cinnamate (BioDeep_00000840388)
代谢物信息卡片
化学式: C9H7O2- (147.0446)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 63.46%
分子结构信息
SMILES: C1=CC=C(C=C1)C=CC(=O)[O-]
InChI: InChI=1S/C9H8O2/c10-9(11)7-6-8-4-2-1-3-5-8/h1-7H,(H,10,11)/p-1
描述信息
A member of the class of cinnamates that results from the deprotonation of the carboxy group of cinnamic acid.
同义名列表
1 个代谢物同义名
数据库引用编号
6 个数据库交叉引用编号
- ChEBI: CHEBI:15669
- ChEBI: CHEBI:23248
- PubChem: 5957728
- MeSH: Cinnamates
- CAS: 4151-45-5
- MetaboLights: MTBLC23248
分类词条
相关代谢途径
Reactome(0)
BioCyc(9)
- superpathway of scopolin and esculin biosynthesis
- suberin biosynthesis
- volatile cinnamoic ester biosynthesis
- ephedrine biosynthesis
- suberin monomers biosynthesis
- superpathway of rosmarinic acid biosynthesis
- hyperxanthone E biosynthesis
- benzoate biosynthesis I (CoA-dependent, β-oxidative)
- curcuminoid biosynthesis
PlantCyc(7)
代谢反应
1020 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(22)
- cinnamate esters biosynthesis:
trans-cinnamate + UDP-α-D-glucose ⟶ trans-cinnamoyl-β-D-glucoside + UDP
- cinnamate esters biosynthesis:
trans-cinnamate + UDP-α-D-glucose ⟶ trans-cinnamoyl-β-D-glucoside + UDP
- volatile cinnamoic ester biosynthesis:
SAM + isoeugenol ⟶ H+ + SAH + isomethyleugenol
- rosmarinic acid biosynthesis I:
phe ⟶ trans-cinnamate + ammonium
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
benzoyl-CoA + benzyl alcohol ⟶ benzylbenzoate + coenzyme A
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- phenylpropanoid biosynthesis, initial reactions:
phe ⟶ trans-cinnamate + ammonium
- superpathway of rosmarinic acid biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- ephedrine biosynthesis:
(+)-norpseudoephedrine + SAM ⟶ H+ + SAH + pseudoephedrine
- curcuminoid biosynthesis:
(E)-4-coumaroyl-CoA + H2O + feruloylacetyl-CoA ⟶ CO2 + coenzyme A + demethoxycurcumin
- hyperxanthone E biosynthesis:
2,4,6-trihydroxybenzophenone + DMAPP ⟶ diphosphate + hyperxanthone E
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- suberin monomers biosynthesis:
feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- superpathway of scopolin and esculin biosynthesis:
SAM + esculetin ⟶ H+ + SAH + scopoletin
- phenylpropanoid biosynthesis, initial reactions:
phe ⟶ trans-cinnamate + ammonium
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(998)
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
trans-cinnamate + UDP-α-D-glucose ⟶ trans-cinnamoyl-β-D-glucoside + UDP
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
trans-cinnamate + UDP-α-D-glucose ⟶ trans-cinnamoyl-β-D-glucoside + UDP
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
trans-cinnamate + UDP-α-D-glucose ⟶ trans-cinnamoyl-β-D-glucoside + UDP
- cinnamate esters biosynthesis:
trans-cinnamate + UDP-α-D-glucose ⟶ trans-cinnamoyl-β-D-glucoside + UDP
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
trans-cinnamate + UDP-α-D-glucose ⟶ trans-cinnamoyl-β-D-glucoside + UDP
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
trans-cinnamate + UDP-α-D-glucose ⟶ trans-cinnamoyl-β-D-glucoside + UDP
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
trans-cinnamate + UDP-α-D-glucose ⟶ trans-cinnamoyl-β-D-glucoside + UDP
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
trans-cinnamate + UDP-α-D-glucose ⟶ trans-cinnamoyl-β-D-glucoside + UDP
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- cinnamate esters biosynthesis:
UDP-α-D-glucose + cinnamate ⟶ UDP + cinnamoyl-β-D-glucoside
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + isoeugenol ⟶ H+ + SAH + isomethyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- ephedrine biosynthesis:
(+)-norpseudoephedrine + SAM ⟶ H+ + SAH + pseudoephedrine
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- phenylpropanoid biosynthesis, initial reactions:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- rosmarinic acid biosynthesis I:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- phenylpropanoid biosynthesis, initial reactions:
phe ⟶ ammonium + cinnamate
- curcuminoid biosynthesis:
4-coumaroylacetyl-CoA + trans-feruloyl-CoA + H2O ⟶ CO2 + coenzyme A + demethoxycurcumin
- rosmarinic acid biosynthesis I:
phe ⟶ ammonium + cinnamate
- hyperxanthone E biosynthesis:
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- trans-cinnamoyl-CoA biosynthesis:
phe ⟶ trans-cinnamate + ammonium
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- trans-cinnamoyl-CoA biosynthesis:
trans-cinnamate + ATP + coenzyme A ⟶ (E)-cinnamoyl-CoA + AMP + diphosphate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- phenylpropanoid biosynthesis, initial reactions:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- superpathway of scopolin and esculin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- cinnamoyl-CoA biosynthesis:
phe ⟶ ammonium + cinnamate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- phenylpropanoid biosynthesis, initial reactions:
O2 + a reduced [NADPH-hemoprotein reductase] + cinnamate ⟶ 4-coumarate + H2O + an oxidized [NADPH-hemoprotein reductase]
- rosmarinic acid biosynthesis I:
4-coumarate + ATP + coenzyme A ⟶ (E)-4-coumaroyl-CoA + AMP + diphosphate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- avenanthramide biosynthesis:
(E)-4-coumaroyl-CoA + 5-hydroxyanthranilate ⟶ avenanthramide A + coenzyme A
- avenanthramide biosynthesis:
(E)-4-coumaroyl-CoA + shikimate ⟶ trans-5-O-(4-coumaroyl)shikimate + coenzyme A
- avenanthramide biosynthesis:
4-coumarate + ATP + coenzyme A ⟶ (E)-4-coumaroyl-CoA + AMP + diphosphate
- superpathway of rosmarinic acid biosynthesis:
(R)-3-(3,4-dihydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(3,4-dihydroxyphenyl)pyruvate + H+ + NAD(P)H
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- phenylpropanoid biosynthesis, initial reactions:
phe ⟶ ammonium + cinnamate
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- cinnamoyl-CoA biosynthesis:
ATP + cinnamate + coenzyme A ⟶ AMP + cinnamoyl-CoA + diphosphate
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- avenanthramide biosynthesis:
4-coumarate + ATP + coenzyme A ⟶ (E)-4-coumaroyl-CoA + AMP + diphosphate
- avenanthramide biosynthesis:
4-coumarate + ATP + coenzyme A ⟶ (E)-4-coumaroyl-CoA + AMP + diphosphate
- superpathway of rosmarinic acid biosynthesis:
(R)-3-(3,4-dihydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(3,4-dihydroxyphenyl)pyruvate + H+ + NAD(P)H
- avenanthramide biosynthesis:
(E)-4-coumaroyl-CoA + 5-hydroxyanthranilate ⟶ avenanthramide A + coenzyme A
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- superpathway of rosmarinic acid biosynthesis:
(R)-3-(3,4-dihydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(3,4-dihydroxyphenyl)pyruvate + H+ + NAD(P)H
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- avenanthramide biosynthesis:
4-coumarate + ATP + coenzyme A ⟶ (E)-4-coumaroyl-CoA + AMP + diphosphate
- superpathway of rosmarinic acid biosynthesis:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- avenanthramide biosynthesis:
(E)-4-coumaroyl-CoA + shikimate ⟶ trans-5-O-(4-coumaroyl)shikimate + coenzyme A
- superpathway of rosmarinic acid biosynthesis:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
- rosmarinic acid biosynthesis I:
(R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ ⟶ 3-(4-hydroxyphenyl)pyruvate + H+ + NAD(P)H
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Mohsen Mardani, Katalin Badakné, Ildikó Szedljak, Csilla Sörös, Jamshid Farmani. Lipophilized rosmarinic acid: Impact of alkyl type and food matrix on antioxidant activity, and optimized enzymatic production.
Food chemistry.
2024 Sep; 452(?):139518. doi:
10.1016/j.foodchem.2024.139518
. [PMID: 38713983] - Łukasz Sęczyk, Elvyra Jariene, Danuta Sugier, Barbara Kołodziej. Effects of the dose of administration, co-antioxidants, food matrix, and digestion-related factors on the in vitro bioaccessibility of rosmarinic acid - A model study.
Food chemistry.
2024 Aug; 449(?):139201. doi:
10.1016/j.foodchem.2024.139201
. [PMID: 38599104] - Abhinav Singh, Alisha Ansari, Jay Gupta, Himalaya Singh, Kumaravelu Jagavelu, Koneni V Sashidhara. Androsin alleviates non-alcoholic fatty liver disease by activating autophagy and attenuating de novo lipogenesis.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155702. doi:
10.1016/j.phymed.2024.155702
. [PMID: 38749344] - Guanwen Xie, Xiuzai Zou, Zishan Liang, Ke Zhang, Duan Wu, Honglei Jin, Hongbin Wang, Qi Shen. GBF family member PfGBF3 and NAC family member PfNAC2 regulate rosmarinic acid biosynthesis under high light.
Plant physiology.
2024 Jun; 195(2):1728-1744. doi:
10.1093/plphys/kiae036
. [PMID: 38441888] - Guilian Zhang, Yuee Sun, Najeeb Ullah, Deepak Kasote, Longyi Zhu, Hui Liu, Ling Xu. Changes in secondary metabolites contents and stress responses in Salvia miltiorrhiza via ScWRKY35 overexpression: Insights from a wild relative Salvia castanea.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108671. doi:
10.1016/j.plaphy.2024.108671
. [PMID: 38703500] - Baojun Su, Gaowu Huang, Shanshan Zhu, Yaqi Wang, Qian Lan, Yue Hou, Dong Liang. N-Cinnamoylpyrrole-derived alkaloids from the genus Piper as promising agents for ischemic stroke by targeting eEF1A1.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jun; 128(?):155455. doi:
10.1016/j.phymed.2024.155455
. [PMID: 38513376] - Menglu Wu, Zi-An Deng, Chaoyi Shen, Zhichao Yang, Zihan Cai, Di Wu, Kunsong Chen. Fabrication of antimicrobial PCL/EC nanofibrous films containing natamycin and trans-cinnamic acid by microfluidic blow spinning for fruit preservation.
Food chemistry.
2024 Jun; 442(?):138436. doi:
10.1016/j.foodchem.2024.138436
. [PMID: 38244441] - Siyu Wang, Jianzhan Yang, Xiaolan Kuang, Haoxiang Li, Haifang Du, Yunshan Wu, Fangfang Xu, Bo Liu. Ethyl cinnamate suppresses tumor growth through anti-angiogenesis by attenuating VEGFR2 signal pathway in colorectal cancer.
Journal of ethnopharmacology.
2024 May; 326(?):117913. doi:
10.1016/j.jep.2024.117913
. [PMID: 38360380] - Sara Motyka, Agnieszka Szopa, Sergio J Ochatt. Distinction of chia varieties in vivo and in vitro based on the flow cytometry and rosmarinic acid production.
Applied microbiology and biotechnology.
2024 May; 108(1):337. doi:
10.1007/s00253-024-13171-w
. [PMID: 38767664] - Mei Ling Ng, Amin Malik Shah Abdul Majid, Siew Mei Yee, V Natesan, Mohamed Khadeer Ahamed Basheer, Ashok Gnanasekaran, Fouad Saleih Resq Al-Suede, Christopher Parish, Meena Dalal, Long Chiau Ming, Mansoureh Nazari V, Shamsuddin Sultan Khan, Siti Balkees Stn Hameed Sultan, K Govind Babu, Aman Shah Abdul Majid, Mohamed Amir Shah Abdul Aziz. A phase II randomized, double-blind, placebo-controlled study of Nuvastatic (C50SEW505OESA), a standardized rosmarinic acid-rich polymolecular botanical extract formulation to reduce cancer-related fatigue in patients with solid tumors.
Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer.
2024 May; 32(6):331. doi:
10.1007/s00520-024-08536-w
. [PMID: 38710920] - Rong Fan, Zining Liang, Qing Wang, Sizhe Chen, Shiting Huang, Jiansu Liu, Rui Huang, Jie Chen, Feilan Zhao, Wei Huang. Beneficial action of cinnamic acid against ovarian cancer via network pharmacology analysis and the pharmacological activity assessment.
Naunyn-Schmiedeberg's archives of pharmacology.
2024 05; 397(5):2987-2994. doi:
10.1007/s00210-023-02766-1
. [PMID: 37870582] - Jiabo He, Zhi Chen, Chen Jing, Weiwei Zhang, Hangke Peng, Honglei Zhou, Fengxiao Hu. Behavioral and biochemical responses of the marine polychaete Perinereis aibuhitensis to 2-ethylhexyl-4-methoxycinnamate (EHMC) exposure.
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2024 May; 279(?):109868. doi:
10.1016/j.cbpc.2024.109868
. [PMID: 38423197] - Micheli Negri Brusamarello, Antonio Pedro Brusamarello, Mário Antônio Alves da Cunha, Cleverson Busso. Biological and phytochemical potential of Baccharis trimera (Less.) DC leaf extract on swine clinical isolates.
Natural product research.
2024 May; 38(10):1799-1805. doi:
10.1080/14786419.2023.2222217
. [PMID: 37292020] - Yanan Lu, Xue Han. Therapeutic Implications of Phenolic Acids for Ameliorating Inflammatory Bowel Disease.
Nutrients.
2024 Apr; 16(9):. doi:
10.3390/nu16091347
. [PMID: 38732594] - Natticha Sumneang, Komsak Pintha, Sarawut Kongkarnka, Maitree Suttajit, Napapan Kangwan. Protective Effect of Perilla Seed Meal and Perilla Seed Extract against Dextran Sulfate Sodium-Induced Ulcerative Colitis through Suppressing Inflammatory Cytokines in Mice.
Molecules (Basel, Switzerland).
2024 Apr; 29(9):. doi:
10.3390/molecules29091940
. [PMID: 38731431] - Tarun Kumar Kar, Sananda Sil, Angshita Ghosh, Ananya Barman, Sandip Chattopadhyay. Mitigation of letrozole induced polycystic ovarian syndrome associated inflammatory response and endocrinal dysfunction by Vitex negundo seeds.
Journal of ovarian research.
2024 Apr; 17(1):76. doi:
10.1186/s13048-024-01378-4
. [PMID: 38589892] - Jafar Fatahi Asl, Mehdi Goudarzi, Esrafil Mansouri, Hamed Shoghi. Rosmarinic Acid Protects the Testes of Rats against Cell Phone and Ultra-high Frequency Waves Induced Toxicity.
Iranian journal of medical sciences.
2024 Apr; 49(4):237-246. doi:
10.30476/ijms.2023.97695.2952
. [PMID: 38680223] - Dyoni M Oliveira, Dechang Cao. Spotlight on overlooked lignin monomers: Hydroxycinnamaldehydes.
Plant physiology.
2024 Feb; 194(3):1250-1252. doi:
10.1093/plphys/kiad589
. [PMID: 37933704] - O V Ravikumar, Vanitha Marunganathan, Meenakshi Sundaram Kishore Kumar, Magesh Mohan, Mohammed Rafi Shaik, Baji Shaik, Ajay Guru, Khairiyah Mat. Zinc oxide nanoparticles functionalized with cinnamic acid for targeting dental pathogens receptor and modulating apoptotic genes in human oral epidermal carcinoma KB cells.
Molecular biology reports.
2024 Feb; 51(1):352. doi:
10.1007/s11033-024-09289-9
. [PMID: 38400866] - Rei Uranishi, Raju Aedla, Doaa H M Alsaadi, Dongxing Wang, Ken Kusakari, Hirotaka Osaki, Koji Sugimura, Takashi Watanabe. Evaluation of Environmental Factor Effects on the Polyphenol and Flavonoid Content in the Leaves of Chrysanthemum indicum L. and Its Habitat Suitability Prediction Mapping.
Molecules (Basel, Switzerland).
2024 Feb; 29(5):. doi:
10.3390/molecules29050927
. [PMID: 38474439] - Hanru Liu, Chonglin Cai, Xingjia Zhang, Wenkui Li, Zhiqing Ma, Juntao Feng, Xili Liu, Peng Lei. Discovery of Novel Cinnamic Acid Derivatives as Fungicide Candidates.
Journal of agricultural and food chemistry.
2024 Feb; 72(5):2492-2500. doi:
10.1021/acs.jafc.3c05655
. [PMID: 38271672] - Fábio Florença Cardoso, Guilherme Henrique Marchi Salvador, Walter Luís Garrido Cavalcante, Maeli Dal-Pai, Marcos Roberto de Mattos Fontes. BthTX-I, a phospholipase A2-like toxin, is inhibited by the plant cinnamic acid derivative: chlorogenic acid.
Biochimica et biophysica acta. Proteins and proteomics.
2024 02; 1872(2):140988. doi:
10.1016/j.bbapap.2023.140988
. [PMID: 38142025] - Baoyun Shan, Jian Mo, Jiayi Yang, Xiaochun Qin, Haina Yu. Cloning and functional characterization of a cinnamate 4-hydroxylase gene from the hornwort Anthoceros angustus.
Plant science : an international journal of experimental plant biology.
2024 Jan; 341(?):111989. doi:
10.1016/j.plantsci.2024.111989
. [PMID: 38232819] - Vera A Kostikova, Natalia V Petrova, Alexander A Chernonosov, Vladimir V Koval, Evgeniia R Kovaleva, Wei Wang, Andrey S Erst. Chemical Composition of Methanol Extracts from Leaves and Flowers of Anemonopsis macrophylla (Ranunculaceae).
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020989
. [PMID: 38256067] - Runqin Wang, Xueling Zhang, Xiangyu Meng, Li Yang, Rongrong Xing, Xuan Chen, Shuang Hu. Hydroxyl-rich ferrofluid for efficient liquid phase microextraction of cinnamic acid derivatives in traditional Chinese medicine.
Journal of separation science.
2024 Jan; 47(1):e2300796. doi:
10.1002/jssc.202300796
. [PMID: 38234030] - Yuling Tai, Jie Zhang, Youhui Chen, Yi Yuan, Honggang Wang, Luyao Yu, Shuangshuang Li, Lu Yang, Yifan Jin. Establishment and validation of a callus tissue transformation system for German chamomile (Matricaria chamomilla L.).
BMC plant biology.
2023 Dec; 23(1):659. doi:
10.1186/s12870-023-04680-3
. [PMID: 38124039] - Wei Quan, Yuan Wang, Yu-Han Chen, Qing Shao, Yang-Ze Gong, Jie-Wen Hu, Wei-Hai Liu, Zi-Jun Wu, Jie Wang, Shan-Bo Ma, Xiao-Qiang Li. Screening of rosmarinic acid from Salvia miltiorrhizae acting on the novel target TRPC1 based on the 'homology modelling-virtual screening-molecular docking-affinity assay-activity evaluation' method.
Pharmaceutical biology.
2023 Dec; 61(1):155-164. doi:
10.1080/13880209.2022.2160769
. [PMID: 36604840] - Md Khabeer Azhar, Saleha Anwar, Gulam Mustafa Hasan, Anas Shamsi, Asimul Islam, Suhel Parvez, Md Imtaiyaz Hassan. Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases.
Nutrients.
2023 Oct; 15(19):. doi:
10.3390/nu15194297
. [PMID: 37836581] - Koichi Yoshioka, Hoon Kim, Fachuang Lu, Nette De Ridder, Ruben Vanholme, Shinya Kajita, Wout Boerjan, John Ralph. Hydroxycinnamaldehyde-derived benzofuran components in lignins.
Plant physiology.
2023 Sep; ?(?):. doi:
10.1093/plphys/kiad514
. [PMID: 37773018] - Yu Shi, Lan-Tu Xiong, Hui Li, Wen-Long Li, Dylan O'Neill Rothenberg, Li-Sheng Liao, Xin Deng, Gao-Peng Song, Zi-Ning Cui. Derivative of cinnamic acid inhibits T3SS of Xanthomonas oryzae pv. oryzae through the HrpG-HrpX regulatory cascade.
Bioorganic chemistry.
2023 Sep; 141(?):106871. doi:
10.1016/j.bioorg.2023.106871
. [PMID: 37734193] - Michael Hymas, Irene Casademont-Reig, Stéphane Poigny, Vasilios G Stavros. Characteristic Photoprotective Molecules from the Sphagnum World: A Solution-Phase Ultrafast Study of Sphagnic Acid.
Molecules (Basel, Switzerland).
2023 Aug; 28(16):. doi:
10.3390/molecules28166153
. [PMID: 37630405] - Ju Ye, Cheng Wang, Yu-Jie Ma, Zha-Xi Baima, Yuan-Yuan Tang, Xu-Guang He, Min Ma. [Multi-component content determination of Dracocephalum tanguticum by quantitative analysis of multi-components by single-marker].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Aug; 48(15):4253-4260. doi:
10.19540/j.cnki.cjcmm.20230411.202
. [PMID: 37802794] - Pu Zhang, Kewei Rong, Jiadong Guo, Lei Cui, Keyu Kong, Chen Zhao, Huan Yang, Hongtao Xu, An Qin, Peixiang Ma, Xiao Yang, Jie Zhao. Cynarin alleviates intervertebral disc degeneration via protecting nucleus pulposus cells from ferroptosis.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Aug; 165(?):115252. doi:
10.1016/j.biopha.2023.115252
. [PMID: 37536034] - Jieqian Kong, Chengshuang Huang, Yi Xiong, Baihuan Li, Wenping Kong, Wangyang Liu, Zhouke Tan, Dian Peng, Yanwen Duan, Xiangcheng Zhu. Discovery and Biosynthetic Studies of a Highly Reduced Cinnamoyl Lipid, Tripmycin A, from an Endophytic Streptomyces sp.
Journal of natural products.
2023 07; 86(7):1870-1877. doi:
10.1021/acs.jnatprod.3c00199
. [PMID: 37462318] - Chunyan Zhu, Yunchang Fan, Hongwei Wu. The Selective Separation of Carnosic Acid and Rosmarinic Acid by Solid-Phase Extraction and Liquid-Liquid Extraction: A Comparative Study.
Molecules (Basel, Switzerland).
2023 Jul; 28(14):. doi:
10.3390/molecules28145493
. [PMID: 37513364] - Ilias El Houari, Petr Klíma, Alexandra Baekelandt, Paul E Staswick, Veselina Uzunova, Charo I Del Genio, Ward Steenackers, Petre I Dobrev, Roberta Filepová, Ondrej Novák, Richard Napier, Jan Petrášek, Dirk Inzé, Wout Boerjan, Bartel Vanholme. Non-specific effects of the CINNAMATE-4-HYDROXYLASE inhibitor piperonylic acid.
The Plant journal : for cell and molecular biology.
2023 Jul; 115(2):470-479. doi:
10.1111/tpj.16237
. [PMID: 37036146] - Giuseppe Di Pede, Pedro Mena, Letizia Bresciani, Mariem Achour, Rosa Mª Lamuela, Ramón Estruch, Rikard Landberg, Sabine E Kulling, David Wishart, Ana Rodriguez-Mateos, Michael N Clifford, Alan Crozier, Claudine Manach, Daniele Del Rio. A systematic review and comprehensive evaluation of human intervention studies to unravel the bioavailability of hydroxycinnamic acids.
Antioxidants & redox signaling.
2023 Jun; ?(?):. doi:
10.1089/ars.2023.0254
. [PMID: 37382416] - Zühal Bayrakçeken Güven, Iclal Saracoglu, Akito Nagatsu, Mustafa Abdullah Yilmaz, A Ahmet Basaran. Anti-tyrosinase and antimelanogenic effect of cinnamic acid derivatives from Prunus mahaleb L.: Phenolic composition, isolation, identification and inhibitory activity.
Journal of ethnopharmacology.
2023 Jun; 310(?):116378. doi:
10.1016/j.jep.2023.116378
. [PMID: 36924865] - Osbert Chou, Yu-Pu Juang, Tai-Ling Chao, Sheng-Fa Tsai, Pei-Fang Chiu, Chun-Tang Chiou, Keng-Chang Tsai, Sui-Yuan Chang, Pi-Hui Liang, Chi-Huey Wong. Isolation of Anti-SARS-CoV-2 Natural Products Extracted from Mentha canadensis and the Semi-synthesis of Antiviral Derivatives.
Journal of natural products.
2023 06; 86(6):1428-1436. doi:
10.1021/acs.jnatprod.3c00104
. [PMID: 37267066] - Katarzyna Sykłowska-Baranek, Małgorzata Gaweł, Łukasz Kuźma, Beata Wileńska, Mateusz Kawka, Małgorzata Jeziorek, Konstantia Graikou, Ioanna Chinou, Ewa Szyszko, Piotr Stępień, Patryk Zakrzewski, Agnieszka Pietrosiuk. Rindera graeca (A. DC.) Boiss. & Heldr. (Boraginaceae) In Vitro Cultures Targeting Lithospermic Acid B and Rosmarinic Acid Production.
Molecules (Basel, Switzerland).
2023 Jun; 28(12):. doi:
10.3390/molecules28124880
. [PMID: 37375435] - Marta Krzemińska, Katarzyna Hnatuszko-Konka, Izabela Weremczuk-Jeżyna, Aleksandra Owczarek-Januszkiewicz, Wiktoria Ejsmont, Monika A Olszewska, Izabela Grzegorczyk-Karolak. Effect of Light Conditions on Polyphenol Production in Transformed Shoot Culture of Salvia bulleyana Diels.
Molecules (Basel, Switzerland).
2023 Jun; 28(12):. doi:
10.3390/molecules28124603
. [PMID: 37375158] - Shumaila Ijaz, Javed Iqbal, Banzeer Ahsan Abbasi, Zakir Ullah, Tabassum Yaseen, Sobia Kanwal, Tariq Mahmood, Sandugash Sydykbayeva, Alibek Ydyrys, Zainab M Almarhoon, Javad Sharifi-Rad, Christophe Hano, Daniela Calina, William C Cho. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Jun; 162(?):114687. doi:
10.1016/j.biopha.2023.114687
. [PMID: 37062215] - Mohammad Hossein Mirzaee, Masoumeh Emadpour. Advances in the Transformation of Cyclamen persicum Mill. Through Direct Regeneration Based on an Optimized Kanamycin Selection Scheme.
Molecular biotechnology.
2023 May; ?(?):. doi:
10.1007/s12033-023-00758-3
. [PMID: 37133706] - Ester Gonçalves de Jesus, Fernanda Fernandes de Souza, João Victor Andrade, Márcio Luís Andrade E Silva, Wilson R Cunha, Rafael Corrêa Ramos, Othon Souto Campos, Jorge Alexandre Nogueira Santos, Mario F C Santos. In silico and in vitro elastase inhibition assessment assays of rosmarinic acid natural product from Rosmarinus officinalis Linn.
Natural product research.
2023 Apr; ?(?):1-6. doi:
10.1080/14786419.2023.2196077
. [PMID: 37004998] - Yan-Jiao Yin, Hong Zhou, Jiao-Jiao Zhang, Dan Cai, Yuan-Nan Yuan, Zhong-Hui Yang, Yong-Xian Cheng. Isolation and Characterization of trans-p-Hydroxycinnamoyl Meroterpenoids from Ganoderma sinensis.
Chemistry & biodiversity.
2023 Apr; 20(4):e202300022. doi:
10.1002/cbdv.202300022
. [PMID: 36971262] - Yuying Hou, Yufei Wang, Xiaoyu Liu, Naveed Ahmad, Nan Wang, Libo Jin, Na Yao, Xiuming Liu. A Cinnamate 4-HYDROXYLASE1 from Safflower Promotes Flavonoids Accumulation and Stimulates Antioxidant Defense System in Arabidopsis.
International journal of molecular sciences.
2023 Mar; 24(6):. doi:
10.3390/ijms24065393
. [PMID: 36982470] - Cyrille Tchuente Djoko, Alfred Ngenge Tamfu, Jean Noël Nyemb, Romeo Toko Feunaing, Sophie Laurent, Céline Henoumont, Emmanuel Talla, Alessandro Venditti. In vitro α-glucosidase inhibitory activity of isolated compounds and semisynthetic derivative from aerial parts of Erythrina senegalensis DC.
Natural product research.
2023 Jan; ?(?):1-10. doi:
10.1080/14786419.2023.2167205
. [PMID: 36647748] - Ali Moghadam, Eisa Foroozan, Ahmad Tahmasebi, Mohammad Sadegh Taghizadeh, Mohammad Bolhassani, Morteza Jafari. System network analysis of Rosmarinus officinalis transcriptome and metabolome-Key genes in biosynthesis of secondary metabolites.
PloS one.
2023; 18(3):e0282316. doi:
10.1371/journal.pone.0282316
. [PMID: 36862714] - Yang-Yang Shi, Bo Wei, Jing Zhou, Zhi-Li Yin, Fei Zhao, Ya-Jie Peng, Qing-Wen Yu, Xin-Lu Wang, Ya-Jing Chen. Discovery of 5-(3,4-dihydroxybenzylidene)-1,3-dimethylpyrimidine- 2,4,6(1H,3H,5H)-trione as a novel and effective cardioprotective agent via dual anti-inflammatory and anti-oxidative activities.
European journal of medicinal chemistry.
2022 Dec; 244(?):114848. doi:
10.1016/j.ejmech.2022.114848
. [PMID: 36274277] - Ji-Xian Song, Ya-Shuo Zhao, Ya-Qin Zhen, Xin-Yue Yang, Qi Chen, Ji-Ren An, En-Sheng Ji. Banxia-Houpu decoction diminishes iron toxicity damage in heart induced by chronic intermittent hypoxia.
Pharmaceutical biology.
2022 Dec; 60(1):609-620. doi:
10.1080/13880209.2022.2043392
. [PMID: 35286247] - Emily E Burns, Kyle S Roush, Susan A Csiszar, Iain A Davies. Freshwater Environmental Risk Assessment of Down-the-Drain Octinoxate Emissions in the United States.
Environmental toxicology and chemistry.
2022 12; 41(12):3116-3124. doi:
10.1002/etc.5488
. [PMID: 36148933] - Nagwa A Shoeib, Lamiaa A Al-Madboly, Amany E Ragab. In vitro and in silico β-lactamase inhibitory properties and phytochemical profile of Ocimum basilicum cultivated in central delta of Egypt.
Pharmaceutical biology.
2022 Dec; 60(1):1969-1980. doi:
10.1080/13880209.2022.2127791
. [PMID: 36226757] - Tahani M Almeleebia, Abdulrhman Alsayari, Shadma Wahab. Pharmacological and Clinical Efficacy of Picrorhiza kurroa and Its Secondary Metabolites: A Comprehensive Review.
Molecules (Basel, Switzerland).
2022 Nov; 27(23):. doi:
10.3390/molecules27238316
. [PMID: 36500409] - Liangfeng Liu, Huai Chen, Yixin He, Jianliang Liu, Xue Dan, Lin Jiang, Wei Zhan. Carbon stock stability in drained peatland after simulated plant carbon addition: Strong dependence on deeper soil.
The Science of the total environment.
2022 Nov; 848(?):157539. doi:
10.1016/j.scitotenv.2022.157539
. [PMID: 35908690] - Mi Guo, Jiabao Hou, Canying Li, Linhong Qu, Rui Huang, Jiaxin Liu, Yonghong Ge. Acibenzolar-S-methyl activates calcium signalling to mediate lignin synthesis in the exocarp of Docteur Jules Guyot pears.
Plant physiology and biochemistry : PPB.
2022 Nov; 190(?):174-183. doi:
10.1016/j.plaphy.2022.09.001
. [PMID: 36116226] - Vittoria Borgonetti, Giovanna Pressi, Oriana Bertaiola, Chiara Guarnerio, Manuela Mandrone, Ilaria Chiocchio, Nicoletta Galeotti. Attenuation of neuroinflammation in microglia cells by extracts with high content of rosmarinic acid from in vitro cultured Melissa officinalis L. cells.
Journal of pharmaceutical and biomedical analysis.
2022 Oct; 220(?):114969. doi:
10.1016/j.jpba.2022.114969
. [PMID: 35961210] - Ah-Kyung Jang, Md Mamunur Rashid, Gakyung Lee, Doo-Young Kim, Hyung Won Ryu, Sei-Ryang Oh, Jinyoung Park, Hyunbeom Lee, Jongki Hong, Byung Hwa Jung. Metabolites identification for major active components of Agastache rugosa in rat by UPLC-Orbitap-MS: Comparison of the difference between metabolism as a single component and as a component in a multi-component extract.
Journal of pharmaceutical and biomedical analysis.
2022 Oct; 220(?):114976. doi:
10.1016/j.jpba.2022.114976
. [PMID: 35939877] - Deepthi Padmanabhan, Purushothaman Natarajan, Senthilkumar Palanisamy. Integrated Metabolite and Transcriptome Profiling-Mediated Gene Mining of Sida cordifolia Reveals Medicinally Important Genes.
Genes.
2022 10; 13(10):. doi:
10.3390/genes13101909
. [PMID: 36292794] - Ali Naseri, Abolfazl Alirezalu, Parviz Noruzi, Kazem Alirezalu. The effect of different ammonium to nitrate ratios on antioxidant activity, morpho-physiological and phytochemical traits of Moldavian balm (Dracocephalum moldavica).
Scientific reports.
2022 10; 12(1):16841. doi:
10.1038/s41598-022-21338-6
. [PMID: 36207586] - Ashutosh Joshi, Gajendra Singh Jeena, Shikha, Ravi Shankar Kumar, Alok Pandey, Rakesh Kumar Shukla. Ocimum sanctum, OscWRKY1, regulates phenylpropanoid pathway genes and promotes resistance to pathogen infection in Arabidopsis.
Plant molecular biology.
2022 Oct; 110(3):235-251. doi:
10.1007/s11103-022-01297-2
. [PMID: 35780285] - Himanshu Verma, Naveen Shivavedi, Gullanki N V C Tej, Mukesh Kumar, Prasanta K Nayak. Prophylactic administration of rosmarinic acid ameliorates depression-associated cardiac abnormalities in Wistar rats: Evidence of serotonergic, oxidative, and inflammatory pathways.
Journal of biochemical and molecular toxicology.
2022 Oct; 36(10):e23160. doi:
10.1002/jbt.23160
. [PMID: 35838106] - Nilay Kahya, Sacide Melek Kestir, Seray Öztürk, Alara Yolaç, Emrah Torlak, Zeynep Kalaycıoğlu, Gülşen Akın-Evingür, F Bedia Erim. Antioxidant and antimicrobial chitosan films enriched with aqueous sage and rosemary extracts as food coating materials: Characterization of the films and detection of rosmarinic acid release.
International journal of biological macromolecules.
2022 Sep; 217(?):470-480. doi:
10.1016/j.ijbiomac.2022.07.073
. [PMID: 35835308] - Amna Devi, Romit Seth, Mamta Masand, Gopal Singh, Ashlesha Holkar, Shikha Sharma, Ashok Singh, Ram Kumar Sharma. Spatial Genomic Resource Reveals Molecular Insights into Key Bioactive-Metabolite Biosynthesis in Endangered Angelica glauca Edgew.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911064
. [PMID: 36232367] - Ping Xu, Xiang Wang, Tingting Lin, Qingsong Shao, Jianyun Peng, Chu Chu, Shengqiang Tong. A Strategy for Pinpointing Natural Bioactive Components Using Two-Dimensional Bioassay Profilings Combined with Comprehensive Two-Dimensional Countercurrent Chromatography × High-Performance Liquid Chromatography.
Analytical chemistry.
2022 09; 94(37):12715-12722. doi:
10.1021/acs.analchem.2c02196
. [PMID: 36076186] - Esra Küpeli Akkol, Gülin Renda, Mert İlhan, Nurdan Yazıcı Bektaş. Wound healing acceleration and anti-inflammatory potential of Prunella vulgaris L.: From conventional use to preclinical scientific verification.
Journal of ethnopharmacology.
2022 Sep; 295(?):115411. doi:
10.1016/j.jep.2022.115411
. [PMID: 35636653] - Yi Yu, Ye Li, Keming Qi, Wei Xu, Yicong Wei. Rosmarinic acid relieves LPS-induced sickness and depressive-like behaviors in mice by activating the BDNF/Nrf2 signaling and autophagy pathway.
Behavioural brain research.
2022 09; 433(?):114006. doi:
10.1016/j.bbr.2022.114006
. [PMID: 35843463] - Muhammad Mughees, Muhammad Asad Farooq, Ihsan Ul Haq, Iftikhar Zeb, Muhammad Ali, Zahoor Hussain, Irum Shahzadi, Mohammad Maroof Shah. Quantification of rosmarinic acid from different plant species of lower Himalayan region and expression analysis of underlying L-Phenylalanine pathway.
Physiologia plantarum.
2022 Sep; 174(5):e13758. doi:
10.1111/ppl.13758
. [PMID: 36281843] - Márcio L A E Silva, Rodrigo Lucarini, Fransergio F Dos Santos, Carlos H G Martins, Patricia M Pauletti, Ana H Januario, Mario Ferreira Conceição Santos, Wilson R Cunha. Hypoglycemic effect of rosmarinic acid-rich infusion (RosCE) from Origanum vulgare in alloxan-induced diabetic rats.
Natural product research.
2022 Sep; 36(17):4525-4531. doi:
10.1080/14786419.2021.1990282
. [PMID: 34647501] - Miroslava Stanković, Jovana D Ickovski, Radomir B Ljupković, Gordana S Stojanović. The effects of Artemisia methanol extracts and ferulic acid, rutin, rosmarinic acid, and quercetin on micronucleus distribution on human lymphocytes.
Natural product research.
2022 Sep; 36(17):4536-4539. doi:
10.1080/14786419.2021.1990918
. [PMID: 34658273] - Yang Yao, Rong Li, Dan Liu, Lihui Long, Na He. Rosmarinic acid alleviates acetaminophen-induced hepatotoxicity by targeting Nrf2 and NEK7-NLRP3 signaling pathway.
Ecotoxicology and environmental safety.
2022 Aug; 241(?):113773. doi:
10.1016/j.ecoenv.2022.113773
. [PMID: 35753269] - Kajal Sinha, Shiv Kumar, Bindu Rawat, Rahul Singh, Rituraj Purohit, Dinesh Kumar, Yogendra Padwad. Kutkin, iridoid glycosides enriched fraction of Picrorrhiza kurroa promotes insulin sensitivity and enhances glucose uptake by activating PI3K/Akt signaling in 3T3-L1 adipocytes.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Aug; 103(?):154204. doi:
10.1016/j.phymed.2022.154204
. [PMID: 35671635] - Diana Castro-Vazquez, Jessica Nayelli Sánchez-Carranza, Laura Alvarez, Karina Eurídice Juárez-Mercado, Noberto Sánchez-Cruz, José L Medina-Franco, Mayra Antunez-Mojica, Leticia González-Maya. Methyl benzoate and cinnamate analogs as modulators of DNA methylation in hepatocellular carcinoma.
Chemical biology & drug design.
2022 08; 100(2):245-255. doi:
10.1111/cbdd.14061
. [PMID: 35451561] - Natalia Vilmosh, Delyan Delev, Ilia Kostadinov, Hristina Zlatanova, Maria Kotetarova, Ilin Kandilarov, Ivanka Kostadinova. Anxiolytic Effect of Satureja montana Dry Extract and its Active Compounds Rosmarinic Acid and Carvacrol in Acute Stress Experimental Model.
Journal of integrative neuroscience.
2022 Jul; 21(5):124. doi:
10.31083/j.jin2105124
. [PMID: 36137956] - Minjie Jiang, Shujie Fu, Kebei Chen, Qing Li, Weizhe Jiang. Pharmacokinetic Analysis of Rosmarinic Acid and its Analog in Rat Plasma Using Liquid Chromatography-Tandem Mass Spectrometry.
Journal of chromatographic science.
2022 Jul; 60(6):511-517. doi:
10.1093/chromsci/bmab074
. [PMID: 34173646] - Pariya Pirooz, Rayhaneh Amooaghaie, Alimohammad Ahadi, Fariba Sharififar, Masoud Torkzadeh-Mahani. Silicon and nitric oxide synergistically modulate the production of essential oil and rosmarinic acid in Salvia officinalis under Cu stress.
Protoplasma.
2022 Jul; 259(4):905-916. doi:
10.1007/s00709-021-01708-z
. [PMID: 34596758] - Divya Gupta, Sajida Archoo, Shahid Hussain Naikoo, Sheikh Tasduq Abdullah. Rosmarinic Acid: A Naturally Occurring Plant Based Agent Prevents Impaired Mitochondrial Dynamics and Apoptosis in Ultraviolet-B-Irradiated Human Skin Cells.
Photochemistry and photobiology.
2022 07; 98(4):925-934. doi:
10.1111/php.13533
. [PMID: 34608633] - Bojan Nataraj, Kannan Maharajan, Guilherme Malafaia, Devan Hemalatha, Mohamed Ahmed Ibrahim Ahmed, Mathan Ramesh. Gene expression profiling in liver of zebrafish exposed to ethylhexyl methoxycinnamate and its photoproducts.
The Science of the total environment.
2022 Jun; 826(?):154046. doi:
10.1016/j.scitotenv.2022.154046
. [PMID: 35217044] - Nanthakarn Woottisin, Sophida Sukprasert, Thitianan Kulsirirat, Thipaporn Tharavanij, Korbtham Sathirakul. Evaluation of the Intestinal Permeability of Rosmarinic Acid from Thunbergia laurifolia Leaf Water Extract in a Caco-2 Cell Model.
Molecules (Basel, Switzerland).
2022 Jun; 27(12):. doi:
10.3390/molecules27123884
. [PMID: 35745006] - Javier A G Vanegas, Horácio B Pacule, Rebeca M Capitão, Carlos R D Correia, Willian C Terra, Vicente P Campos, Denilson F Oliveira. Methyl Esters of (E)-Cinnamic Acid: Activity against the Plant-Parasitic Nematode Meloidogyne incognita and In Silico Interaction with Histone Deacetylase.
Journal of agricultural and food chemistry.
2022 Jun; 70(22):6624-6633. doi:
10.1021/acs.jafc.1c08142
. [PMID: 35622462] - Busra Arikan, Ceyda Ozfidan-Konakci, Fatma Nur Alp, Gökhan Zengin, Evren Yildiztugay. Rosmarinic acid and hesperidin regulate gas exchange, chlorophyll fluorescence, antioxidant system and the fatty acid biosynthesis-related gene expression in Arabidopsis thaliana under heat stress.
Phytochemistry.
2022 Jun; 198(?):113157. doi:
10.1016/j.phytochem.2022.113157
. [PMID: 35271935] - Tahereh Komeili-Movahhed, Mahdi Bassirian, Zahra Changizi, Azam Moslehi. SIRT1/NFκB pathway mediates anti-inflammatory and anti-apoptotic effects of rosmarinic acid on in a mouse model of nonalcoholic steatohepatitis (NASH).
Journal of receptor and signal transduction research.
2022 Jun; 42(3):241-250. doi:
10.1080/10799893.2021.1905665
. [PMID: 33787460] - Fei Luan, Zhili Rao, Lixia Peng, Ziqin Lei, Jiuseng Zeng, Xi Peng, Ruocong Yang, Rong Liu, Nan Zeng. Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Jun; 100(?):154047. doi:
10.1016/j.phymed.2022.154047
. [PMID: 35320770] - Yin-Peng Bai, Cheng-Jie Yang, Nan Deng, Mi Zhang, Zhi-Jun Zhang, Lei Li, Yong Zhou, Xiong-Fei Luo, Chuan-Rui Xu, Bao-Qi Zhang, Yue Ma, Ying-Qian Liu. Design and synthesis of novel 7-ethyl-10-fluoro-20-O-(cinnamic acid ester)-camptothecin derivatives as potential high selectivity and low toxicity topoisomerase I inhibitors for hepatocellular carcinoma.
Biochemical pharmacology.
2022 06; 200(?):115049. doi:
10.1016/j.bcp.2022.115049
. [PMID: 35469784] - Ritesh Panchal, Saikat Ghosh, Rajeev Mehla, Jayachandran Ramalingam, Sunil Gairola, Sandeepan Mukherjee, Abhay Chowdhary. Antiviral Activity of Rosmarinic Acid Against Four Serotypes of Dengue Virus.
Current microbiology.
2022 May; 79(7):203. doi:
10.1007/s00284-022-02889-3
. [PMID: 35612625] - Huaquan Guan, Wenbin Luo, Beihua Bao, Yudan Cao, Fangfang Cheng, Sheng Yu, Qiaoling Fan, Li Zhang, Qinan Wu, Mingqiu Shan. A Comprehensive Review of Rosmarinic Acid: From Phytochemistry to Pharmacology and Its New Insight.
Molecules (Basel, Switzerland).
2022 May; 27(10):. doi:
10.3390/molecules27103292
. [PMID: 35630768] - Cheng Chen. Anti-atherosclerotic Activity of Para Methoxy Cinnamic Acid in High Fat Diet Induced Hyperlipidemia Model Rats.
Applied biochemistry and biotechnology.
2022 May; 194(5):1911-1924. doi:
10.1007/s12010-021-03735-1
. [PMID: 34997446] - Changgui Wu, Shaohua Chen, Yang Liu, Bo Kong, Wei Yan, Tao Jiang, Hao Tian, Zhaoyi Liu, Qi Shi, Yongjun Wang, Qianqian Liang, Xiaobing Xi, Hao Xu. Cynarin suppresses gouty arthritis induced by monosodium urate crystals.
Bioengineered.
2022 05; 13(5):11782-11793. doi:
10.1080/21655979.2022.2072055
. [PMID: 35546047] - Yi-Hsien Hsieh, Jen-Pi Tsai, Yi-Hsuan Ting, Tung-Wei Hung, Wen-Wan Chao. Rosmarinic acid ameliorates renal interstitial fibrosis by inhibiting the phosphorylated-AKT mediated epithelial-mesenchymal transition in vitro and in vivo.
Food & function.
2022 Apr; 13(8):4641-4652. doi:
10.1039/d2fo00204c
. [PMID: 35373225] - Matteo Perra, Laura Fancello, Ines Castangia, Mohamad Allaw, Elvira Escribano-Ferrer, José Esteban Peris, Iris Usach, Maria Letizia Manca, Ivanka K Koycheva, Milen I Georgiev, Maria Manconi. Formulation and Testing of Antioxidant and Protective Effect of Hyalurosomes Loading Extract Rich in Rosmarinic Acid Biotechnologically Produced from Lavandula angustifolia Miller.
Molecules (Basel, Switzerland).
2022 Apr; 27(8):. doi:
10.3390/molecules27082423
. [PMID: 35458621] - Diana Pontes da Silva, Sarah de Sousa Ferreira, Manoela Torres-Rêgo, Allanny Alves Furtado, Fabiana de Oliveira Yamashita, Eduardo Augusto da Silva Diniz, Davi Serradella Vieira, Marcela Abbott Galvão Ururahy, Arnóbio Antônio da Silva-Júnior, Karla Patrícia de Oliveira Luna, Matheus de Freitas Fernandes-Pedrosa. Antiophidic potential of chlorogenic acid and rosmarinic acid against Bothrops leucurus snake venom.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Apr; 148(?):112766. doi:
10.1016/j.biopha.2022.112766
. [PMID: 35247716] - Seung-Won Jung, Gi Hyun Park, Eunjung Kim, Kang Min Yoo, Hea Won Kim, Jin Soo Lee, Min Youl Chang, Kyong-Oh Shin, Kyungho Park, Eung Ho Choi. Rosmarinic Acid, as an NHE1 Activator, Decreases Skin Surface pH and Improves the Skin Barrier Function.
International journal of molecular sciences.
2022 Mar; 23(7):. doi:
10.3390/ijms23073910
. [PMID: 35409270] - Kateryna Murlanova, Netanela Cohen, Anna Pinkus, Liudmila Vinnikova, Mikhail Pletnikov, Michael Kirby, Jonathan Gorelick, Elyashiv Drori, Albert Pinhasov. Antidepressant-like effects of a chlorogenic acid- and cynarine-enriched fraction from Dittrichia viscosa root extract.
Scientific reports.
2022 03; 12(1):3647. doi:
10.1038/s41598-022-04840-9
. [PMID: 35256610] - Farzad Kianersi, Davood Amin Azarm, Alireza Pour-Aboughadareh, Peter Poczai. Change in Secondary Metabolites and Expression Pattern of Key Rosmarinic Acid Related Genes in Iranian Lemon Balm (Melissa officinalis L.) Ecotypes Using Methyl Jasmonate Treatments.
Molecules (Basel, Switzerland).
2022 Mar; 27(5):. doi:
10.3390/molecules27051715
. [PMID: 35268816] - Xiaoqian Ding, Tianjie Yuan, Weiwei Chen, Xiachang Wang, Yiwen Chu, Xiao Liu, Yang Hu, Lihong Hu. Hygromycin A derivatives isolated from Streptomyces sp. PC-22 in the rhizosphere soil of Pulsatilla chinensis.
The Journal of antibiotics.
2022 03; 75(3):176-180. doi:
10.1038/s41429-022-00506-w
. [PMID: 35064242] - Sabeeha Ali, Manzar Alam, Fatima Khatoon, Urooj Fatima, Abdelbaset Mohamed Elasbali, Mohd Adnan, Asimul Islam, Md Imtaiyaz Hassan, Mejdi Snoussi, Vincenzo De Feo. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Mar; 147(?):112658. doi:
10.1016/j.biopha.2022.112658
. [PMID: 35066300] - Yongwoo Jeong, Ho Jung Bae, Keontae Park, Hyo Jeoung Bae, Xingquan Yang, Young-Jin Cho, Seo Yun Jung, Dae Sik Jang, Jong Hoon Ryu. 4-Methoxycinnamic acid attenuates schizophrenia-like behaviors induced by MK-801 in mice.
Journal of ethnopharmacology.
2022 Mar; 285(?):114864. doi:
10.1016/j.jep.2021.114864
. [PMID: 34822958] - Ayako Kusakabe, Chen Wang, Ya-Ming Xu, István Molnár, S Patricia Stock. Selective Toxicity of Secondary Metabolites from the Entomopathogenic Bacterium Photorhabdus luminescens sonorensis against Selected Plant Parasitic Nematodes of the Tylenchina Suborder.
Microbiology spectrum.
2022 02; 10(1):e0257721. doi:
10.1128/spectrum.02577-21
. [PMID: 35138171] - Yingpeng Xu, Lijun Geng, Yiwen Zhang, J Andrew Jones, Meihong Zhang, Yuan Chen, Ronghui Tan, Mattheos A G Koffas, Zhengtao Wang, Shujuan Zhao. De novo Biosynthesis of Salvianolic Acid B in Saccharomyces cerevisiae Engineered with the Rosmarinic Acid Biosynthetic Pathway.
Journal of agricultural and food chemistry.
2022 Feb; 70(7):2290-2302. doi:
10.1021/acs.jafc.1c06329
. [PMID: 35157428] - Nevin Ilhan, Ibrahim Bektas, Solmaz Susam, Ibrahim H Ozercan. Protective effects of rosmarinic acid against azoxymethane-induced colorectal cancer in rats.
Journal of biochemical and molecular toxicology.
2022 Feb; 36(2):e22961. doi:
10.1002/jbt.22961
. [PMID: 34766714]