furoic acid (BioDeep_00001868700)

Main id: BioDeep_00000002914

 

BioNovoGene_Lab2019


代谢物信息卡片


L-Cysteic acid

化学式: C3H7NO5S (169.0045)
中文名称: 磺基丙氨酸, L-磺基丙氨酸 一水合物, L-磺基丙氨酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(C(C(=O)O)N)S(=O)(=O)O
InChI: InChI=1S/C3H7NO5S/c4-2(3(5)6)1-10(7,8)9/h2H,1,4H2,(H,5,6)(H,7,8,9)/t2-/m0/s1

描述信息

The L-enantiomer of cysteic acid.

同义名列表

4 个代谢物同义名

L-Cysteic acid; furoic acid; L-Cysteate; L-Cysteic acid



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

16 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ASAP1, CSAD, DHFR, GRM5, IGHMBP2, IKZF3, NPSR1, PARK7, PLCB1, PRDX6, RYR1
Nucleus 6 GRM1, IGHMBP2, IKZF3, PARK7, PLCB1, PRDX6
cytosol 6 ASAP1, DHFR, IKZF3, PARK7, PLCB1, PRDX6
dendrite 2 GRM1, GRM5
nuclear body 1 IGHMBP2
trans-Golgi network 1 PCSK1N
nucleoplasm 4 FAM20C, IGHMBP2, IKZF3, PARK7
Cell membrane 5 GRID1, GRM1, GRM5, PARK7, SLC1A2
Lipid-anchor 1 PARK7
Cell projection, axon 1 IGHMBP2
Multi-pass membrane protein 6 GRID1, GRM1, GRM5, NPSR1, RYR1, SLC1A2
Golgi apparatus membrane 1 FAM20C
cell cortex 1 RYR1
cell surface 1 SLC1A2
dendritic shaft 1 GRM5
glutamatergic synapse 6 ASAP1, GRID1, GRM1, GRM5, PLCB1, SLC1A2
Golgi apparatus 2 ASAP1, FAM20C
Golgi membrane 2 ASAP1, FAM20C
growth cone 1 IGHMBP2
neuronal cell body 1 GRM5
postsynapse 1 GRM5
presynaptic membrane 1 SLC1A2
sarcolemma 1 RYR1
smooth endoplasmic reticulum 1 RYR1
synaptic vesicle 1 PARK7
Lysosome 1 PRDX6
plasma membrane 8 GRID1, GRM1, GRM5, NPSR1, OMG, PARK7, RYR1, SLC1A2
Membrane 8 ASAP1, GRM5, IGHMBP2, NPSR1, PARK7, PRDX6, RYR1, SLC1A2
axon 2 IGHMBP2, PARK7
extracellular exosome 7 CPVL, FAM20C, GRID1, PARK7, PLCB1, PRDX6, RYR1
endoplasmic reticulum 2 FAM20C, PARK7
extracellular space 3 FAM20C, PCSK1N, PRDX6
perinuclear region of cytoplasm 2 PARK7, PRDX6
Schaffer collateral - CA1 synapse 2 GRM1, GRM5
adherens junction 1 PARK7
mitochondrion 3 DHFR, PARK7, PRDX6
protein-containing complex 1 PLCB1
Secreted 2 FAM20C, PCSK1N
extracellular region 2 MLN, PRDX6
Single-pass membrane protein 1 MLN
mitochondrial matrix 1 PARK7
Nucleus membrane 1 PLCB1
nuclear membrane 1 PLCB1
dendritic spine 2 ASAP1, GRM5
Z disc 1 RYR1
Single-pass type II membrane protein 1 FAM20C
vesicle 1 SLC1A2
postsynaptic membrane 1 GRID1
Membrane raft 2 PARK7, SLC1A2
axolemma 1 SLC1A2
GABA-ergic synapse 2 GRID1, PLCB1
sarcoplasmic reticulum 1 RYR1
PML body 1 PARK7
mitochondrial intermembrane space 1 PARK7
secretory granule 1 PCSK1N
nuclear speck 1 PLCB1
Postsynaptic cell membrane 2 GRID1, GRM1
chromatin 2 PARK7, PLCB1
podosome 1 ASAP1
[Isoform 3]: Nucleus 1 IKZF3
[Isoform 5]: Cytoplasm 1 NPSR1
Golgi apparatus, trans-Golgi network 2 ASAP1, PCSK1N
organelle membrane 1 RYR1
I band 1 RYR1
cell body 2 PARK7, SLC1A2
side of membrane 1 OMG
trans-Golgi network membrane 1 ASAP1
endoplasmic reticulum lumen 1 FAM20C
azurophil granule lumen 1 PRDX6
Sarcoplasmic reticulum membrane 2 MLN, RYR1
postsynaptic density membrane 3 GRID1, GRM1, GRM5
[Isoform 2]: Cytoplasm 1 NPSR1
calcium channel complex 1 RYR1
junctional sarcoplasmic reticulum membrane 1 RYR1
ribonucleoprotein complex 1 IGHMBP2
[Isoform 1]: Nucleus 1 IKZF3
[Isoform 1]: Cell membrane 1 NPSR1
postsynaptic cytosol 1 PLCB1
terminal cisterna 1 RYR1
[Isoform 3]: Cell membrane 1 NPSR1
astrocyte projection 2 GRM5, SLC1A2
[Isoform 7]: Cytoplasm 1 NPSR1
neuron projection terminus 1 SLC1A2
[Isoform 6]: Cytoplasm 1 NPSR1
[Isoform 4]: Cell membrane 1 NPSR1
ryanodine receptor complex 1 RYR1
[Isoform 12]: Cytoplasm 1 IKZF3
membrane protein complex 1 SLC1A2
[Isoform 9]: Cytoplasm 1 NPSR1
[Isoform 11]: Nucleus 1 IKZF3
G protein-coupled receptor dimeric complex 1 GRM1
G protein-coupled receptor homodimeric complex 1 GRM1
[Isoform 14]: Nucleus 1 IKZF3


文献列表

  • Xiao-Lin Li, Jing Yu, Li Liu. Poly[bis-(μ(7)-3-sulfonato-l-alaninato)sodiumzinc]. Acta crystallographica. Section E, Structure reports online. 2012 Jun; 68(Pt 6):m849. doi: 10.1107/s160053681202394x. [PMID: 22719385]
  • Monika Janczarek, Jolanta Kutkowska, Tomasz Piersiak, Anna Skorupska. Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC microbiology. 2010 Nov; 10(?):284. doi: 10.1186/1471-2180-10-284. [PMID: 21070666]
  • Sorin J Brull, Mohamed Naguib. Selective reversal of muscle relaxation in general anesthesia: focus on sugammadex. Drug design, development and therapy. 2009 Sep; 3(?):119-29. doi: 10.2147/dddt.s3868. [PMID: 19920928]
  • Alessia Farinazzo, Elisa Fasoli, Alexander V Kravchuk, Giovanni Candiano, Giancarlo Aldini, Luca Regazzoni, Pier Giorgio Righetti. En bloc elution of proteomes from combinatorial peptide ligand libraries. Journal of proteomics. 2009 May; 72(4):725-30. doi: 10.1016/j.jprot.2009.02.009. [PMID: 19269355]
  • Sarah T Pruett, Anatoliy Bushnev, Kerri Hagedorn, Madhura Adiga, Christopher A Haynes, M Cameron Sullards, Dennis C Liotta, Alfred H Merrill. Biodiversity of sphingoid bases ('sphingosines') and related amino alcohols. Journal of lipid research. 2008 Aug; 49(8):1621-39. doi: 10.1194/jlr.r800012-jlr200. [PMID: 18499644]
  • Hiroto Tanamachi, Yoshimasa Okamoto, Natsumi Fujiwara, Hisashi Tsujimura, Junko Sonoda, Satoru Naito, Yoshiya Sugai. Prevention effects of lipid-related materials on human hair damage progress. Journal of cosmetic science. 2004; 55 Suppl(?):S171-3. doi: ". [PMID: 15645093]
  • M J Croucher, L S Thomas, H Ahmadi, V Lawrence, J R Harris. Endogenous sulphur-containing amino acids: potent agonists at presynaptic metabotropic glutamate autoreceptors in the rat central nervous system. British journal of pharmacology. 2001 Jul; 133(6):815-24. doi: 10.1038/sj.bjp.0704138. [PMID: 11454654]
  • C R Santhosh-Kumar, J C Deutsch, J C Kolhouse, K L Hassell, J F Kolhouse. Measurement of excitatory sulfur amino acids, cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring. Analytical biochemistry. 1994 Aug; 220(2):249-56. doi: 10.1006/abio.1994.1335. [PMID: 7978266]
  • L Gorski, E R Leadbetter, W Godchaux. Temporal sequence of the recovery of traits during phenotypic curing of a Cytophaga johnsonae motility mutant. Journal of bacteriology. 1991 Dec; 173(23):7534-9. doi: 10.1128/jb.173.23.7534-7539.1991. [PMID: 1938948]
  • S D Gupta, P S Sastry. The biosynthesis of sulfoquinovosyldiacylglycerol: studies with groundnut (Arachis hypogaea) leaves. Archives of biochemistry and biophysics. 1988 Jan; 260(1):125-33. doi: 10.1016/0003-9861(88)90432-8. [PMID: 3341737]
  • R H White. Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. Journal of bacteriology. 1984 Jul; 159(1):42-6. doi: 10.1128/jb.159.1.42-46.1984. [PMID: 6330048]
  • D S Gilbert. Axoplasm chemical composition in Myxicola and solubility properties of its structural proteins. The Journal of physiology. 1975 Dec; 253(1):303-19. doi: 10.1113/jphysiol.1975.sp011191. [PMID: 1260]
  • J L Harwood. Synthesis of sulphoquinovosyl diacylglycerol by higher plants. Biochimica et biophysica acta. 1975 Aug; 398(2):224-30. doi: 10.1016/0005-2760(75)90138-1. [PMID: 1182135]