Exact Mass: 104.0408
Exact Mass Matches: 104.0408
Found 119 metabolites which its exact mass value is equals to given mass value 104.0408
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
3-Hydroxybutyric acid
3-Hydroxybutyric acid (CAS: 300-85-6), also known as beta-hydroxybutanoic acid, is a typical partial-degradation product of branched-chain amino acids (primarily valine) released from muscle for hepatic and renal gluconeogenesis. This acid is metabolized by 3-hydroxybutyrate dehydrogenase (catalyzes the oxidation of 3-hydroxybutyrate to form acetoacetate, using NAD+ as an electron acceptor). The enzyme functions in nervous tissues and muscles, enabling the use of circulating hydroxybutyrate as a fuel. In the liver mitochondrial matrix, the enzyme can also catalyze the reverse reaction, a step in ketogenesis. 3-Hydroxybutyric acid is a chiral compound having two enantiomers, D-3-hydroxybutyric acid and L-3-hydroxybutyric acid, and is a ketone body. Like the other ketone bodies (acetoacetate and acetone), levels of 3-hydroxybutyrate in blood and urine are raised in ketosis. In humans, 3-hydroxybutyrate is synthesized in the liver from acetyl-CoA and can be used as an energy source by the brain when blood glucose is low. Blood levels of 3-hydroxybutyric acid levels may be monitored in diabetic patients to look for diabetic ketoacidosis. Persistent mild hyperketonemia is a common finding in newborns. Ketone bodies serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing mammals. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for the synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for the synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first two weeks of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies is utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmitoylphosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life (PMID: 3884391). 3-Hydroxybutyric acid is found to be associated with fumarase deficiency and medium-chain acyl-CoA dehydrogenase deficiency, which are inborn errors of metabolism. 3-Hydroxybutyric acid is a metabolite of Alcaligenes and can be produced from plastic metabolization or incorporated into polymers, depending on the species (PMID: 7646009, 18615882). (R)-3-Hydroxybutyric acid is a butyric acid substituted with a hydroxyl group in the beta or 3 position. It is involved in the synthesis and degradation of ketone bodies. Like the other ketone bodies (acetoacetate and acetone), levels of beta-hydroxybutyrate are raised in the blood and urine in ketosis. Beta-hydroxybutyrate is a typical partial-degradation product of branched-chain amino acids (primarily valine) released from muscle for hepatic and renal gluconeogenesis This acid is metabolized by 3-hydroxybutyrate dehydrogenase (catalyzes the oxidation of D-3-hydroxybutyrate to form acetoacetate, using NAD+ as an electron acceptor). The enzyme functions in nervous tissues and muscles, enabling the use of circulating hydroxybutyrate as a fuel. In the liver mitochondrial matrix, the enzyme can also catalyze the reverse reaction, a step in ketogenesis. 3-Hydroxybutyric acid is a chiral compound having two enantiomers, D-3-hydroxybutyric acid and L-3-hydroxybutyric acid. In humans, beta-hydroxybutyrate is synthesized in the liver from acetyl-CoA, and can be used as an energy source by the brain when blood glucose is low. It can also be used for the synthesis of biodegradable plastics . [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H022 (R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2]. 3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1]. 3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1].
4-Hydroxybutyric acid
4-Hydroxybutyric acid (also known as gamma-hydroxybutyrate or GHB) is a precursor and a metabolite of gamma-aminobutyric acid (GABA). GHB acts as a central nervous system (CNS) neuromodulator, mediating its effects through GABA and GHB-specific receptors, or by affecting dopamine transmission (PMID: 16620539). GHB occurs naturally in all mammals, but its function remains unknown. GHB is labeled as an illegal drug in most countries, but it also is used as a legal drug (Xyrem) in patients with narcolepsy. It is used illegally (under the street names juice, liquid ecstasy, or G) as an intoxicant for increasing athletic performance and as a date rape drug. In high doses, GHB inhibits the CNS, inducing sleep and inhibiting the respiratory drive. In lower doses, its euphoriant effect predominates (PMID: 17658710). When present in sufficiently high levels, 4-hydroxybutyric acid can act as an acidogen, a neurotoxin, and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A neurotoxin is a compound that adversely affects neural cells and tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of 4-hydroxybutyric acid are associated with two inborn errors of metabolism: glutaric aciduria II and succinic semialdehyde dehydrogenase deficiency (SSADH). SSADH deficiency leads to a 30-fold increase of GHB and a 2-4 fold increase of GABA in the brains of patients with SSADH deficiency as compared to normal brain concentrations of the compounds. As an acidogen, 4-hydroxybutyric acid is an organic acid, and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. Many affected children with organic acidemias experience intellectual disability or delayed development. These are also the characteristic symptoms of the untreated IEMs mentioned above. Particularly for SSADH deficiency, the most common features observed include developmental delay, hypotonia, and intellectual disability. Nearly half of patients exhibit ataxia, seizures, behaviour problems, and hyporeflexia. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. As a neurotoxin, GHB appears to affect both GABA (a neurotransmitter) signaling and glutamate signaling (another neurotransmitter). Glutamine metabolism may also play a role in the pathophysiology of excessive levels of GHB. High levels of GHB have been shown to depress both the NMDA and AMPA/kainite receptor-mediated functions and may also alter glutamatergic excitatory synaptic transmission as well. 4-Hydroxybutyric acid is a microbial metabolite found in Aeromonas, Escherichia and Pseudomonas (PMID: 19434404). 4-hydroxybutyric acid may cause bradycardia and dyskinesias.
alpha-Hydroxyisobutyric acid
Alpha-Hydroxyisobutyric acid is a metabolite of methyl tert-butyl ether (MTBE). MTBE may be obtained through environmental exposure. MTBE is rapidly eliminated from the body, mainly through expired air as the unchanged compound. MTBE is to some extent metabolised to t-butyl alcohol (TBA) and formaldehyde and oxidised to 2-methyl-1,2-propanediol and a-hydroxy isobuturic acid. Alpha-Hydroxyisobutyric acid has been used as an arial bactericide. [HMDB] alpha-Hydroxyisobutyric acid is a metabolite of methyl tert-butyl ether (MTBE). MTBE may be obtained through environmental exposure. MTBE is rapidly eliminated from the body, mainly through expired air as the unchanged compound. MTBE is to some extent metabolized to t-butyl alcohol (TBA) and formaldehyde and oxidized to 2-methyl-1,2-propanediol and alpha-hydroxyisobutyric acid. alpha-Hydroxyisobutyric acid has been used as an aerial bactericide. 2-Hydroxyisobutyric acid is an endogenous metabolite.
2-Hydroxybutyric acid
2-Hydroxybutyric acid (CAS: 600-15-7), also known as alpha-hydroxybutyrate, is an organic acid derived from alpha-ketobutyrate. alpha-Ketobutyrate is produced by amino acid catabolism (threonine and methionine) and glutathione anabolism (cysteine formation pathway) and is metabolized into propionyl-CoA and carbon dioxide (PMID: 20526369). 2-Hydroxybutyric acid is formed as a byproduct from the formation of alpha-ketobutyrate via a reaction catalyzed by lactate dehydrogenase (LDH) or alpha-hydroxybutyrate dehydrogenase (alphaHBDH). alpha-Hydroxybutyric acid is primarily produced in mammalian hepatic tissues that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification of xenobiotics in the liver can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway (which forms methionine) into the transsulfuration pathway (which forms cystathionine). alpha-Ketobutyrate is released as a byproduct when cystathionine is cleaved into cysteine that is incorporated into glutathione. Chronic shifts in the rate of glutathione synthesis may be reflected by urinary excretion of 2-hydroxybutyrate. 2-Hydroxybutyrate is an early marker for both insulin resistance and impaired glucose regulation that appears to arise due to increased lipid oxidation and oxidative stress (PMID: 20526369). 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g. birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early-stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid-1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydroxybutyric acid (PMID: 168632). 2-Hydroxybutyric acid is an organic acid that is involved in propanoate metabolism. It is produced in mammalian tissues (principaly hepatic) that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification demands can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway forming methionine into the transsulfuration pathway forming cystathionine. 2-Hydroxybutyrate is released as a by-product when cystathionine is cleaved to cysteine that is incorporated into glutathione. 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid 1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydorxybutyric acid (PMID: 168632) [HMDB] 2-Hydroxybutyric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=565-70-8 (retrieved 2024-07-16) (CAS RN: 600-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
3-Hydroxyisobutyric acid
A 4-carbon, branched hydroxy fatty acid and intermediate in the metabolism of valine. 3-Hydroxyisobutyric acid is an important interorgan metabolite, an intermediate in the pathways of l-valine and thymine and a good gluconeogenic substrate.
3-Hydroxyisobutyric acid
(S)-3-Hydroxyisobutyric acid (3-HIBA) (CAS: 2068-83-9) is an organic acid. 3-HIBA is an intermediate in L-valine metabolism. 3-HIBA plays an important role in the diagnosis of the very rare inherited metabolic diseases 3-hydroxyisobutyric aciduria (OMIM: 236795) and methylmalonic semialdehyde dehydrogenase deficiency (OMIM: 603178). Patients with 3-hydroxyisobutyric aciduria excrete a significant amount of 3-HIBA not only during the acute stage but also when stable. 3-Hydroxyisobutyric aciduria is caused by a 3-hydroxyisobutyryl-CoA dehydrogenase deficiency (PMID: 18329219). The severity of this disease varies from case to case. Most patients exhibit dysmorphic features, such as a small triangular face, a long philtrum, low set ears, and micrognathia (PMID: 10686279). Lactic acidemia is also found in the affected patients, indicating that mitochondrial dysfunction is involved. 3-HIBA appears to specifically inhibit the function of the respiratory chain complex I-III and mitochondrial creatine kinase (PMID: 18329219). BioTransformer predicts that 3-HIBA is a product of 2-methylpropanoic acid metabolism via a hydroxylation-of-terminal-methyl reaction catalyzed by CYP2B6 and CYP2E1 enzymes (PMID: 30612223). (S)-3-Hydroxyisobutyric (3-HIBA) acid is an organic acid. 3-HIBA is an intermediate in the metabolic pathways of L-valine and L-thymine amino acids. 3-HIBA plays an important role in the diagnosis of the very rare inherited metabolic diseases 3-hydroxyisobutyric aciduria (OMIM 236795) and methylmalonic semialdehyde dehydrogenase deficiency (OMIM 603178). Patients with 3-hydroxyisobutyric aciduria excrete a significant amount of 3-HIBA not only during the acute stage but also when stable. The deficient enzyme in 3HiB-uria remains unclear. The severity of this disease varies from case to case. Most patients exhibit dysmorphic features, such as a small triangular face, a long philtrum, low set ears and micrognathia (PMID: 113770040, 10686279) [HMDB] 3-Hydroxyisobutyric acid is an important interorgan metabolite, an intermediate in the pathways of l-valine and thymine and a good gluconeogenic substrate.
(S)-3-Hydroxybutyric acid
(S)-3-Hydroxybutyric acid is a normal human metabolite that has been found elevated in geriatric patients remitting from depression (PMID: 17048218). 3-Hydroxybutyric acid is a ketone body. Like the other ketone bodies (acetoacetate and acetone), levels of 3-hydroxybutyric acid are raised in ketosis. In humans, 3-hydroxybutyric acid is synthesized in the liver from acetyl-CoA, and can be used as an energy source by the brain when blood glucose is low. (S)-3-Hydroxybutyric acid is a normal human metabolite, that has been found elevated in geriatric patients remitting from depression. (PMID 17048218) (S)-3-Hydroxybutanoic acid is a normal human metabolite, that has been found elevated in geriatric patients remitting from depression. In humans, 3-Hydroxybutyric acid is synthesized in the liver from acetyl-CoA, and can be used as an energy source by the brain when blood glucose is low.
Ethoxyacetic acid
Ethoxyacetic acid is found in herbs and spices. Ethoxyacetic acid is a component of perilla leaf extract (Perilla frutescens Component of perilla leaf extract (Perilla frutescens). Ethoxyacetic acid is found in herbs and spices. Ethoxyacetic acid is an endogenous metabolite.
(R)-3-Hydroxyisobutyric acid
(R)-3-Hydroxyisobutyric acid (3-HIBA) is an organic acid. The chiral metabolites 3-hydroxyisobutyric acid (HIBA) and 3-aminoisobutyric acid (AIBA) are intermediates in the pathways of L-valine and thymine and play an important role in the diagnosis of the very rare inherited metabolic diseases 3-hydroxyisobutyric aciduria (OMIM: 236795) and methylmalonic semialdehyde dehydrogenase deficiency (OMIM: 603178) (PMID: 10686279). (R)-3-Hydroxyisobutyric acid has been identified in the human placenta (PMID: 32033212). The chiral metabolites 3-hydroxyisobutyric acid (HIBA) and 3-aminoisobutyric acid (AIBA) are intermediates in the pathways of l-valine and thymine and play an important role in the diagnosis of the very rare inherited metabolic diseases 3-hydroxyisobutyric aciduria (OMIM 236795) and methylmalonic semialdehyde dehydrogenase deficiency (OMIM 603178). (PMID 10686279) [HMDB] 3-Hydroxyisobutyric acid is an important interorgan metabolite, an intermediate in the pathways of l-valine and thymine and a good gluconeogenic substrate.
2-Methyl-3-hydroxypropanoate
2-Methyl-3-hydroxypropanoate belongs to the family of Beta Hydroxy Acids and Derivatives. These are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom
s-Ethylisothiourea
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors
2-Hydroxybutyric acid
(S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
DL-beta-Hydroxybutyric acid
(R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].
2-Hydroxybutyric acid
A hydroxybutyric acid having a single hydroxyl group located at position 2; urinary secretion of 2-hydroxybutyric acid is increased with alcohol ingestion or vigorous physical exercise and is associated with lactic acidosis and ketoacidosis in humans and diabetes in animals. (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
3-hydroxybutyric acid
3-Hydroxybutanoic acid is a ketone body. It is a chiral compound having two enantiomers. The concentration of beta-hydroxybutyrate, like that of other ketone bodies, is increased in ketosis. In humans, beta-hydroxybutyrate is synthesized in the liver from acetyl-CoA in a reaction catalyzed by the enzyme beta-hydroxybutyrate dehydrogenase and can be used as an energy source by the brain when blood glucose is low. Diabetic patients can have their ketone levels tested via urine or blood to indicate diabetic ketoacidosis. In alcoholic ketoacidosis, this ketone body is produced in greatest concentration. Both types of ketoacidosis result in an increasebeta-hydroxybutyrate to oxaloacetate ratio, resulting in TCA cycle stalling and shifting of glucose towards ketone body production. [Wikipedia] (R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2]. 3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1]. 3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1].
4-Hydroxybutyric acid
A 4-hydroxy monocarboxylic acid that is butyric acid in which one of the hydrogens at position 4 is replaced by a hydroxy group.
s-ethylisothiourea
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors
3-Cyanopyridine
Acquisition and generation of the data is financially supported in part by CREST/JST.
dimethylthiourea
D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants N,N'-Dimethylthiourea (DMTU), isolated from Allium sativum, is an orally active scavenger of hydroxyl radical (?OH) and blocks ?OH production by activated neutrophils in vitro. N,N'-Dimethylthiourea protects against water-immersion restraint stress (WIRS)-induced gastric mucosal lesions in rats by exerting its antioxidant action including ?OH scavenging and anti-inflammatory action[1][2]. N,N'-Dimethylthiourea (DMTU), isolated from Allium sativum, is an orally active scavenger of hydroxyl radical (?OH) and blocks ?OH production by activated neutrophils in vitro. N,N'-Dimethylthiourea protects against water-immersion restraint stress (WIRS)-induced gastric mucosal lesions in rats by exerting its antioxidant action including ?OH scavenging and anti-inflammatory action[1][2].
2-Hydroxyisobutyrate
KEIO_ID H026 2-Hydroxyisobutyric acid is an endogenous metabolite.
alpha-Hydroxyisobutyric acid
A 2-hydroxy monocarboxylic acid that is isobutyric acid bearing a hydroxy substituent at position 2. It is a metabolite of methyl tertiary-butyl ether. Acquisition and generation of the data is financially supported in part by CREST/JST. 2-Hydroxyisobutyric acid is an endogenous metabolite.
(S)-3-Hydroxybutyric acid
The S-enantiomer of 3-hydroxybutyric acid; a normal human metabolite, that has been found elevated in geriatric patients remitting from depression. (S)-3-Hydroxybutanoic acid is a normal human metabolite, that has been found elevated in geriatric patients remitting from depression. In humans, 3-Hydroxybutyric acid is synthesized in the liver from acetyl-CoA, and can be used as an energy source by the brain when blood glucose is low.
HYDROXYISOBUTYRIC ACID
2-Hydroxyisobutyric acid is an endogenous metabolite.
ETHOXYACETIC ACID
Ethoxyacetic acid is an endogenous metabolite.
FA 4:0;O
(S)-3-Hydroxybutanoic acid is a normal human metabolite, that has been found elevated in geriatric patients remitting from depression. In humans, 3-Hydroxybutyric acid is synthesized in the liver from acetyl-CoA, and can be used as an energy source by the brain when blood glucose is low.
(3S,4S)-4-(4-CHLOROPHENYL)-1-METHYLPIPERIDINE-3-CARBOXYLICACIDMETHYLESTER
(R)-2-HYDROXYBUTYRIC ACID
An optically active form of 2-hydroxybutyric acid having (R)-configuration.
(-)-(S)-5-BROMO-2,3-DIMETHOXY-N-[(1-ETHYL-2-PYRROLIDINYL)METHYL]-BENZAMIDE
AI3-16377
D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants N,N'-Dimethylthiourea (DMTU), isolated from Allium sativum, is an orally active scavenger of hydroxyl radical (?OH) and blocks ?OH production by activated neutrophils in vitro. N,N'-Dimethylthiourea protects against water-immersion restraint stress (WIRS)-induced gastric mucosal lesions in rats by exerting its antioxidant action including ?OH scavenging and anti-inflammatory action[1][2]. N,N'-Dimethylthiourea (DMTU), isolated from Allium sativum, is an orally active scavenger of hydroxyl radical (?OH) and blocks ?OH production by activated neutrophils in vitro. N,N'-Dimethylthiourea protects against water-immersion restraint stress (WIRS)-induced gastric mucosal lesions in rats by exerting its antioxidant action including ?OH scavenging and anti-inflammatory action[1][2].
4-Hydroxybutanoate
Gamma hydroxybutyric acid, also known as 4-hydroxybutanoic acid or ghb, is a member of the class of compounds known as hydroxy fatty acids. Hydroxy fatty acids are fatty acids in which the chain bears a hydroxyl group. Gamma hydroxybutyric acid is soluble (in water) and a weakly acidic compound (based on its pKa). Gamma hydroxybutyric acid can be found in a number of food items such as cauliflower, burdock, acorn, and mountain yam, which makes gamma hydroxybutyric acid a potential biomarker for the consumption of these food products. Gamma hydroxybutyric acid can be found primarily in blood and urine. Gamma hydroxybutyric acid is a drug which is used as a general anesthetic, to treat conditions such as insomnia, clinical depression, narcolepsy, and alcoholism, and to improve athletic performance. At higher doses, GHB may induce nausea, dizziness, drowsiness, agitation, visual disturbances, depressed breathing, amnesia, unconsciousness, and death (DrugBank).
(R)-3-Hydroxybutyric acid
The R-enantiomer of 3-hydroxybutyric acid. Involved in the synthesis and degradation of ketone bodies, it can be used as an energy source by the brain during hypoglycaemia, and for the synthesis of biodegradable plastics. It is a sex pheremone in the European spider Linyphia triangularis. (R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].
(S)-2-Hydroxybutyric acid
An optically active form of 2-hydroxybutyric acid having (S)-configuration. (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
β-Hydroxybutyric acid
A straight-chain 3-hydroxy monocarboxylic acid comprising a butyric acid core with a single hydroxy substituent in the 3- position; a ketone body whose levels are raised during ketosis, used as an energy source by the brain during fasting in humans. Also used to synthesise biodegradable plastics. 3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1]. 3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1].
Methyl 2-hydroxypropionate
A lactate ester resulting from the formal condensation of the carboxy group of 2-hydroxypropanoic acid with methanol.
L-serinate
A serinate that is the conjugate base of L-serine, obtained by deprotonation of the carboxy group.
1,3-Dioxan-5-ol
{"Ingredient_id": "HBIN001222","Ingredient_name": "1,3-Dioxan-5-ol","Alias": "NA","Ingredient_formula": "C4H8O3","Ingredient_Smile": "C1C(COCO1)O","Ingredient_weight": "104.1 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "40280","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "78475","DrugBank_id": "NA"}
2-Methoxy-1,3-dioxolane
{"Ingredient_id": "HBIN005870","Ingredient_name": "2-Methoxy-1,3-dioxolane","Alias": "NA","Ingredient_formula": "C4H8O3","Ingredient_Smile": "COC1OCCO1","Ingredient_weight": "104.1 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "40283","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "29744","DrugBank_id": "NA"}