Grepafloxacin (BioDeep_00001871371)

Main id: BioDeep_00000008627

 


代谢物信息卡片


Grepafloxacin

化学式: C19H22FN3O3 (359.1645)
中文名称: 格帕沙星
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1CN(CCN1)c1cc2c(c(C)c1F)c(=O)c(cn2C1CC1)C(=O)O
InChI: InChI=1S/C19H22FN3O3/c1-10-8-22(6-5-21-10)15-7-14-16(11(2)17(15)20)18(24)13(19(25)26)9-23(14)12-3-4-12/h7,9-10,12,21H,3-6,8H2,1-2H3,(H,25,26)

描述信息

J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones
D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones
C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic
D004791 - Enzyme Inhibitors
ATC code: J01MA11

同义名列表

2 个代谢物同义名

Grepafloxacin; Grepafloxacin



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ABCB1, GTPBP4, LYST, MAPK14, PRKX, SLC22A5
Peripheral membrane protein 1 CYP1B1
Endosome membrane 1 CTSD
Endoplasmic reticulum membrane 4 CYP1B1, HSP90B1, UGT1A1, UGT1A9
Mitochondrion membrane 1 ABCG2
Nucleus 4 GTPBP4, HSP90B1, MAPK14, PRKX
cytosol 6 GTPBP4, HSP90B1, LYST, MAPK14, PRKCQ, SLC22A5
mitochondrial membrane 1 ABCG2
nucleoplasm 4 ABCG2, GTPBP4, MAPK14, PRKX
Cell membrane 5 ABCB1, ABCG2, KCNH2, SLC22A5, TNF
Multi-pass membrane protein 5 ABCB1, ABCC2, ABCG2, KCNH2, SLC22A5
cell surface 4 ABCB1, ABCC2, KCNH2, TNF
glutamatergic synapse 1 MAPK14
lysosomal membrane 1 CTSD
neuronal cell body 1 TNF
smooth endoplasmic reticulum 1 HSP90B1
Lysosome 1 CTSD
plasma membrane 8 ABCB1, ABCC2, ABCG2, KCNH2, PRKCQ, SLC22A5, TNF, UGT1A1
Membrane 11 ABCB1, ABCC2, ABCG2, CYP1B1, GTPBP4, HSP90B1, KCNH2, LYST, SLC22A5, UGT1A1, UGT1A9
apical plasma membrane 4 ABCB1, ABCC2, ABCG2, SLC22A5
extracellular exosome 4 ABCB1, CTSD, HSP90B1, SLC22A5
endoplasmic reticulum 4 HSP90B1, SLC22A5, UGT1A1, UGT1A9
extracellular space 3 CTSD, CXCL8, TNF
lysosomal lumen 1 CTSD
perinuclear region of cytoplasm 4 GTPBP4, HSP90B1, KCNH2, UGT1A1
intercellular canaliculus 1 ABCC2
mitochondrion 2 CYP1B1, MAPK14
protein-containing complex 1 HSP90B1
intracellular membrane-bounded organelle 1 CYP1B1
Microsome membrane 1 CYP1B1
Secreted 1 CXCL8
extracellular region 5 CTSD, CXCL8, HSP90B1, MAPK14, TNF
Single-pass membrane protein 2 UGT1A1, UGT1A9
centriolar satellite 1 PRKCQ
nuclear membrane 1 GTPBP4
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 LYST
nucleolus 1 GTPBP4
midbody 1 HSP90B1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 4 ABCB1, ABCC2, ABCG2, SLC22A5
Cytoplasm, perinuclear region 1 UGT1A1
Membrane raft 3 ABCG2, CTSD, TNF
focal adhesion 1 HSP90B1
collagen-containing extracellular matrix 2 CTSD, HSP90B1
nuclear speck 1 MAPK14
phagocytic cup 1 TNF
brush border membrane 2 ABCG2, SLC22A5
Nucleus, nucleolus 1 GTPBP4
spindle pole 1 MAPK14
endosome lumen 1 CTSD
monoatomic ion channel complex 1 KCNH2
Melanosome 2 CTSD, HSP90B1
sperm plasma membrane 1 HSP90B1
basal plasma membrane 1 SLC22A5
inward rectifier potassium channel complex 1 KCNH2
voltage-gated potassium channel complex 1 KCNH2
ficolin-1-rich granule lumen 2 CTSD, MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 1 HSP90B1
specific granule lumen 1 CTSD
tertiary granule lumen 1 CTSD
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
Sarcoplasmic reticulum lumen 1 HSP90B1
Basal cell membrane 1 SLC22A5
external side of apical plasma membrane 2 ABCB1, ABCG2
[Isoform 3]: Endoplasmic reticulum 1 SLC22A5
endocytic vesicle lumen 1 HSP90B1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
endoplasmic reticulum chaperone complex 2 HSP90B1, UGT1A1
cytochrome complex 1 UGT1A1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Aline Vidal Lacerda Gontijo, Julien Brillault, Nicolas Grégoire, Isabelle Lamarche, Patrice Gobin, William Couet, Sandrine Marchand. Biopharmaceutical characterization of nebulized antimicrobial agents in rats: 1. Ciprofloxacin, moxifloxacin, and grepafloxacin. Antimicrobial agents and chemotherapy. 2014 Jul; 58(7):3942-9. doi: 10.1128/aac.02818-14. [PMID: 24798283]
  • Meguho Watanabe, Masaki Kobayashi, Jiro Ogura, Natsuko Takahashi, Hiroaki Yamaguchi, Ken Iseki. Alteration of pharmacokinetics of grepafloxacin in type 2 diabetic rats. Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2014; 17(1):25-33. doi: 10.18433/j3mc70. [PMID: 24735760]
  • Takeshi Hirano, Satoru Yasuda, Yuki Osaka, Masaru Asari, Masaki Kobayashi, Shirou Itagaki, Ken Iseki. The inhibitory effects of fluoroquinolones on L-carnitine transport in placental cell line BeWo. International journal of pharmaceutics. 2008 Mar; 351(1-2):113-8. doi: 10.1016/j.ijpharm.2007.09.022. [PMID: 17977676]
  • Takeshi Hirano, Satoru Yasuda, Yuki Osaka, Masaki Kobayashi, Shirou Itagaki, Ken Iseki. Mechanism of the inhibitory effect of zwitterionic drugs (levofloxacin and grepafloxacin) on carnitine transporter (OCTN2) in Caco-2 cells. Biochimica et biophysica acta. 2006 Nov; 1758(11):1743-50. doi: 10.1016/j.bbamem.2006.07.002. [PMID: 16928358]
  • Hiroyuki Sasabe, Yukio Kato, Takashi Suzuki, Minoru Itose, Gohachiro Miyamoto, Yuichi Sugiyama. Carrier-mediated uptake of grepafloxacin, a fluoroquinolone antibiotic, by the isolated rat lung cells. Drug metabolism and pharmacokinetics. 2005 Dec; 20(6):491-5. doi: 10.2133/dmpk.20.491. [PMID: 16415534]
  • S Pérez-Oliván, I Pinilla, M A Bregante, C Solans, O Ruiz Moreno, M A Garcia, F M Honrubia. Grepafloxacin concentration in ocular tissues after intravenous infusion in rabbits with intraocular inflammation. Ophthalmic research. 2005 Nov; 37(6):335-40. doi: 10.1159/000088262. [PMID: 16158011]
  • Qing Li, Yukio Kato, Yoshimichi Sai, Teruko Imai, Akira Tsuji. Multidrug resistance-associated protein 1 functions as an efflux pump of xenobiotics in the skin. Pharmaceutical research. 2005 Jun; 22(6):842-6. doi: 10.1007/s11095-005-4576-1. [PMID: 15948026]
  • J A Ocaña González, F J Jiménez Palacios, M Callejón Mochón, F J Barragán de la Rosa. Simultaneous determination of cefepime and grepafloxacin in human urine by high-performance liquid chromatography. Journal of pharmaceutical and biomedical analysis. 2004 Sep; 36(1):117-23. doi: 10.1016/j.jpba.2004.05.002. [PMID: 15351055]
  • Hiroyuki Sasabe, Yukio Kato, Takashi Suzuki, Minoru Itose, Gohachiro Miyamoto, Yuichi Sugiyama. Differential involvement of multidrug resistance-associated protein 1 and P-glycoprotein in tissue distribution and excretion of grepafloxacin in mice. The Journal of pharmacology and experimental therapeutics. 2004 Aug; 310(2):648-55. doi: 10.1124/jpet.104.065201. [PMID: 15131241]
  • Iris H Hall, Ute E Schwab, E Stacy Ward, John C Rublein, John D Butts, Timothy J Ives. Human THP-1 monocyte uptake and cellular disposition of 14C-grepafloxacin. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy. 2004 Feb; 10(1):11-8. doi: 10.1007/s10156-003-0289-8. [PMID: 14991512]
  • Hiroaki Yamaguchi, Ikuko Yano, Hideyuki Saito, Ken-ichi Inui. Effect of cisplatin-induced acute renal failure on bioavailability and intestinal secretion of quinolone antibacterial drugs in rats. Pharmaceutical research. 2004 Feb; 21(2):330-8. doi: 10.1023/b:pham.0000016247.44589.f1. [PMID: 15032316]
  • Timothy J Ives, Ute E Schwab, E Stacy Ward, Iris H Hall. In-vitro anti-inflammatory and immunomodulatory effects of grepafloxacin in zymogen A- or Staphylococcus aureus-stimulated human THP-1 monocytes. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy. 2003 Jun; 9(2):134-43. doi: 10.1007/s10156-003-0232-z. [PMID: 12825112]
  • Marc Pfister, Liping Zhang, Margareta Hammarlund-Udenaes, Lewis B Sheiner, Cynthia M Gerber, Martin G Täuber, Philippe Cottagnoud. Modeling of transfer kinetics at the serum-cerebrospinal fluid barrier in rabbits with experimental meningitis: application to grepafloxacin. Antimicrobial agents and chemotherapy. 2003 Jan; 47(1):138-43. doi: 10.1128/aac.47.1.138-143.2003. [PMID: 12499181]
  • Takashi Suzuki, Yukio Kato, Hiroyuki Sasabe, Minoru Itose, Gohachiro Miyamoto, Yuichi Sugiyama. Mechanism for the tissue distribution of grepafloxacin, a fluoroquinolone antibiotic, in rats. Drug metabolism and disposition: the biological fate of chemicals. 2002 Dec; 30(12):1393-9. doi: 10.1124/dmd.30.12.1393. [PMID: 12433809]
  • A Orero, E Cantón, J Pemán, M M Velert, M V Bermejo. [Influence of ion pump-inhibiting drugs on the accumulation of ofloxacin and grepafloxacin in human polymorphonuclear leukocytes]. Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia. 2002 Dec; 15(4):352-9. doi: NULL. [PMID: 12587041]
  • Yumiko Urakami, Maiko Akazawa, Hideyuki Saito, Masahiro Okuda, Ken-Ichi Inui. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. Journal of the American Society of Nephrology : JASN. 2002 Jul; 13(7):1703-10. doi: 10.1097/01.asn.0000019413.78751.46. [PMID: 12089365]
  • Alberto Navalón, Lilia Araujo, Avismelsi Prieto, José Luis Vílchez. Determination of grepafloxacin and clinafloxacin by capillary zone electrophoresis. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2002 May; 772(1):65-72. doi: 10.1016/s1570-0232(02)00050-8. [PMID: 12016016]
  • Hiroaki Yamaguchi, Ikuko Yano, Hideyuki Saito, Ken-ichi Inui. Pharmacokinetic role of P-glycoprotein in oral bioavailability and intestinal secretion of grepafloxacin in vivo. The Journal of pharmacology and experimental therapeutics. 2002 Mar; 300(3):1063-9. doi: 10.1124/jpet.300.3.1063. [PMID: 11861816]
  • Mehdi Shakibaei, Irmela Baumann-Wilschke, Marcus Rücker, Ralf Stahlmann. Ultrastructural characterization of murine limb buds after in vitro exposure to grepafloxacin and other fluoroquinolones. Archives of toxicology. 2002 Jan; 75(11-12):725-33. doi: 10.1007/s00204-001-0293-7. [PMID: 11876506]
  • Hiroshi Yamamoto, Tomonobu Koizumi, Masao Hirota, Toshimichi Kaneki, Hitoshi Ogasawara, Yoshitaka Yamazaki, Keisaku Fujimoto, Keishi Kubo. Lung tissue distribution after intravenous administration of grepafloxacin: comparative study with levofloxacin. Japanese journal of pharmacology. 2002 Jan; 88(1):63-8. doi: 10.1254/jjp.88.63. [PMID: 11855679]
  • J A Ocaña, M Callejón, F J Barragán. Application of terbium-sensitized luminescence for the determination of grepafloxacin in human urine and serum. Journal of pharmaceutical sciences. 2001 Oct; 90(10):1553-7. doi: 10.1002/jps.1105. [PMID: 11745713]
  • M Dan, F Poch, J Asherov. Crossover assessment of serum bactericidal activity of grepafloxacin, ofloxacin and clarithromycin against respiratory pathogens after oral administration to healthy volunteers. International journal of antimicrobial agents. 2001 Jun; 17(6):491-5. doi: 10.1016/s0924-8579(01)00333-8. [PMID: 11397620]
  • G A Gintant, J T Limberis, J S McDermott, C D Wegner, B F Cox. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. Journal of cardiovascular pharmacology. 2001 May; 37(5):607-18. doi: 10.1097/00005344-200105000-00012. [PMID: 11336111]
  • K Mizuta, S Hishikawa, M Hirota, G Miyamoto, A Fujimura, Y Hakamata, E Kobayashi. Fluoroquinolone concentrations in plasma, urine, and bile after oral administration in rats with renal failure: useful technique for long-term bile collection. Journal of medicine. 2001; 32(5-6):311-20. doi: . [PMID: 11958277]
  • I Tamai, J Yamashita, Y Kido, A Ohnari, Y Sai, Y Shima, K Naruhashi, S Koizumi, A Tsuji. Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood-brain barrier. The Journal of pharmacology and experimental therapeutics. 2000 Oct; 295(1):146-52. doi: . [PMID: 10991972]
  • Y Nakajima, K Hattori, M Shinsei, N Matsunaga, H Iizasa, H Sasabe, H Akiyama, G Miyanmoto, E Nakashima. Physiologically-based pharmacokinetic analysis of grepafloxacin. Biological & pharmaceutical bulletin. 2000 Sep; 23(9):1077-83. doi: 10.1248/bpb.23.1077. [PMID: 10993208]
  • I Odenholt, T Cars, E Lowdin. Pharmacodynamic studies of trovafloxacin and grepafloxacin in vitro against Gram-positive and Gram-negative bacteria. The Journal of antimicrobial chemotherapy. 2000 Jul; 46(1):35-43. doi: 10.1093/jac/46.1.35. [PMID: 10882686]
  • M Kamberi, P Kamberi, S Nakano. Determination of grepafloxacin in plasma and urine by a simple and rapid high-performance liquid chromatographic method. Journal of chromatography. B, Biomedical sciences and applications. 2000 May; 741(2):295-300. doi: 10.1016/s0378-4347(00)00075-x. [PMID: 10872599]
  • J Q Tran, C H Ballow, A Forrest, J M Hyatt, M F Sands, C A Peloquin, J J Schentag. Comparison of the abilities of grepafloxacin and clarithromycin to eradicate potential bacterial pathogens from the sputa of patients with chronic bronchitis: influence of pharmacokinetic and pharmacodynamic variables. The Journal of antimicrobial chemotherapy. 2000 Mar; 45(?):9-17. doi: 10.1093/jac/45.suppl_2.9. [PMID: 10719007]
  • T Ito, I Yano, Y Hashimoto, K Inui. Transepithelial transport of levofloxacin in the isolated perfused rat kidney. Pharmaceutical research. 2000 Feb; 17(2):236-41. doi: 10.1023/a:1007533817835. [PMID: 10751041]
  • S Hashimoto, K Matsumoto, Y Gon, S Maruoka, S Hayashi, Y Asai, T Machino, T Horie. Grepafloxacin inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in human airway epithelial cells. Life sciences. 2000; 66(5):PL 77-82. doi: 10.1016/s0024-3205(99)00614-1. [PMID: 10670836]
  • R Ohashi, I Tamai, H Yabuuchi, J I Nezu, A Oku, Y Sai, M Shimane, A Tsuji. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. The Journal of pharmacology and experimental therapeutics. 1999 Nov; 291(2):778-84. doi: . [PMID: 10525100]
  • M Kamberi, P Kamberi, N Hajime, N Uemura, K Nakamura, S Nakano. Determination of sparfloxacin in plasma and urine by a simple and rapid liquid chromatographic method. Therapeutic drug monitoring. 1999 Aug; 21(4):411-5. doi: 10.1097/00007691-199908000-00005. [PMID: 10442694]
  • T Takizawa, K Hashimoto, T Minami, S Yamashita, K Owen. The comparative arthropathy of fluoroquinolones in dogs. Human & experimental toxicology. 1999 Jun; 18(6):392-9. doi: 10.1191/096032799678840237. [PMID: 10413244]
  • M Kamberi, N Hajime, P Kamberi, N Uemura, K Nakamura, S Nakano. Simultaneous determination of grepafloxacin, ciprofloxacin, and theophylline in human plasma and urine by HPLC. Therapeutic drug monitoring. 1999 Jun; 21(3):335-40. doi: 10.1097/00007691-199906000-00016. [PMID: 10365649]
  • T Ito, I Yano, S Masuda, Y Hashimoto, K Inui. Distribution characteristics of levofloxacin and grepafloxacin in rat kidney. Pharmaceutical research. 1999 Apr; 16(4):534-9. doi: 10.1023/a:1018871029244. [PMID: 10227708]
  • H Sasabe, Y Kato, T Terasaki, A Tsuji, Y Sugiyama. Differences in the hepatobiliary transport of two quinolone antibiotics, grepafloxacin and lomefloxacin, in the rat. Biopharmaceutics & drug disposition. 1999 Apr; 20(3):151-8. doi: 10.1002/(sici)1099-081x(199904)20:3<151::aid-bdd168>3.0.co;2-p. [PMID: 10211868]
  • T Takizawa, K Hasimoto, N Itoh, S Yamashita, K Owen. A comparative study of the repeat dose toxicity of grepafloxacin and a number of other fluoroquinolones in rats. Human & experimental toxicology. 1999 Jan; 18(1):38-45. doi: 10.1177/096032719901800106. [PMID: 10025367]
  • Y Uwai, M Okuda, K Takami, Y Hashimoto, K Inui. Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. FEBS letters. 1998 Nov; 438(3):321-4. doi: 10.1016/s0014-5793(98)01328-3. [PMID: 9827570]
  • Y Matsuo, I Yano, T Ito, Y Hashimoto, K Inui. Transport of quinolone antibacterial drugs in a kidney epithelial cell line, LLC-PK1. The Journal of pharmacology and experimental therapeutics. 1998 Nov; 287(2):672-8. doi: . [PMID: 9808695]
  • H Sasabe, Y Kato, A Tsuji, Y Sugiyama. Stereoselective hepatobiliary transport of the quinolone antibiotic grepafloxacin and its glucuronide in the rat. The Journal of pharmacology and experimental therapeutics. 1998 Feb; 284(2):661-8. doi: NULL. [PMID: 9454812]
  • R Stahlmann, R Schwabe. Safety profile of grepafloxacin compared with other fluoroquinolones. The Journal of antimicrobial chemotherapy. 1997 Dec; 40 Suppl A(?):83-92. doi: 10.1093/jac/40.suppl_1.83. [PMID: 9484877]
  • C Efthymiopoulos. Pharmacokinetics of grepafloxacin. The Journal of antimicrobial chemotherapy. 1997 Dec; 40 Suppl A(?):35-43. doi: 10.1093/jac/40.suppl_1.35. [PMID: 9484872]
  • A Forrest, S Chodosh, M A Amantea, D A Collins, J J Schentag. Pharmacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis. The Journal of antimicrobial chemotherapy. 1997 Dec; 40 Suppl A(?):45-57. doi: 10.1093/jac/40.suppl_1.45. [PMID: 9484873]
  • C Efthymiopoulos, S L Bramer, A Maroli. Pharmacokinetics of grepafloxacin after oral administration of single and repeat doses in healthy young males. Clinical pharmacokinetics. 1997; 33 Suppl 1(?):1-8. doi: 10.2165/00003088-199700331-00003. [PMID: 9433650]
  • C Efthymiopoulos, S L Bramer, A Maroli. Effect of age and gender on the pharmacokinetics of grepafloxacin. Clinical pharmacokinetics. 1997; 33 Suppl 1(?):9-17. doi: 10.2165/00003088-199700331-00004. [PMID: 9433651]
  • C Efthymiopoulos, S L Bramer, A Maroli, J G Gambertoglio. Effect of renal impairment on the pharmacokinetics of grepafloxacin. Clinical pharmacokinetics. 1997; 33 Suppl 1(?):32-8. doi: 10.2165/00003088-199700331-00007. [PMID: 9433654]
  • C Efthymiopoulos, S L Bramer, A Maroli, J F Flaherty, E Wolfe, N Bass, K Somberg. Grepafloxacin pharmacokinetics in individuals with hepatic dysfunction. Clinical pharmacokinetics. 1997; 33 Suppl 1(?):25-31. doi: 10.2165/00003088-199700331-00006. [PMID: 9433653]
  • C Efthymiopoulos, S L Bramer, A Maroli, B Blum. Theophylline and warfarin interaction studies with grepafloxacin. Clinical pharmacokinetics. 1997; 33 Suppl 1(?):39-46. doi: 10.2165/00003088-199700331-00008. [PMID: 9433655]
  • O Kozawa, T Uematsu, H Matsuno, M Niwa, S Nagashima, M Kanamaru. Comparative study of pharmacokinetics of two new fluoroquinolones, balofloxacin and grepafloxacin, in elderly subjects. Antimicrobial agents and chemotherapy. 1996 Dec; 40(12):2824-8. doi: 10.1128/aac.40.12.2824. [PMID: 9124849]
  • P J Cook, J M Andrews, R Wise, D Honeybourne, H Moudgil. Concentrations of OPC-17116, a new fluoroquinolone antibacterial, in serum and lung compartments. The Journal of antimicrobial chemotherapy. 1995 Feb; 35(2):317-26. doi: 10.1093/jac/35.2.317. [PMID: 7759395]
  • J Child, J M Andrews, R Wise. Pharmacokinetics and tissue penetration of the new fluoroquinolone grepafloxacin. Antimicrobial agents and chemotherapy. 1995 Feb; 39(2):513-5. doi: 10.1128/aac.39.2.513. [PMID: 7726523]
  • H Wakebe, T Imada, H Yoneda, F Mukai, K Ohguro, K Ohmori, H Tamaoka, Y Yabuuchi. Evaluation of OPC-17116 against important pathogens that cause respiratory tract infections. Antimicrobial agents and chemotherapy. 1994 Oct; 38(10):2340-5. doi: 10.1128/aac.38.10.2340. [PMID: 7840567]
  • J M Woodcock, J M Andrews, D Honeybourne, R Wise. Determination of OPC-17116, a new fluoroquinolone, in human alveolar macrophages and other biological matrices by high performance liquid chromatography (HPLC). FEMS microbiology letters. 1994 Jun; 119(3):315-20. doi: 10.1111/j.1574-6968.1994.tb06907.x. [PMID: 8050712]
  • J W Gu, W Fang, H C Neu. Plasma bactericidal activity of a new C-5 methyl fluoroquinolone after oral doses of 400 and 800 mg. Journal of clinical pharmacology. 1992 Sep; 32(9):804-7. doi: 10.1002/j.1552-4604.1992.tb03886.x. [PMID: 1331205]
  • H C Neu, W Fang, J W Gu, N X Chin. In vitro activity of OPC-17116. Antimicrobial agents and chemotherapy. 1992 Jun; 36(6):1310-5. doi: 10.1128/aac.36.6.1310. [PMID: 1329620]
  • T Imada, S Miyazaki, M Nishida, K Yamaguchi, S Goto. In vitro and in vivo antibacterial activities of a new quinolone, OPC-17116. Antimicrobial agents and chemotherapy. 1992 Mar; 36(3):573-9. doi: 10.1128/aac.36.3.573. [PMID: 1320364]