Thiophanate (BioDeep_00001868098)

Main id: BioDeep_00000001830

 


代谢物信息卡片


Thiophanate

化学式: C14H18N4O4S2 (370.0769)
中文名称: 硫菌灵
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCOC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OCC
InChI: InChI=1S/C14H18N4O4S2/c1-3-21-13(19)17-11(23)15-9-7-5-6-8-10(9)16-12(24)18-14(20)22-4-2/h5-8H,3-4H2,1-2H3,(H2,15,17,19,23)(H2,16,18,20,24)

描述信息

D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics
D016573 - Agrochemicals
D010575 - Pesticides

同义名列表

2 个代谢物同义名

Thiophanate; Thiophanate



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 CAT, NQO1, NR1I3, TNK1
Peripheral membrane protein 1 TNK1
Endoplasmic reticulum membrane 1 HMOX1
Nucleus 4 HMOX1, NQO1, NR1I3, PDS5B
cytosol 5 CAT, HMOX1, NQO1, NR1I3, PDS5B
dendrite 1 NQO1
nucleoplasm 4 HMOX1, NR1I3, PDS5B, PGRMC2
Cell membrane 1 TNF
Cytoplasmic side 1 HMOX1
Synapse 1 NQO1
cell surface 1 TNF
glutamatergic synapse 1 PGRMC2
neuronal cell body 2 NQO1, TNF
Cytoplasm, cytosol 1 NQO1
plasma membrane 2 TNF, TNK1
Membrane 5 CAT, HMOX1, NQO1, PGRMC2, TNK1
extracellular exosome 2 CAT, SOD2
endoplasmic reticulum 2 HMOX1, PGRMC2
extracellular space 2 HMOX1, TNF
perinuclear region of cytoplasm 1 HMOX1
mitochondrion 2 CAT, SOD2
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 1 CAT
Secreted 1 PGRMC2
extracellular region 3 CAT, PGRMC2, TNF
Single-pass membrane protein 1 PGRMC2
mitochondrial outer membrane 1 HMOX1
Mitochondrion matrix 1 SOD2
mitochondrial matrix 2 CAT, SOD2
external side of plasma membrane 1 TNF
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 1 NR1I3
focal adhesion 1 CAT
mitochondrial nucleoid 1 SOD2
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
chromatin 2 NR1I3, PDS5B
phagocytic cup 1 TNF
Chromosome 1 PDS5B
cytoskeleton 1 NR1I3
nuclear envelope 1 PGRMC2
Nucleus envelope 1 PGRMC2
Endomembrane system 1 PGRMC2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
Single-pass type IV membrane protein 1 HMOX1
chromosome, centromeric region 1 PDS5B
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Song Bai, Miaohe Zhang, Shouying Tang, Miao Li, Rong Wu, Suran Wan, Lijun Chen, Xian Wei, Feifei Li. Research Progress on Benzimidazole Fungicides: A Review. Molecules (Basel, Switzerland). 2024 Mar; 29(6):. doi: 10.3390/molecules29061218. [PMID: 38542855]
  • William P Gura, Jhulia Gelain, Edward J Sikora, Edgar L Vinson, Phillip M Brannen, Guido Schnabel. Low frequency of resistance to thiophanate-methyl in Monilinia fructicola populations from southeastern United States peach orchards. Pesticide biochemistry and physiology. 2023 Dec; 197(?):105642. doi: 10.1016/j.pestbp.2023.105642. [PMID: 38072561]
  • Nabil Touzout, Mahfoud Ainas, Rabia Alloti, Chahinez Boussahoua, Aicha Douma, Amel Hind Hassein-Bey, Zahia Brara, Hichem Tahraoui, Jie Zhang, Abdeltif Amrane. Unveiling the Impact of Thiophanate-Methyl on Arthrospira platensis: Growth, Photosynthetic Pigments, Biomolecules, and Detoxification Enzyme Activities. Frontiers in bioscience (Landmark edition). 2023 10; 28(10):264. doi: 10.31083/j.fbl2810264. [PMID: 37919091]
  • Collins Bugingo, Monica Brelsford, Mary Burrows. Fungicide sensitivity of Fusarium oxysporum f. sp. lentis and Fusarium acuminatum affecting lentil in the Northern Great Plains. Plant disease. 2023 Aug; ?(?):. doi: 10.1094/pdis-07-23-1440-sc. [PMID: 37606958]
  • Jhonatan Barro, Emerson Medeiros Del Ponte, Tom Allen, Jason P Bond, Travis R Faske, Clayton Hollier, Yuba Raj Kandel, Daren S Mueller, Heather M Kelly, Nathan Michael Kleczewski, Keith A Ames, Paul Price, Edward Sikora, Carl Bradley. Efficacy and profitability of fungicides for managing frogeye leaf spot on soybean in the United States: A 10-year quantitative summary. Plant disease. 2023 May; ?(?):. doi: 10.1094/pdis-02-23-0291-re. [PMID: 37157104]
  • Xiaofeng Su, Shuo Yan, Weisong Zhao, Haiyang Liu, Qinhong Jiang, Ying Wei, Huiming Guo, Meizhen Yin, Jie Shen, Hongmei Cheng. Self-assembled thiophanate-methyl/star polycation complex prevents plant cell-wall penetration and fungal carbon utilization during cotton infection by Verticillium dahliae. International journal of biological macromolecules. 2023 Apr; ?(?):124354. doi: 10.1016/j.ijbiomac.2023.124354. [PMID: 37028625]
  • Dufang Ke, Han Meng, Wenting Lei, Yulong Zheng, Linhan Li, Mingyi Wang, Rui Zhong, Mo Wang, Fengping Chen. Prevalence of H6Y mutation in β-tubulin causing thiophanate-methyl resistant in Monilinia fructicola from Fujian, China. Pesticide biochemistry and physiology. 2022 Nov; 188(?):105262. doi: 10.1016/j.pestbp.2022.105262. [PMID: 36464367]
  • Georgios Makris, Nikolaos Nikoloudakis, Anastasios Samaras, Georgios S Karaoglanidis, Loukas I Kanetis. Under Pressure: A Comparative Study of Botrytis cinerea Populations from Conventional and Organic Farms in Cyprus and Greece. Phytopathology. 2022 Oct; 112(10):2236-2247. doi: 10.1094/phyto-12-21-0510-r. [PMID: 35671479]
  • Jing-Ru Wang, Yong-Mei Hu, Han Zhou, An-Ping Li, Shao-Yong Zhang, Xiong-Fei Luo, Bao-Qi Zhang, Jun-Xia An, Zhi-Jun Zhang, Ying-Qian Liu. Allicin-Inspired Heterocyclic Disulfides as Novel Antimicrobial Agents. Journal of agricultural and food chemistry. 2022 Sep; 70(37):11782-11791. doi: 10.1021/acs.jafc.2c03765. [PMID: 36067412]
  • Akila D Prabhakaran, Elizabeth K Dann. Evaluation of Fungicide Soil Drench Treatments to Manage Black Root Rot Disease of Avocado. Plant disease. 2022 Aug; 106(8):2026-2030. doi: 10.1094/pdis-02-22-0264-re. [PMID: 35365050]
  • Fernando de Souza Buzo, Lucas Martins Garé, Nayara Fernanda Siviero Garcia, Maura Santos Reis de Andrade da Silva, Pedro Henrique Giova da Silva, Pamela Roberta de Souza Morita, Juliana Barboza Correa, Juliana Trindade Martins, Everlon Cid Rigobelo, Amaia Nogales, Orivaldo Arf. Chemical seed treatment and mycorrhizal inoculation provide better development and nutrition of common bean plants. Pest management science. 2022 Jul; 78(7):2985-2994. doi: 10.1002/ps.6923. [PMID: 35419935]
  • Nagehan Desen Köycü. Effect of fungicides on spike characteristics in winter wheat inoculated with Fusarium culmorum. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2022 May; 39(5):1001-1008. doi: 10.1080/19440049.2022.2052971. [PMID: 35438606]
  • Fang Jing Li, Ryoji Komura, Chiharu Nakashima, Masafumi Shimizu, Koji Kageyama, Haruhisa Suga. Molecular Diagnosis of Thiophanate-Methyl-Resistant Strains of Fusarium fujikuroi in Japan. Plant disease. 2022 Feb; 106(2):634-640. doi: 10.1094/pdis-07-21-1501-re. [PMID: 34494869]
  • Qiuchen Luo, Anita Schoeneberg, Mengjun Hu. Resistance to Azoxystrobin and Thiophanate-Methyl Is Widespread in Colletotrichum spp. Isolates From the Mid-Atlantic Strawberry Fields. Plant disease. 2021 Aug; 105(8):2202-2208. doi: 10.1094/pdis-09-20-2048-re. [PMID: 33206015]
  • J R Standish, T B Brenneman, C H Bock, K L Stevenson. Spatial Variation and Temporal Dynamics of Fungicide Sensitivity in Venturia effusa Within a Pecan Orchard. Plant disease. 2021 Feb; 105(2):377-383. doi: 10.1094/pdis-04-20-0889-re. [PMID: 32729799]
  • Farag Malhat, Osama Abdallah, Fayza Ahmed, Shokr Abdel Salam, Chris Anagnostopoulos, Mohamed Tawfic Ahmed. Dissipation behavior of thiophanate-methyl in strawberry under open field condition in Egypt and consumer risk assessment. Environmental science and pollution research international. 2021 Jan; 28(1):1029-1039. doi: 10.1007/s11356-020-10186-4. [PMID: 32827299]
  • Pingliang Li, Pingyang Sun, Xiangli Dong, Baohua Li. Residue analysis and kinetics modeling of thiophanate-methyl, carbendazim, tebuconazole and pyraclostrobin in apple tree bark using QuEChERS/HPLC-VWD. Biomedical chromatography : BMC. 2020 Sep; 34(9):e4851. doi: 10.1002/bmc.4851. [PMID: 32307729]
  • Hervé F Avenot, David P Morgan, Joel Quattrini, Themis J Michailides. Resistance to Thiophanate-Methyl in Botrytis cinerea Isolates From Californian Vineyards and Pistachio and Pomegranate Orchards. Plant disease. 2020 Apr; 104(4):1069-1075. doi: 10.1094/pdis-02-19-0353-re. [PMID: 32027568]
  • Jaqueline N DA Silva, Nayara R Monteiro, Patricia A Antunes, Ana Paula A Favareto. Maternal and developmental toxicity after exposure to formulation of chlorothalonil and thiophanate-methyl during organogenesis in rats. Anais da Academia Brasileira de Ciencias. 2020; 92(4):e20191026. doi: 10.1590/0001-3765202020191026. [PMID: 33206784]
  • Fengping Chen, Susan Satie Tsuji, Yuan Li, Mengjun Hu, Moara Alexandrino Bandeira, Marcos Paz Saraiva Câmara, Sami Jorge Michereff, Guido Schnabel. Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. Pesticide biochemistry and physiology. 2020 Jan; 162(?):60-68. doi: 10.1016/j.pestbp.2019.08.008. [PMID: 31836056]
  • A Chechi, J Stahlecker, M E Dowling, G Schnabel. Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide biochemistry and physiology. 2019 Jul; 158(?):18-24. doi: 10.1016/j.pestbp.2019.04.002. [PMID: 31378355]
  • Jian Hu, Yuxin Zhou, Tao Gao, Jiamei Geng, Yuan Dai, Haiyan Ren, Kurt Lamour, Xili Liu. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Pesticide biochemistry and physiology. 2019 May; 156(?):123-128. doi: 10.1016/j.pestbp.2019.02.011. [PMID: 31027571]
  • Di Wu, Liuwei Meng, Liang Yang, Jingyu Wang, Xiaping Fu, Xiaoqiang Du, Shaojia Li, Yong He, Lingxia Huang. Feasibility of Laser-Induced Breakdown Spectroscopy and Hyperspectral Imaging for Rapid Detection of Thiophanate-Methyl Residue on Mulberry Fruit. International journal of molecular sciences. 2019 Apr; 20(8):. doi: 10.3390/ijms20082017. [PMID: 31022906]
  • Yuran Wang, Sen Lian, Xiangli Dong, Caixia Wang, Baohua Li, Pingliang Li. Analysis of the dissipation kinetics of thiophanate-methyl and its metabolite carbendazim in apple leaves using a modified QuEChERS-UPLC-MS/MS method. Biomedical chromatography : BMC. 2019 Feb; 33(2):e4394. doi: 10.1002/bmc.4394. [PMID: 30248717]
  • Haruhisa Suga, Mitsuhiro Arai, Emi Fukasawa, Keiichi Motohashi, Hiroyuki Nakagawa, Hideaki Tateishi, Shin-Ichi Fuji, Masafumi Shimizu, Koji Kageyama, Mitsuro Hyakumachi. Genetic Differentiation Associated with Fumonisin and Gibberellin Production in Japanese Fusarium fujikuroi. Applied and environmental microbiology. 2019 01; 85(1):. doi: 10.1128/aem.02414-18. [PMID: 30341078]
  • Sumit Pradhan, Lee Miller, Vanessa Marcillo, Alma R Koch, Nathalia Graf Grachet, Julio E Molineros, Nathan R Walker, Hassan Melouk, Carla D Garzon. Hormetic Effects of Thiophanate-Methyl in Multiple Isolates of Sclerotinia homoeocarpa. Plant disease. 2019 Jan; 103(1):89-94. doi: 10.1094/pdis-05-18-0872-re. [PMID: 30398944]
  • A Amiri, A I Zuniga, N A Peres. Potential Impact of Populations Drift on Botrytis Occurrence and Resistance to Multi- and Single-Site Fungicides in Florida Southern Highbush Blueberry Fields. Plant disease. 2018 11; 102(11):2142-2148. doi: 10.1094/pdis-11-17-1810-re. [PMID: 30169135]
  • Jian Hu, Shaojun Deng, Tao Gao, Kurt Lamour, Xili Liu, Haiyan Ren. Thiophanate-methyl resistance in Sclerotinia homoeocarpa from golf courses in China. Pesticide biochemistry and physiology. 2018 Nov; 152(?):84-89. doi: 10.1016/j.pestbp.2018.09.004. [PMID: 30497716]
  • Juliana S Baggio, Natalia A Peres, Lilian Amorim. Sensitivity of Botrytis cinerea Isolates from Conventional and Organic Strawberry Fields in Brazil to Azoxystrobin, Iprodione, Pyrimethanil, and Thiophanate-Methyl. Plant disease. 2018 Sep; 102(9):1803-1810. doi: 10.1094/pdis-08-17-1221-re. [PMID: 30125196]
  • Gaurav Sharma, Amit Kumar, Kunjana Devi, Shweta Sharma, Mu Naushad, Ayman A Ghfar, Tansir Ahamad, Florian J Stadler. Guar gum-crosslinked-Soya lecithin nanohydrogel sheets as effective adsorbent for the removal of thiophanate methyl fungicide. International journal of biological macromolecules. 2018 Jul; 114(?):295-305. doi: 10.1016/j.ijbiomac.2018.03.093. [PMID: 29572143]
  • Willie Anderson Dos Santos Vieira, Waléria Guerreiro Lima, Eduardo Souza Nascimento, Sami Jorge Michereff, Ailton Reis, Vinson P Doyle, Marcos Paz Saraiva Câmara. Thiophanate-Methyl Resistance and Fitness Components of Colletotrichum musae Isolates from Banana in Brazil. Plant disease. 2017 Sep; 101(9):1659-1665. doi: 10.1094/pdis-11-16-1594-re. [PMID: 30677331]
  • Ben Amara Ibtissem, Ben Saad Hajer, Hakim Ahmed, Elwej Awatef, Kallel Choumous, Boudawara Ons, Zeghal Khaled Mounir, Zeghal Najiba. Oxidative stress and histopathological changes induced by methylthiophanate, a systemic fungicide, in blood, liver and kidney of adult rats. African health sciences. 2017 Mar; 17(1):154-163. doi: 10.4314/ahs.v17i1.20. [PMID: 29026389]
  • A Feki, H Ben Saad, I Jaballi, C Magne, O Boudawara, K M Zeghal, A Hakim, Y Ben Ali, I Ben Amara. Methyl thiophanate-induced toxicity in liver and kidney of adult rats: a biochemical, molecular and histopathological approach. Cellular and molecular biology (Noisy-le-Grand, France). 2017 Feb; 63(2):20-28. doi: 10.14715/cmb/2017.63.2.4. [PMID: 28364781]
  • Meng-Jun Hu, Kerik D Cox, Guido Schnabel. Resistance to Increasing Chemical Classes of Fungicides by Virtue of 'Selection by Association' in Botrytis cinerea. Phytopathology. 2016 12; 106(12):1513-1520. doi: 10.1094/phyto-04-16-0161-r. [PMID: 27503370]
  • Davinia Bellón-Gómez, David Vela-Corcía, Alejandro Pérez-García, Juan A Torés. Sensitivity of Podosphaera xanthii populations to anti-powdery-mildew fungicides in Spain. Pest management science. 2015 Oct; 71(10):1407-13. doi: 10.1002/ps.3943. [PMID: 25418926]
  • Jinyan Fan, Yong Luo, Themis J Michailides, Liyun Guo. Simultaneous quantification of alleles E198A and H6Y in the β-tubulin gene conferring benzimidazole resistance in Monilinia fructicola using a duplex real-time (TaqMan) PCR. Pest management science. 2014 Feb; 70(2):245-51. doi: 10.1002/ps.3549. [PMID: 23775824]
  • Jordana Alves Ferreira, Luís Fabrício Santana Santos, Nicaellen Roberta da Silva Souza, Sandro Navickiene, Frederico Alberto de Oliveira, Viviane Talamini. MSPD sample preparation approach for reversed-phase liquid chromatographic analysis of pesticide residues in stem of coconut palm. Bulletin of environmental contamination and toxicology. 2013 Aug; 91(2):160-4. doi: 10.1007/s00128-013-1018-3. [PMID: 23722654]
  • J M A Pinto, R Pereira, S F Mota, F H Ishikawa, E A Souza. Investigating phenotypic variability in Colletotrichum lindemuthianum populations. Phytopathology. 2012 May; 102(5):490-7. doi: 10.1094/phyto-06-11-0179. [PMID: 22250759]
  • Karen S Galea, Laura MacCalman, Kate Jones, John Cocker, Paul Teedon, Anne J Sleeuwenhoek, John W Cherrie, Martie van Tongeren. Biological monitoring of pesticide exposures in residents living near agricultural land. BMC public health. 2011 Nov; 11(?):856. doi: 10.1186/1471-2458-11-856. [PMID: 22074397]
  • I S Yahia, Abdulaziz A Al-Khedhairy, Javed Musarrat, F Yakuphanoglu. Optical spectroscopy studies of the interaction between thiophanate methyl and human serum albumin for biosensor applications. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2011 Sep; 79(5):1285-90. doi: 10.1016/j.saa.2011.04.056. [PMID: 21703921]
  • Quaiser Saquib, Abdulaziz A Al-Khedhairy, Saud A Alarifi, Sourabh Dwivedi, Jamal Mustafa, Javed Musarrat. Fungicide methyl thiophanate binding at sub-domain IIA of human serum albumin triggers conformational change and protein damage. International journal of biological macromolecules. 2010 Jul; 47(1):60-7. doi: 10.1016/j.ijbiomac.2010.03.020. [PMID: 20371370]
  • Enoch A Osekre, David L Wright, James J Marois, Joe Funderburk. Flower-inhabiting Frankliniella Thrips (Thysanoptera: Thripidae), pesticides, and Fusarium hardlock in cotton. Journal of economic entomology. 2009 Jun; 102(3):887-96. doi: 10.1603/029.102.0305. [PMID: 19610399]
  • Jinhua Li, Xiaoyan Liu, Cuiling Ren, Jiazhong Li, Fenling Sheng, Zhide Hu. In vitro study on the interaction between thiophanate methyl and human serum albumin. Journal of photochemistry and photobiology. B, Biology. 2009 Mar; 94(3):158-63. doi: 10.1016/j.jphotobiol.2008.10.001. [PMID: 19121585]
  • Young-Ki Jo, Seog Won Chang, Michael Boehm, Geunhwa Jung. Rapid development of fungicide resistance by Sclerotinia homoeocarpa on turfgrass. Phytopathology. 2008 Dec; 98(12):1297-304. doi: 10.1094/phyto-98-12-1297. [PMID: 19000004]
  • Rosaria Sciarrillo, Maria De Falco, Francesca Virgilio, Vincenza Laforgia, Anna Capaldo, Flaminia Gay, Salvatore Valiante, Lorenzo Varano. Morphological and functional changes in the thyroid gland of methyl thiophanate-injected lizards, Podarcis sicula. Archives of environmental contamination and toxicology. 2008 Aug; 55(2):254-61. doi: 10.1007/s00244-007-9116-z. [PMID: 18196192]
  • Maria De Falco, Rosaria Sciarrillo, Anna Capaldo, Tiziana Russo, Flaminia Gay, Salvatore Valiante, Lorenzo Varano, Vincenza Laforgia. The effects of the fungicide methyl thiophanate on adrenal gland morphophysiology of the lizard, Podarcis sicula. Archives of environmental contamination and toxicology. 2007 Aug; 53(2):241-8. doi: 10.1007/s00244-006-0204-2. [PMID: 17549544]
  • Anna Capaldo, Flaminia Gay, Maria De Falco, Francesca Virgilio, Salvatore Valiante, Vincenza Laforgia, Lorenzo Varano. The newt Triturus carnifex as a model for monitoring the ecotoxic impact of the fungicide thiophanate methyl: adverse effects on the adrenal gland. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2006 May; 143(1):86-93. doi: 10.1016/j.cbpc.2005.12.005. [PMID: 16503421]
  • C K Jayasinghe, T H P S Fernando. Re-identification and characterization of pathogens causing ugurassa (Flacourtia inermis) fruit anthracnose. Mycopathologia. 2004 Jan; 157(1):81-5. doi: 10.1023/b:myco.0000012208.71895.a4. [PMID: 15008349]
  • Zhonghua Ma, Michael A Yoshimura, Themis J Michailides. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Applied and environmental microbiology. 2003 Dec; 69(12):7145-52. doi: 10.1128/aem.69.12.7145-7152.2003. [PMID: 14660360]
  • Xuping Yu, Zhian Wang, Shujun Sheng, Jianzhong Xu. [Effects of Atractylodes macrocephala seeds coated with SCF on field diseases]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2002 Apr; 25(4):230-1. doi: ". [PMID: 12583169]
  • D E Wedge, D G Nagle. A new 2D-TLC bioautography method for the discovery of novel antifungal agents To control plant pathogens. Journal of natural products. 2000 Aug; 63(8):1050-4. doi: 10.1021/np990628r. [PMID: 10978195]
  • M Paolini, L Pozzetti, P Perocco, M Mazzullo, G Cantelli-Forti. Molecular non-genetic biomarkers of effect related to methyl thiophanate cocarcinogenesis: organ- and sex-specific cytochrome P450 induction in the rat. Cancer letters. 1999 Jan; 135(2):203-13. doi: 10.1016/s0304-3835(98)00298-5. [PMID: 10096430]
  • M E Traina, P Fazzi, C Macrì, C Ricciardi, A V Stazi, E Urbani, A Mantovani. In vivo studies on possible adverse effects on reproduction of the fungicide methyl thiophanate. Journal of applied toxicology : JAT. 1998 Jul; 18(4):241-8. doi: 10.1002/(sici)1099-1263(199807/08)18:4<241::aid-jat500>3.0.co;2-q. [PMID: 9719423]
  • R M Waruiru, J K Kogi, E H Weda, J W Ngotho. Multiple anthelmintic resistance on a goat farm in Kenya. Veterinary parasitology. 1998 Feb; 75(2-3):191-7. doi: 10.1016/s0304-4017(97)00195-7. [PMID: 9637220]
  • R M Waruiru, J W Ngotho, J G Mukiri. Multiple anthelmintic resistance in Haemonchus contortus on a sheep farm in Kenya. Veterinary research communications. 1997 Oct; 21(7):483-91. doi: 10.1023/a:1005990303552. [PMID: 9345715]
  • E J Mukhwana, E S Mitema. Comparative efficacy of three anthelmintics against mixed gastrointestinal nematode infections in camels. Tropical animal health and production. 1997 May; 29(2):99-101. doi: 10.1007/bf02632326. [PMID: 9203310]
  • R M Waruiru, E H Weda, R O Otieno, J W Ngotho, H O Bøgh. Comparative efficacies of closantel, ivermectin, oxfendazole, thiophanate and levamisole against thiabendazole resistant Haemonchus contortus in sheep. Tropical animal health and production. 1996 Aug; 28(3):216-20. doi: 10.1007/bf02240938. [PMID: 8888527]
  • A J Ngomuo, A A Kassuku, M R Ruheta. Critical controlled test to evaluate resistance of field strains of Haemonchus contortus to thiophanate. Veterinary parasitology. 1990 May; 36(1-2):21-6. doi: 10.1016/0304-4017(90)90090-x. [PMID: 2382387]
  • E Onar. Efficacy of thiophanate and albendazole against natural infections of Dicrocoelium dentriticum, Fasciola hepatica, and gastrointestinal nematodes and cestodes in sheep. Veterinary parasitology. 1990 Feb; 35(1-2):139-45. doi: 10.1016/0304-4017(90)90123-s. [PMID: 2343524]
  • R J Connor, A P Munyuku, E Mackyao, R W Halliwell. Helminthosis in goats in southern Tanzania: investigations on epidemiology and control. Tropical animal health and production. 1990 Feb; 22(1):1-6. doi: 10.1007/bf02243487. [PMID: 2321258]
  • P Delatour, S Besse, M N Romdane. [Pharmacokinetics and anti-Dicrocoelium activity of thiophanate and its major metabolite in ruminants]. Annales de recherches veterinaires. Annals of veterinary research. 1988; 19(2):119-22. doi: NULL. [PMID: 3415190]
  • M Kaur, K B Deshpande. Efficacy of rovrol and mildothane against phytopathogenic fungi. Hindustan antibiotics bulletin. 1981; 23(?):38-40. doi: ". [PMID: 7309554]
  • J R Edwards, G De Chaneet. Resistance of Haemonchus contortus to thiophanate. Research in veterinary science. 1980 Nov; 29(3):370-2. doi: . [PMID: 7255897]
  • J Zadrozińska. [Use of fungi as a biological test for determination of fungicide residues in plant material. II. Determination of benomyl, dichlofluanide, folpet, captane, carbendazyme, methyl thiophanate and thiram in fruit, vegetables and champignons]. Roczniki Panstwowego Zakladu Higieny. 1979; 30(5):433-40. doi: . [PMID: 575574]