RBC; erythrocyte)--at the same molar concentration as hemoglobin. It is notable because it binds to deoxygenated hemoglobin in RBCs. In doing so, it allosterically upregulates the ability of RBCs to release oxygen near tissues that need it most. Its function was discovered in 1967 by Reinhold Benesch and Ruth Benesch. [HMDB] 2,3-Bisphosphoglycerate (CAS: 138-81-8), also known as 2,3-BPG or 2,3-diphosphoglycerate, is a three-carbon isomer of the glycolytic intermediate 1,3-bisphosphoglycerate and is present at high levels in the human red blood cell (RBC; erythrocyte) at the same molar concentration as hemoglobin. It is notable because it binds to deoxygenated hemoglobin in RBCs. In doing so, it allosterically upregulates the ability of RBCs to release oxygen near tissues that need it most. Its function was discovered in 1967 by Reinhold Benesch and Ruth Benesch. KEIO_ID D017

   

6-Hydroxynicotinic acid

1,6-dihydro-6-oxo-3-Pyridinecarboxylic acid

C6H5NO3 (139.0269)


6-Hydroxynicotinic acid (6-OHNA) is exploited in the use of NMR spectroscopy or gas chromatography--mass spectrometry for the diagnosis of Pseudomonas aeruginosa in urinary tract infection. Among the common bacteria causing urinary infection, only P. aeruginosa produces 6-hydroxynicotinic acid from nicotinic acid. Pseudomonas aeruginosa infection has been reported to be the third leading cause of urinary infection, accounting for 11\\\% of such infections, the first and second being Escherichia coli and Klebsiella pneumonia, respectively. Analyses of the NMR spectra of the bacterial media with variable cell count of P. aeruginosa, shows that the intensity of the signals of the 6-hydroxynicotinic acid increases with increasing number of bacterial cells (PMID:3926801, 15759292). 6-hydroxynicotinic acid can also be found in Achromobacter and Serratia. 6-hydroxynicotinic acid (6-OHNA) is exploited in the use of NMR spectroscopy or gas chromatography--mass spectrometry for the diagnosis of Pseudomonas aeruginosa in urinary tract infection. Among the common bacteria causing urinary infection, only P. aeruginosa produces 6-hydroxynicotinic acid from nicotinic acid. Pseudomonas aeruginosa infection has been reported to be the third leading cause of urinary infection, accounting for 11\\\% of such infections, the first and second being Escherichia coli and Klebsiella pneumonia, respectively. Analyses of the NMR spectra of the bacterial media with variable cell count of P. aeruginosa, shows that the intensity of the signals of the 6-hydroxynicotinic acid increases with increasing number of bacterial cells. (PMID: 3926801, 15759292) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H015 6-Hydroxynicotinic acid is an endogenous metabolite.

   

Glycylleucine

(2S)-2-(2-aminoacetamido)-4-methylpentanoic acid

C8H16N2O3 (188.1161)


Glycylleucine is a dipeptide composed of glycine and leucine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. It appears to be a common substrate for glycyl-leucine dipeptidase. A dipeptide that appears to be a common substrate for glycyl-leucine dipeptidase. [HMDB] KEIO_ID G071 Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.

   

Deoxyinosine

9-(2-Deoxy-beta-delta-erythro-pentofuranosyl)-1,9-dihydro-6H-purin-6-one

C10H12N4O4 (252.0859)


Deoxyinosine is a nucleoside that is formed when hypoxanthine is attached to a deoxyribose ring (also known as a ribofuranose) via a beta-N9-glycosidic bond. Deoxyinosine is found in DNA while inosine is found in RNA. Inosine is a nucleic acid important for RNA editing. Adenosine deaminase (ADA) catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA-deficient individuals suffer from severe combined immunodeficiency (SCID) and are unable to produce significant numbers of mature T or B lymphocytes. This occurs as a consequence of the accumulation of ADA substrates or their metabolites. Inosine is also an intermediate in a chain of purine nucleotides reactions required for muscle movements. Moreover, deoxyinosine is found to be associated with purine nucleoside phosphorylase (PNP) deficiency, which is an inborn error of metabolism. Isolated from Phaseolus vulgaris (kidney bean). 2-Deoxyinosine is found in pulses, yellow wax bean, and green bean. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.

   

D-Ribulose 5-phosphate

{[(2R,3R)-2,3,5-trihydroxy-4-oxopentyl]oxy}phosphonic acid

C5H11O8P (230.0192)


D-Ribulose 5-phosphate is a metabolite in the Pentose phosphate pathway, Pentose and glucuronate interconversions, and in the Riboflavin metabolism (KEGG) [HMDB]. D-Ribulose 5-phosphate is found in many foods, some of which are olive, cocoa bean, common chokecherry, and orange mint. D-Ribulose 5-phosphate is a metabolite in the following pathways: pentose phosphate pathway, pentose and glucuronate interconversions, and riboflavin metabolism (KEGG). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

D-Xylose

(3R,4S,5R)-Tetrahydro-2H-pyran-2,3,4,5-tetrol

C5H10O5 (150.0528)


Xylose or wood sugar is an aldopentose - a monosaccharide containing five carbon atoms and an aldehyde functional group. It has chemical formula C5H10O5 and is 40\\\\% as sweet as sucrose. Xylose is found in the embryos of most edible plants. The polysaccharide xylan, which is closely associated with cellulose, consists practically entirely of d-xylose. Corncobs, cottonseed hulls, pecan shells, and straw contain considerable amounts of this sugar. Xylose is also found in mucopolysaccharides of connective tissue and sometimes in the urine. Xylose is the first sugar added to serine or threonine residues during proteoglycan type O-glycosylation. Therefore xylose is involved in the biosythetic pathways of most anionic polysaccharides such as heparan sulphate and chondroitin sulphate. In medicine, xylose is used to test for malabsorption by administering a xylose solution to the patient after fasting. If xylose is detected in the blood and/or urine within the next few hours, it has been absorbed by the intestines. Xylose is said to be one of eight sugars which are essential for human nutrition, the others being galactose, glucose, mannose, N-acetylglucosamine, N-acetylgalactosamine, fucose, and sialic acid. (Wikipedia). Xylose in the urine is a biomarker for the consumption of apples and other fruits. Xylose is a sugar first isolated from wood, and named for it. Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional group. It is the precursor to hemicellulose, one of the main constituents of biomass. D-Xylopyranose is found in flaxseed. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

6-Phosphogluconic acid

(2R,3S,4R,5R)-2,3,4,5-tetrahydroxy-6-(phosphonooxy)hexanoic acid

C6H13O10P (276.0246)


6-phosphogluconic acid, also known as 6-phospho-D-gluconate or D-gluconic acid 6-(dihydrogen phosphate), is a member of the class of compounds known as monosaccharide phosphates. Monosaccharide phosphates are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 6-phosphogluconic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 6-phosphogluconic acid can be found in a number of food items such as purple mangosteen, nopal, chicory leaves, and common sage, which makes 6-phosphogluconic acid a potential biomarker for the consumption of these food products. 6-phosphogluconic acid can be found primarily in blood, cellular cytoplasm, and saliva, as well as throughout most human tissues. 6-phosphogluconic acid exists in all living species, ranging from bacteria to humans. In humans, 6-phosphogluconic acid is involved in the pentose phosphate pathway. 6-phosphogluconic acid is also involved in few metabolic disorders, which include glucose-6-phosphate dehydrogenase deficiency, ribose-5-phosphate isomerase deficiency, transaldolase deficiency, and warburg effect. 6-phosphogluconic acid is formed by 6-phosphogluconolactonase, and acted upon by phosphogluconate dehydrogenase to produce ribulose 5-phosphate. It may also be acted upon by 6-phosphogluconate dehydratase to produce 2-keto-3-deoxy-6-phosphogluconate . 6-Phosphogluconic acid, also known as 6-phospho-D-gluconate or gluconic acid-6-phosphate, belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 6-Phosphogluconic acid exists in all living species, ranging from bacteria to humans. Within humans, 6-phosphogluconic acid participates in a number of enzymatic reactions. In particular, 6-phosphogluconic acid can be biosynthesized from gluconolactone; which is mediated by the enzyme 6-phosphogluconolactonase. In addition, 6-phosphogluconic acid can be converted into D-ribulose 5-phosphate through the action of the enzyme 6-phosphogluconate dehydrogenase, decarboxylating. In humans, 6-phosphogluconic acid is involved in the metabolic disorder called the transaldolase deficiency pathway. Outside of the human body, 6-Phosphogluconic acid has been detected, but not quantified in several different foods, such as cascade huckleberries, common chokecherries, half-highbush blueberries, american cranberries, and okra. [Spectral] 6-Phospho-D-gluconate (exact mass = 276.02463) and Phosphoenolpyruvate (exact mass = 167.98237) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. KEIO_ID P031

   

Liriodendrin

(2S,3R,4S,5S,6R)-2-[2-[6-[2,4-dimethoxy-3,6-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]phenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


Liriodendrin is a natural product found in Kalopanax septemlobus, Eleutherococcus gracilistylus, and other organisms with data available. Eleutheroside D is found in tea. Eleutheroside D is a constituent of Siberian ginseng (Eleutherococcus (Acanthopanax) senticosus). Isolated from Eleutherococcus senticosus (Siberian ginseng). Liriodendrin is found in tea. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].

   

Dicyclohexylamine

Cyclohexanamine, N-cyclohexyl-, sulfate (1:1)

C12H23N (181.183)


INTERNAL_ID 2356; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2356 D004791 - Enzyme Inhibitors

   

3-Hydroxyisobutyric acid

3-Hydroxyisobutyric acid

C4H8O3 (104.0473)


A 4-carbon, branched hydroxy fatty acid and intermediate in the metabolism of valine. 3-Hydroxyisobutyric acid is an important interorgan metabolite, an intermediate in the pathways of l-valine and thymine and a good gluconeogenic substrate.

   

6-Phosphonoglucono-D-lactone

[(2R,3S,4S,5R)-3,4,5-Trihydroxy-6-oxotetrahydro-2H-pyran-2-yl]methyl dihydrogen phosphoric acid

C6H11O9P (258.0141)


6-phosphonoglucono-d-lactone, also known as D-glucono-1,5-lactone 6-phosphate or 6-pgdl, is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. 6-phosphonoglucono-d-lactone is soluble (in water) and a moderately acidic compound (based on its pKa). 6-phosphonoglucono-d-lactone can be found in a number of food items such as chicory leaves, pepper (c. chinense), opium poppy, and green bell pepper, which makes 6-phosphonoglucono-d-lactone a potential biomarker for the consumption of these food products. 6-phosphonoglucono-d-lactone can be found primarily in cellular cytoplasm. 6-phosphonoglucono-d-lactone exists in all living species, ranging from bacteria to humans. In humans, 6-phosphonoglucono-d-lactone is involved in warburg effect, which is a metabolic disorder. 6-phosphoglucono-delta-lactone (d-6PGL) is the immediate product of the Glucose-6-phosphate dehydrogenase (G-6-PD), the first enzyme of the hexose monophosphate pathway. (PMID 3711719). The pentose-phosphate pathway provides reductive power and nucleotide precursors to the cell through oxidative and nonoxidative branches. 6-Phosphogluconolactonase is the second enzyme of the oxidative branch and catalyzes the hydrolysis of 6-phosphogluconolactones, the products of glucose 6-phosphate oxidation by glucose-6-phosphate dehydrogenase. By efficiently catalyzing the hydrolysis of d-6PGL, 6-phosphogluconolactonase prevents the reaction between d-6PGL and intracellular nucleophiles; such a reaction would interrupt the functioning of the pentose-phosphate pathway. (PMID 11457850).

   

1,4,5,6-Tetrahydro-6-oxonicotinic acid

1,4,5,6-Tetrahydro-6-oxonicotinic acid

C6H7NO3 (141.0426)


   

Prostaglandin D1

7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoic acid

C20H34O5 (354.2406)


Prostaglandin D1 is a prostanoid that elicits contractile and relaxant on isolated human pial arteries with small potency. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 6091419, 16986207)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin D1 is a prostanoid that elicits contractile and relaxant on isolated human pial arteries with small potency. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 6091419, 16986207)

   

Halothane

1,1,1-Trifluoro-2-bromo-2-chloroethane

C2HBrClF3 (195.8902)


A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. nitrous oxide is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

D-Arabinopyranose

oxane-2,3,4,5-tetrol

C5H10O5 (150.0528)


   

Liriodendrin

(2S,3R,4S,5S,6R)-2-[4-[(3R,3aS,6R,6aS)-6-[3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2,6-dimethoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


(-)-syringaresinol O,O-bis(beta-D-glucoside) is a beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. It has a role as a plant metabolite, an antioxidant and an anti-inflammatory agent. It is functionally related to a (-)-syringaresinol. Acanthoside D is a natural product found in Crescentia cujete, Daphne giraldii, and other organisms with data available. A beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].

   

6-Phosphogluconic acid

6-Phosphogluconic acid

C6H13O10P (276.0246)


   

6-Hydroxynicotinic Acid

6-Hydroxynicotinic Acid

C6H5NO3 (139.0269)


A monohydroxypyridine that is the 6-hydroxy derivative of nicotinic acid. 6-Hydroxynicotinic acid is an endogenous metabolite.

   

Prostaglandin D1

9S,15S-dihydroxy-11-oxo-13E-prostaenoic acid

C20H34O5 (354.2406)


   

halothane

halothane

C2HBrClF3 (195.8902)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

2-Deoxyinosine

2-Deoxyinosine

C10H12N4O4 (252.0859)


A purine 2-deoxyribonucleoside that is inosine in which the hydroxy group at position 2 is replaced by a hydrogen. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.

   

D-Ribulose 5-phosphate

D-Ribulose 5-phosphate

C5H11O8P (230.0192)


The D-enantiomer of ribulose 5-phosphate that is one of the end-products of the pentose phosphate pathway.

   

H-Gly-Leu-OH

Glycyl-L-leucine

C8H16N2O3 (188.1161)


Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.

   

2,3-Bisphospho-D-glycerate

2,3-Bisphospho-D-glyceric acid

C3H8O10P2 (265.9593)


The D-enantiomer of 2,3-bisphosphoglyceric acid.

   

D-Glucono-1,5-lactone 6-phosphate

D-Glucono-1,5-lactone 6-phosphate

C6H11O9P (258.0141)


   

N-Cyclohexylcyclohexanamine

N-Cyclohexylcyclohexanamine

C12H23N (181.183)


D004791 - Enzyme Inhibitors

   

Pentose

L-Arabinopyranose

C5H10O5 (150.0528)