AI3-32389 (BioDeep_00000863256)
Main id: BioDeep_00000409201
PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C9H8O3 (164.0473)
中文名称: 反式-3-羟基肉桂酸, 3-羟基肉桂酸
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C1=CC(=CC(=C1)O)C=CC(=O)O
InChI: InChI=1S/C9H8O3/c10-8-3-1-2-7(6-8)4-5-9(11)12/h1-6,10H,(H,11,12)/b5-4+
描述信息
(E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant.
(E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant.
m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.
m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.
同义名列表
32 个代谢物同义名
InChI=1\C9H8O3\c10-8-3-1-2-7(6-8)4-5-9(11)12\h1-6,10H,(H,11,12)\b5-4; InChI=1\C9H8O3\c10-8-3-1-2-7(6-8)4-5-9(11)12\h1-6,10H,(H,11,12; 2-propenoic acid, 3-(3-hydroxyphenyl)-, (2E)-; 2-Propenoic acid, 3-(3-hydroxyphenyl)- (9CI); 2-Propenoic acid, 3-(3-hydroxyphenyl)-, (E)-; (e)-3-(3-Hydroxyphenyl)-2-propenoic acid; (E)-3-(3-hydroxyphenyl)prop-2-enoic acid; 2-Propenoic acid, 3-(3-hydroxyphenyl)-; 3-(3-Hydroxyphenyl)prop-2-enoic acid; (2E)-3-(3-Hydroxyphenyl)acrylic acid; (E)-3-(3-Hydroxyphenyl)acrylic acid; CINNAMIC ACID,3-HYDROXY (TRANS); 3-(3-hydroxyphenyl)acrylic acid; trans-3-Hydroxycinnamic acid; Cinnamic acid, m-hydroxy-; trans-3-Hydroxycinnamate; m-Hydroxycinnamic acid; 3-Hydroxycinnamic acid; EINECS 209-615-0; m-Coumaric acid; 3-Coumaric acid; H23007_ALDRICH; 28180_FLUKA; AI3-32389; NSC 28956; NSC 50308; NSC28956; 588-30-7; NSC50308; C12621; (E)-m-Coumaric acid; trans-3-Hydroxycinnamate
数据库引用编号
11 个数据库交叉引用编号
- ChEBI: CHEBI:32357
- ChEBI: CHEBI:47925
- PubChem: 637541
- ChEMBL: CHEMBL98521
- CAS: 14755-02-3
- CAS: 588-30-7
- medchemexpress: HY-N7127
- medchemexpress: HY-113357
- KEGG: C12621
- PubChem: 583011
- KNApSAcK: 32357
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
23 个相关的物种来源信息
- 1128104 - Balanophora tobiracola: 10.1016/0031-9422(80)83209-2
- 38787 - Betula pubescens: 10.1016/0305-1978(94)00092-U
- 298643 - Crataegus laevigata: 10.1515/ZNC-2001-9-1012
- 140997 - Crataegus monogyna: 10.1515/ZNC-2001-9-1012
- 510738 - Crataegus rhipidophylla: 10.1515/ZNC-2001-9-1012
- 4039 - Daucus carota: 10.1021/JF020028P
- 33136 - Epilobium dodonaei: 10.1016/S0021-9673(97)01259-4
- 3746 - Fragaria: 10.1021/JF020028P
- 167663 - Gliricidia sepium: 10.1007/BF00982301
- 3750 - Malus domestica: 10.1021/JF020028P
- 283210 - Malus pumila: 10.1021/JF020028P
- 4146 - Olea europaea:
- 3469 - Papaver somniferum: -
- 3435 - Persea americana: 10.1021/JF00078A018
- 3726 - Raphanus sativus: 10.3390/NU11020402
- 32247 - Rubus idaeus: 10.1021/JF020028P
- 4081 - Solanum lycopersicum: 10.1021/JF020028P
- 78534 - Trigonella foenum-graecum: 10.1016/J.FOODCHEM.2013.07.016
- 180763 - Vaccinium myrtillus: 10.1111/J.1365-2621.1987.TB14056.X
- 29760 - Vitis vinifera: 10.1021/JF020028P
- 33090 - 杜仲: -
- 33090 - 苎麻根: -
- 33090 - 麦芽: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jun-Lan Xiong, Ni Ma. Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in Brassica napus L.
International journal of molecular sciences.
2022 Dec; 23(23):. doi:
10.3390/ijms232315304
. [PMID: 36499633] - Julia Wohl, Maike Petersen. Phenolic metabolism in the hornwort Anthoceros agrestis: 4-coumarate CoA ligase and 4-hydroxybenzoate CoA ligase.
Plant cell reports.
2020 Sep; 39(9):1129-1141. doi:
10.1007/s00299-020-02552-w
. [PMID: 32405654] - Sonia Losada-Barreiro, Carlos Bravo-Díaz. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases.
European journal of medicinal chemistry.
2017 Jun; 133(?):379-402. doi:
10.1016/j.ejmech.2017.03.061
. [PMID: 28415050] - Amma G Adomako-Bonsu, Sue Lf Chan, Margaret Pratten, Jeffrey R Fry. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics.
Toxicology in vitro : an international journal published in association with BIBRA.
2017 Apr; 40(?):248-255. doi:
10.1016/j.tiv.2017.01.016
. [PMID: 28122265] - Antonia Nostro, Angela Filocamo, Annalisa Giovannini, Stefania Catania, Chiara Costa, Andreana Marino, Giuseppe Bisignano. Antimicrobial activity and phenolic content of natural site and micropropagated Limonium avei (De Not.) Brullo & Erben plant extracts.
Natural product research.
2012; 26(22):2132-6. doi:
10.1080/14786419.2011.628669
. [PMID: 22014177] - Seigo Baba, Naomi Osakabe, Midori Natsume, Junji Terao. Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid.
Life sciences.
2004 May; 75(2):165-78. doi:
10.1016/j.lfs.2003.11.028
. [PMID: 15120569] - Hisashi Matsuda, Toshio Morikawa, Hiromi Managi, Masayuki Yoshikawa. Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-alpha and IL-4 in RBL-2H3 cells.
Bioorganic & medicinal chemistry letters.
2003 Oct; 13(19):3197-202. doi:
10.1016/s0960-894x(03)00710-8
. [PMID: 12951092]