Exact Mass: 147.0563
Exact Mass Matches: 147.0563
Found 500 metabolites which its exact mass value is equals to given mass value 147.0563
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
L-Glutamic acid
Glutamic acid (Glu), also known as L-glutamic acid or as glutamate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-glutamic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans it is a non-essential amino acid and can be synthesized via alanine or aspartic acid via alpha-ketoglutarate and the action of various transaminases. Glutamate also plays an important role in the bodys disposal of excess or waste nitrogen. Glutamate undergoes deamination, an oxidative reaction catalysed by glutamate dehydrogenase leading to alpha-ketoglutarate. In many respects glutamate is a key molecule in cellular metabolism. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: Damage to mitochondria from excessively high intracellular Ca2+. Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. Glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization (http://en.wikipedia.org/wiki/Glutamic_acid). Glutamate was discovered in 1866 when it was extracted from wheat gluten (from where it got its name. Glutamate has an important role as a food additive and food flavoring agent. In 1908, Japanese researcher Kikunae Ikeda identified brown crystals left behind after the evaporation of a large amount of kombu broth (a Japanese soup) as glutamic acid. These crystals, when tasted, reproduced a salty, savory flavor detected in many foods, most especially in seaweed. Professor Ikeda termed this flavor umami. He then patented a method of mass-producing a crystalline salt of glutamic acid, monosodium glutamate. L-glutamic acid is an optically active form of glutamic acid having L-configuration. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a mouse metabolite, a ferroptosis inducer and a neurotransmitter. It is a glutamine family amino acid, a proteinogenic amino acid, a glutamic acid and a L-alpha-amino acid. It is a conjugate acid of a L-glutamate(1-). It is an enantiomer of a D-glutamic acid. A peptide that is a homopolymer of glutamic acid. L-Glutamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serves as metabolic fuel or other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: * Damage to mitochondria from excessively high intracellular Ca2+. * Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization. A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. See also: Monosodium Glutamate (active moiety of); Glatiramer Acetate (monomer of); Glatiramer (monomer of) ... View More ... obtained from acid hydrolysis of proteins. Since 1965 the industrial source of glutamic acid for MSG production has been bacterial fermentation of carbohydrate sources such as molasses and corn starch hydrolysate in the presence of a nitrogen source such as ammonium salts or urea. Annual production approx. 350000t worldwide in 1988. Seasoning additive in food manuf. (as Na, K and NH4 salts). Dietary supplement, nutrient Glutamic acid (symbol Glu or E;[4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons. Its molecular formula is C 5H 9NO 4. Glutamic acid exists in two optically isomeric forms; the dextrorotatory l-form is usually obtained by hydrolysis of gluten or from the waste waters of beet-sugar manufacture or by fermentation.[5][full citation needed] Its molecular structure could be idealized as HOOC−CH(NH 2)−(CH 2)2−COOH, with two carboxyl groups −COOH and one amino group −NH 2. However, in the solid state and mildly acidic water solutions, the molecule assumes an electrically neutral zwitterion structure −OOC−CH(NH+ 3)−(CH 2)2−COOH. It is encoded by the codons GAA or GAG. The acid can lose one proton from its second carboxyl group to form the conjugate base, the singly-negative anion glutamate −OOC−CH(NH+ 3)−(CH 2)2−COO−. This form of the compound is prevalent in neutral solutions. The glutamate neurotransmitter plays the principal role in neural activation.[6] This anion creates the savory umami flavor of foods and is found in glutamate flavorings such as MSG. In Europe, it is classified as food additive E620. In highly alkaline solutions the doubly negative anion −OOC−CH(NH 2)−(CH 2)2−COO− prevails. The radical corresponding to glutamate is called glutamyl. The one-letter symbol E for glutamate was assigned in alphabetical sequence to D for aspartate, being larger by one methylene –CH2– group.[7] DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
N-Methyl-D-aspartic acid
N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. NMDA is a water-soluble endogenous metabolite that plays an important role in the neuroendocrine system of species across Animalia (PMID:18096065). It was first synthesized in the 1960s (PMID:14056452). NMDA is an excitotoxin; this trait has applications in behavioural neuroscience research. The body of work utilizing this technique falls under the term "lesion studies." Researchers apply NMDA to specific regions of an (animal) subjects brain or spinal cord and subsequently test for the behaviour of interest, such as operant behaviour. If the behaviour is compromised, it suggests that the destroyed tissue was part of a brain region that made an important contribution to the normal expression of that behaviour. Examples of antagonists of the NMDA receptor are ketamine, amantadine, dextromethorphan (DXM), riluzole, and memantine. They are commonly referred to as NMDA receptor antagonists (PMID:28877137). N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
O-Acetylserine
O-Acetylserine is an α-amino acid with the chemical formula HO2CCH(NH2)CH2OC(O)CH3. It is an intermediate in the biosynthesis of the common amino acid cysteine in bacteria and plants. O-Acetylserine is biosynthesized by acetylation of the serine by the enzyme serine transacetylase. The enzyme O-acetylserine (thiol)-lyase, using sulfide sources, converts this ester into cysteine, releasing acetate. O-Acetylserine belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. O-Acetylserine (OASS) is an acylated amino acid derivative. O-Acetylserine exists in all living species, ranging from bacteria to humans. Outside of the human body, O-Acetylserine has been detected, but not quantified in several different foods, such as okra, vaccinium (blueberry, cranberry, huckleberry), rapes, sparkleberries, and lingonberries. This could make O-acetylserine a potential biomarker for the consumption of these foods. O-acetyl-l-serine, also known as L-serine, acetate (ester) or (2s)-3-acetyloxy-2-aminopropanoate, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. O-acetyl-l-serine is soluble (in water) and a moderately acidic compound (based on its pKa). O-acetyl-l-serine can be found in a number of food items such as sorrel, summer savory, purslane, and cherimoya, which makes O-acetyl-l-serine a potential biomarker for the consumption of these food products. O-acetyl-l-serine can be found primarily in blood and urine, as well as in human prostate tissue. O-acetyl-l-serine exists in all living species, ranging from bacteria to humans. Acquisition and generation of the data is financially supported in part by CREST/JST. O-Acetylserine (O-Acetyl-L-serine) is an intermediate in the biosynthesis of the amino acid cysteine in bacteria and plants.
threo-b-methylaspartate
Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M009
Thiomorpholine 3-carboxylate
Thiomorpholine 3-carboxylate is a substrate for: Thiomorpholine-carboxylate dehydrogenase.
L-4-Hydroxyglutamate semialdehyde
L-4-Hydroxyglutamate semialdehyde is an intermediate in Arginine and proline metabolism. L-4-Hydroxyglutamate semialdehyde is the 4th to last step in the synthesis of Glyoxylate and is converted from L-erythro-4-Hydroxyglutamate via the enzyme 1-pyrroline-5-carboxylate dehydrogenase (EC 1.5.1.12). It is then converted to L-1-Pyrroline-3-hydroxy-5-carboxylate via enzymtic reaction. [HMDB] L-4-Hydroxyglutamate semialdehyde is an intermediate in Arginine and proline metabolism. L-4-Hydroxyglutamate semialdehyde is the 4th to last step in the synthesis of Glyoxylate and is converted from L-erythro-4-Hydroxyglutamate via the enzyme 1-pyrroline-5-carboxylate dehydrogenase (EC 1.5.1.12). It is then converted to L-1-Pyrroline-3-hydroxy-5-carboxylate via enzymtic reaction.
1-Methyl-2-nitro-1-nitrosoguanidine
D009676 - Noxae > D009153 - Mutagens > D009604 - Nitrosoguanidines
D-Glutamic acid
There are two forms of glutamic acid found in nature: L-glutamic acid and D-glutamic acid. D-glutamic acid, is not endogenously produced in higher mammals. It is found naturally primarily in the cell walls of certain bacteria. D-glutamate is also present in certain foods e.g., soybeans and also arises from the turnover of the intestinal tract microflora, whose cell walls contain significant D-glutamate. Unlike other D-amino acids, D-glutamate is not oxidized by the D-amino acid oxidases, and therefore this detoxification pathway is not available for handling D-glutamate. Likewise, D-glutamic acid, when ingested, largely escapes most deamination reactions (unlike the L-counterpart). Free D-glutamate is found in mammalian tissue at surprisingly high levels, with D-glutamate accounting for 9\\% of the total glutamate present in liver. D-glutamate is the most potent natural inhibitor of glutathione synthesis identified to date and this may account for its localization to the liver, since circulating D-glutamate may alter redox stabiity (PMID 11158923). Certain eels are known to use D-glutamic acid as a phermone for chemical communication. D-Glutamic acid has been found to be a metabolite of Lactobacillus (PMID: 22754309). There are two forms of glutamic acid found in nature: L-glutamic acid and D-glutamic acid. D-glutamic acid, is not endogenously produced in higher mammals. It is found naturally primarily in the cell walls of certain bacteria. D-glutamate is also present in certain foods e.g., soybeans and also arises from the turnover of the intestinal tract microflora, whose cell walls contain significant D-glutamate. Unlike other D-amino acids, D-glutamate is not oxidized by the D-amino acid oxidases, and therefore this detoxification pathway is not available for handling D-glutamate. Likewise, D-glutamic acid, when ingested, largely escapes most deamination reactions (unlike the L-counterpart). Free D-glutamate is found in mammalian tissue at surprisingly high levels, with D-glutamate accounting for 9\\% of the total glutamate present in liver. D-glutamate is the most potent natural inhibitor of glutathione synthesis identified to date and this may account for its localization to the liver, since circulating D-glutamate may alter redox stabiity (PMID 11158923). Certain eels are known to use D-glutamic acid as a phermone for chemical communication. [HMDB] D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID G005
DL-Glutamate
DL-Glutamate, also known as E or DL-glutamic acid, belongs to the class of organic compounds known as glutamic acid and derivatives. Glutamic acid and derivatives are compounds containing glutamic acid or a derivative thereof resulting from reaction of glutamic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). DL-Glutamate exists in all living organisms, ranging from bacteria to humans. DL-Glutamate is found, on average, in the highest concentration within a few different foods, such as red bell peppers, milk (cow), and wheats and in a lower concentration in eggplants, romaine lettuces, and nanking cherries. DL-Glutamate has also been detected, but not quantified, in a few different foods, such as apples, broccoli, and lettuces. Glutamic acid (abbreviated as Glu or E) is one of the 20 proteinogenic amino acids. It is a non-essential amino acid. Glutamic acid is found in many foods, some of which are garden onion, orange bell pepper, oat, and cucumber. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1].
UNII:EU52DFC4WJ
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
N-Acetylserine
N-Acetyl-L-serine or N-Acetylserine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylserine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylserine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-serine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\% of all human proteins and 68\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylserine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free serine can also occur. Excessive amounts N-acetyl amino acids including N-acetylserine (as well as N-acetylglycine, N-acetylglutamine, N-acetylmethionine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylserine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Acetylation of the N-terminal amino acid (-NH2 acetylation) is a common protein modification in eukaryotes but is rarely encountered in prokaryotes. In mammalians,80 to 90 percent of the cytosolic proteins are subjected to an irreversible, cotranslational amino acid acetylation at their N-terminus. Acetylation of the N-terminal amino acid (-NH2 acetylation) is a common protein modification in eukaryotes but is rarely encountered in prokaryotes. In mammalians, 80 to 90 percent of the cytosolic proteins are subjected to an irreversible, cotranslational amino acid acetylation at their N-terminus. N-acetylated proteins are catabolized in the cytosol by the ATP-ubiquitin-dependent proteasomal pathway. Several types of aminoacylases can be distinguished on the basis of substrate specificity. Aminoacylase I (ACY1; EC 3.5.1.14), the most abundant type, is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. It is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that comprises 15 exons (OMIM 609924). Preferred substrates of ACY1 are aliphatic amino acids with a short-chain acyl moiety, especially N-acetyl-methionine. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Functional aminoacylase I is crucial in the last step in this degradation as it catalyzes the hydrolysis of N-acetylated amino acids into acetate and the free amino acid. Although N-acetylation occurs in many metabolic pathways and N-acetylated metabolites are known to accumulate in several inborn errors, there are only a few reports on N-acetylated amino acids detected in urine. Identification of N-acetylated amino acids by routine GC-MS may be problematic for several reasons. The major problem is linked to the identification strategy itself. Identification of an unknown compound in mass spectrometry is usually based on comparison of its spectrum against a library of reference spectra. (PMID: 16465618, 16274666, 17723438). N-Acetyl-L-serine is found in watermelon.
Indole-3-carbinol
Indole-3-carbinol, also known as 3-indolylcarbinol or 1H-indole-3-methanol, belongs to the class of organic compounds known as 3-alkylindoles. 3-Alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-carbinol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases (PMID:2342128). Indole-3-carbinol is produced by members of the family Cruciferae, particularly members of the genus Brassica (e.g. cabbage, radishes, cauliflower, broccoli, Brussels sprouts, and daikon). Indole-3-carbinol is metabolized into a number of products, including the dimeric 3,3-diindolylmethane. Both 3,3-diindolylmethane and indole-3-carbinol are thought to have biological effects. Indole-3-carbinol is a natural chemopreventive compound. It has multiple anticarcinogenic and antitumorigenic properties; it can suppress the proliferation of certain cancer cells, including breast cancer, prostate cancer, endometrial cancer, colon cancer, and leukemic cells (PMID:16634522, 16082211). Produced from glucosinolates in Brassica species on crushing or cooking. Potential nutriceutical D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Indole-3-carbinol (I3C) inhibits NF-κB activity and also is an Aryl hydrocarbon receptor (AhR) agonist, and an inhibitor of WWP1 (WW domain-containing ubiquitin E3 ligase 1).
1-(2-Furanylmethyl)-1H-pyrrole
One of the constits. of the aroma of coffee also present in bread, roasted almond, popcorn, malt, roasted chicken, beer and sandalwood oil. Flavour ingredient. 1-(2-Furanylmethyl)-1H-pyrrole is found in many foods, some of which are alcoholic beverages, cereals and cereal products, coffee and coffee products, and animal foods. 1-(2-Furanylmethyl)-1H-pyrrole is found in alcoholic beverages. 1-(2-Furanylmethyl)-1H-pyrrole is one of the constits. of the aroma of coffee also present in bread, roasted almond, popcorn, malt, roasted chicken, beer and sandalwood oil. 1-(2-Furanylmethyl)-1H-pyrrole is a flavour ingredien
3-(Carboxymethylamino)propanoic acid
3-(Carboxymethylamino)propanoic acid is found in pulses. 3-(Carboxymethylamino)propanoic acid is isolated from Phaseolus radiatus var. typicus. Isolated from Phaseolus radiatus variety typicus. 3-(Carboxymethylamino)propanoic acid is found in pulses.
4-(2-Furanylmethylene)-3,4-dihydro-2H-pyrrole
Putative proline-derived Maillard product formed in model reactions with proline or pyrroline and ascorbic acid. Putative proline-derived Maillard product formed in model reactions with proline or pyrroline and ascorbic acid
3-(2-Furanylmethyl)-1H-pyrrole
Putative proline-derived Maillard product formed in model reactions with proline and ascorbic acid. Putative proline-derived Maillard product formed in model reactions with proline and ascorbic acid
N-lactoyl-Glycine
N-lactoyl-Glycine is lactoyl derivative of glycine. N-lactoyl-amino acids are ubiquitous pseudodipeptides of lactic acid and amino acids that are rapidly formed by reverse proteolysis. A protease, cytosolic nonspecific dipeptidase 2 (CNDP2), catalyzes their formation. The plasma levels of these metabolites strongly correlate with plasma levels of lactate and amino acid. (PMID: 25964343)
5-Hydroxy-4-oxo-L-norvaline
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
N-Methyl-DL-aspartic acid
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Nitrosomethylnitroguanidine
D009676 - Noxae > D009153 - Mutagens > D009604 - Nitrosoguanidines
(R)-pantoate
(r)-pantoate, also known as (R)-pantoic acid, is a member of the class of compounds known as hydroxy fatty acids. Hydroxy fatty acids are fatty acids in which the chain bears a hydroxyl group (r)-pantoate is soluble (in water) and a weakly acidic compound (based on its pKa). (r)-pantoate can be found in a number of food items such as spinach, gooseberry, chanterelle, and walnut, which makes (r)-pantoate a potential biomarker for the consumption of these food products.
5,6-Dimethyl-1H-benzotriazole
CONFIDENCE standard compound; INTERNAL_ID 4054
7-methyl-6,7-dihydro-5H-cyclopenta[c]pyridin-5-one
2-Amino-5-hydroxy-4-oxopentanoic acid
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
(3-Methoxy-phenyl)-acetonitrile|2-(3,4-dimethoxyphenyl)acetonitrile|2-(3-methoxyphenyl)acetonitrile|3-methoxybenzeneacetonitrile|3-methoxybenzyl cyanide|m-methoxybenzyl cyanide|m-methoxyphenylacetonitrile
Indole-3-carbinol
D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents IPB_RECORD: 276; CONFIDENCE confident structure Indole-3-carbinol (I3C) inhibits NF-κB activity and also is an Aryl hydrocarbon receptor (AhR) agonist, and an inhibitor of WWP1 (WW domain-containing ubiquitin E3 ligase 1).
Cinnamide
Cinnamamide is the simplest member of the class of cinnamamides that consists of acrylamide bearing a phenyl substituent at the 3-position. Cinnamamide is a natural product found in Haplophyllum ramosissimum, Aristolochia kaempferi, and other organisms with data available. (E)-Cinnamamide, the less active isomer of Cinnamamide. Cinnamamide, a derivative of the plant secondary compound Cinnamic acid. Cinnamamide is effective as a non-lethal chemical repellent suitable for reducing avian pest damage[1].
glutamate
Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
N-Acetyl-DL-Serine
Acquisition and generation of the data is financially supported in part by CREST/JST.
Glutamic Acid
An alpha-amino acid that is glutaric acid bearing a single amino substituent at position 2. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.049 L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
N-Methyl-D-aspartic acid
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists
L-glutamic acid
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WHUUTDBJXJRKMK-VKHMYHEASA-N_STSL_0113_Glutamic acid_8000fmol_180425_S2_LC02_MS02_66; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
O-Acetyl-L-serine
An acetyl-L-serine where the acetyl group is attached to the side-chain oxygen. It is an intermediate in the biosynthesis of the amino acid cysteine in bacteria. O-Acetylserine (O-Acetyl-L-serine) is an intermediate in the biosynthesis of the amino acid cysteine in bacteria and plants. O-Acetyl-L-serine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5147-00-2 (retrieved 2024-09-27) (CAS RN: 5147-00-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Cinnamamide
CONFIDENCE standard compound; INTERNAL_ID 8178 (E)-Cinnamamide, the less active isomer of Cinnamamide. Cinnamamide, a derivative of the plant secondary compound Cinnamic acid. Cinnamamide is effective as a non-lethal chemical repellent suitable for reducing avian pest damage[1].
5,6-Dimethylbenzotriazole
CONFIDENCE Reference Standard (Level 1); Source; 56diMeBT_MSMS.txt
Glutamic acid-2,3,3,4,4-d5
A deuterated compound that is glutamic acid in which the hydrogens at positions 2, 3, 3, 4 and 4 are replaced by deuterium.
2-Thiazolidinecarboxylicacid,methylester(6CI,8CI,9CI)
(R)-(+)-4-(2-CHLOROPHENYL)-2-HYDROXY-5,5-DIMETHYL-1,3,2-DIOXAPHOSPHORINANE2-OXIDE
(4S)-4-CYCLOHEXYL-1-{[(RS)-2-METHYL-1-(PROPIONYLOXY)PROPOXY]-(4-PHENYLBUTYL)PHOSPHINYLACETYL}-L-PROLINESODIUMSALT
3-Thiomorpholinecarboxylic acid
A thiomorpholinemonocarboxylic acid having the carboxy group at the 3-position.
(1-METHYL-1H-IMIDAZOL-2-YL)METHANAMINE HYDROCHLORIDE
Bicyclo[4.2.0]octa-1,3,5-triene-7-carbonitrile,2-fluoro-(9CI)
[1,2,4]Triazolo[1,5-a]pyridine-5-carboxaldehyde (9CI)
5H-Cyclopenta[b]pyridin-5-one,6,7-dihydro-2-methyl-(9CI)
Diethylthiocarbamic acid methyl ester
D004791 - Enzyme Inhibitors
(2S,3S,4S)-3,4-dihydroxypyrrolidine-2-carboxylic acid
2-Hydroxyglutaramic acid
A dicarboxylic acid monoamide that is 5-amino-5-oxopentanoic acid carrying a hydroxy group at position 2. It is a metabolite identified in human breast milk.
4-Hydroxyglutamate semialdehyde
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Glutaminium
An alpha-amino-acid cation that is the conjugate acid of glutamine, arising from protonation of the amino group.
D-Glutamic acid
D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids An optically active form of glutamic acid having D-configuration.
DL-Glutamic acid
D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1].
Isoglutamic acid
A 1,5-dicarboxylic acid compound having a 3-amino substituent. It has been isolated from the extracts of the algae, Chondria armata.
threo-3-methyl-L-aspartic acid
An aspartic acid derivative having a 3-methyl substituent.
Methylnitronitrosoguanidine
D009676 - Noxae > D009153 - Mutagens > D009604 - Nitrosoguanidines
N-Methyl-D-aspartate
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists An aspartic acid derivative having an N-methyl substituent and D-configuration.
O-acetyl-L-serine zwitterion
An amino acid zwitterion arising from transfer of a proton from the carboxy to the amino group of O-acetyl-L-serine; major species at pH 7.3.
L-4-hydroxyglutamic semialdehyde
A glutamic semialdehyde that is L-glutamic 5-semialdehyde substituted by a hydroxy group at position 4.
N-(carboxymethyl)-L-alanine
An L-alanine derivative that is L-alanine in which one of the hydrogens of the amino group is replaced by a carboxymethyl group. It is a marine metabolite which acts as a fish attractant.
Indole-3-methanol
An indolyl alcohol carrying a hydroxymethyl group at position 3. It is a constituent of the cruciferous vegetables and had anticancer activity.
Mevalonate
A hydroxy monocarboxylic acid anion that is the conjugate base of mevalonic acid, arising from deprotonation of the carboxy group.
methyl gamma-D-aspartate
A dicarboxylic acid monoester obtained by condensation of the side-chain carboxy group of D-aspartic acid with methanol.
L-4-hydroxyglutamate semialdehyde zwitterion
The L-alpha-amino acid zwitterion formed from L-4-hydroxyglutamic semialdehyde by transfer of a proton from the carboxy to the amine group; it is the principal microspecies at pH 7.3.
(3S,4S)-3,4-dihydroxy-L-proline
A L-proline derivative that is L-proline substituted by hydroxy groups at positions 3 and 4 (the 3S,4S diastereoisomer).
N-Acetyl-L-serine
An N-acetyl-L-amino acid in which the amino acid specified is L-serine. Metabolite observed in cancer metabolism.