4-(8-Methyl-9H-1,3-dioxolo(4,5-h)(2,3)benzodiazepin-5-yl)benzenamine (BioDeep_00000010360)

 

Secondary id: BioDeep_00001875233

human metabolite blood metabolite


代谢物信息卡片


4-{13-methyl-4,6-dioxa-11,12-diazatricyclo[7.5.0.0³,⁷]tetradeca-1,3(7),8,10,12-pentaen-10-yl}aniline

化学式: C17H15N3O2 (293.1164)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 100%

分子结构信息

SMILES: CC1=NN=C(C2=CC3=C(C=C2C1)OCO3)C4=CC=C(C=C4)N
InChI: InChI=1S/C17H15N3O2/c1-10-6-12-7-15-16(22-9-21-15)8-14(12)17(20-19-10)11-2-4-13(18)5-3-11/h2-5,7-8H,6,9,18H2,1H3

描述信息

D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents
D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents
D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
D020011 - Protective Agents

同义名列表

7 个代谢物同义名

4-{13-methyl-4,6-dioxa-11,12-diazatricyclo[7.5.0.0³,⁷]tetradeca-1,3(7),8,10,12-pentaen-10-yl}aniline; 1-(p-Aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride; 4-(8-Methyl-9H-1,3-dioxolo(4,5-h)(2,3)benzodiazepin-5-yl)benzenamine; 4-(8-Methyl-9H-1,3-dioxolo[4,5-H][2,3]benzodiazepin-5-yl)benzenamine; Gyki-52466; GYKI 52466; GYKI 52466



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 CA1, CA2, CA3, CHAT, GRIN2B, GRM5
Endoplasmic reticulum membrane 2 GRIA1, GRIN2B
Nucleus 3 CHAT, FOS, GRM1
cytosol 8 CA1, CA2, CA3, CHAT, FOS, GRIA1, PRKCQ, SST
dendrite 5 GRIA1, GRIA2, GRIA4, GRM1, GRM5
nucleoplasm 3 FOS, GRIK2, GRIK5
RNA polymerase II transcription regulator complex 1 FOS
Cell membrane 13 CA2, GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK5, GRIN2B, GRM1, GRM3, GRM5
Early endosome membrane 1 GRIA1
Multi-pass membrane protein 12 GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK5, GRIN2B, GRM1, GRM3, GRM5
Synapse 2 CHAT, GRIA1
cell surface 2 GRIA1, GRIN2B
dendritic shaft 2 GRIA1, GRM5
glutamatergic synapse 7 GRIA1, GRID1, GRIK2, GRM1, GRM3, GRM5, ICAM5
neuromuscular junction 1 GRIA1
neuronal cell body 5 GRIA1, GRIA2, GRIA4, GRM5, SST
postsynapse 3 GRIA2, GRM5, ICAM5
presynaptic membrane 4 GRIK1, GRIK2, GRIK5, GRM3
Lysosome 1 GRIN2B
Presynapse 1 GRIA1
plasma membrane 15 CA2, GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK5, GRIN2B, GRM1, GRM3, GRM5, ICAM5, PRKCQ
synaptic vesicle membrane 1 GRIA1
terminal bouton 1 GRIK2
Membrane 9 GRIA1, GRIA2, GRIA4, GRIK2, GRIK5, GRIN2B, GRM3, GRM5, ICAM5
axon 1 GRM3
extracellular exosome 3 CA1, CA2, GRID1
endoplasmic reticulum 3 FOS, GRIK2, GRIK5
extracellular space 1 SST
Schaffer collateral - CA1 synapse 2 GRM1, GRM5
intracellular membrane-bounded organelle 1 GRIK1
postsynaptic density 5 GRIA1, GRIA2, GRIK2, GRIN2B, GRM3
Single-pass type I membrane protein 1 ICAM5
Secreted 1 SST
extracellular region 1 SST
excitatory synapse 2 GRIA1, GRIA2
hippocampal mossy fiber to CA3 synapse 2 GRIK2, GRIK5
neuronal cell body membrane 1 GRIA1
centriolar satellite 1 PRKCQ
external side of plasma membrane 2 GRIA1, GRIA2
Extracellular vesicle 1 GRIA4
dendritic spine 6 GRIA1, GRIA2, GRIA3, GRIA4, GRM3, GRM5
perikaryon 1 GRIK2
neuron spine 1 GRIA1
apical part of cell 1 CA2
cell-cell junction 1 GRIA1
recycling endosome 1 GRIA1
postsynaptic membrane 9 GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIN2B, GRM3
presynaptic active zone membrane 1 GRIA1
Cytoplasm, cytoskeleton 1 GRIN2B
GABA-ergic synapse 2 GRID1, SST
Cell projection, dendritic spine 1 GRIA1
Postsynaptic cell membrane 10 GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK5, GRIN2B, GRM1
dendrite cytoplasm 1 GRIK2
kainate selective glutamate receptor complex 3 GRIK1, GRIK2, GRIK5
mossy fiber rosette 1 GRIK2
Late endosome 1 GRIN2B
neuron projection 2 CHAT, GRIN2B
chromatin 1 FOS
cell projection 2 GRIK2, GRIK5
cytoskeleton 1 GRIN2B
postsynaptic density, intracellular component 1 GRIA1
Recycling endosome membrane 1 GRIA1
AMPA glutamate receptor complex 4 GRIA1, GRIA2, GRIA3, GRIA4
Cell projection, dendrite 3 GRIA1, GRIA4, GRIN2B
Presynaptic cell membrane 2 GRIK2, GRIK5
myelin sheath 1 CA2
synaptic membrane 2 GRIA1, GRIN2B
nuclear matrix 1 FOS
endocytic vesicle membrane 4 GRIA1, GRIA2, GRIA3, GRIA4
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GRIA1
postsynaptic density membrane 11 GRIA1, GRIA2, GRIA3, GRIA4, GRID1, GRIK1, GRIK2, GRIK5, GRIN2B, GRM1, GRM5
postsynaptic endocytic zone 1 GRIA2
immunological synapse 1 PRKCQ
neuronal dense core vesicle 1 SST
aggresome 1 PRKCQ
ER to Golgi transport vesicle membrane 1 GRIA1
parallel fiber to Purkinje cell synapse 1 GRIA3
protein-DNA complex 1 FOS
NMDA selective glutamate receptor complex 1 GRIN2B
dendritic spine membrane 1 GRIA1
astrocyte projection 2 GRM3, GRM5
transcription factor AP-1 complex 1 FOS
asymmetric synapse 1 GRIA2
proximal dendrite 1 GRIA1
axonal spine 1 GRIA1
perisynaptic space 1 GRIA1
G protein-coupled receptor dimeric complex 1 GRM1
G protein-coupled receptor homodimeric complex 1 GRM1


文献列表

  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Hongkun Bao, Pengzhan Ran, Ming Zhu, Lijuan Sun, Bai Li, Yangyang Hou, Jun Nie, Liping Shan, Hongliang Li, Shangyong Zheng, Xiufeng Xu, Chunjie Xiao, Jing Du. The Prefrontal Dectin-1/AMPA Receptor Signaling Pathway Mediates The Robust and Prolonged Antidepressant Effect of Proteo-β-Glucan from Maitake. Scientific reports. 2016 06; 6(?):28395. doi: 10.1038/srep28395. [PMID: 27329257]
  • Bai Li, Yangyang Hou, Ming Zhu, Hongkun Bao, Jun Nie, Grace Y Zhang, Liping Shan, Yao Yao, Kai Du, Hongju Yang, Meizhang Li, Bingrong Zheng, Xiufeng Xu, Chunjie Xiao, Jing Du. 3'-Deoxyadenosine (Cordycepin) Produces a Rapid and Robust Antidepressant Effect via Enhancing Prefrontal AMPA Receptor Signaling Pathway. The international journal of neuropsychopharmacology. 2016 Apr; 19(4):. doi: 10.1093/ijnp/pyv112. [PMID: 26443809]
  • Laura E Halpin, Bryan K Yamamoto. Peripheral ammonia as a mediator of methamphetamine neurotoxicity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2012 Sep; 32(38):13155-63. doi: 10.1523/jneurosci.2530-12.2012. [PMID: 22993432]
  • Congzhou Wang, Zhenyu Sheng, Li Niu. Mechanism of inhibition of the GluA2 AMPA receptor channel opening: consequences of adding an N-3 methylcarbamoyl group to the diazepine ring of 2,3-benzodiazepine derivatives. Biochemistry. 2011 Aug; 50(33):7284-93. doi: 10.1021/bi2007977. [PMID: 21751782]
  • Robert D Staszewski, Bryan K Yamamoto. Methamphetamine-induced spectrin proteolysis in the rat striatum. Journal of neurochemistry. 2006 Mar; 96(5):1267-76. doi: 10.1111/j.1471-4159.2005.03618.x. [PMID: 16417574]
  • Erika Suzuki, Markus Kessler, Amy C Arai. C-terminal truncation affects kinetic properties of GluR1 receptors. Molecular and cellular neurosciences. 2005 May; 29(1):1-10. doi: 10.1016/j.mcn.2005.01.004. [PMID: 15866042]
  • Dóra Zelena, Gábor B Makara, György M Nagy. Effect of glutamate receptor antagonists on suckling-induced prolactin release in rats. Endocrine. 2003 Jul; 21(2):147-52. doi: 10.1385/endo:21:2:147. [PMID: 12897378]
  • Ahmet Colak, Osman Soy, Hafize Uzun, Ozcan Aslan, Seref Barut, Ahmet Belce, Ayşenur Akyildiz, Mustafa Taşyürekli. Neuroprotective effects of GYKI 52466 on experimental spinal cord injury in rats. Journal of neurosurgery. 2003 Apr; 98(3 Suppl):275-81. doi: 10.3171/spi.2003.98.3.0275. [PMID: 12691384]
  • A Lannuzel, P P Michel, G U Höglinger, P Champy, A Jousset, F Medja, A Lombès, F Darios, C Gleye, A Laurens, R Hocquemiller, E C Hirsch, M Ruberg. The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience. 2003; 121(2):287-96. doi: 10.1016/s0306-4522(03)00441-x. [PMID: 14521988]
  • K K Borowicz, A M Duda, Z Kleinrok, S J Czuczwar. Interaction of GYKI 52466, a selective non-competitive antagonist of AMPA/kainate receptors, with conventional antiepileptic drugs in amygdala-kindled seizures in rats. Polish journal of pharmacology. 2001 Mar; 53(2):101-8. doi: NULL. [PMID: 11787948]
  • K Kohda, Y Wang, M Yuzaki. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nature neuroscience. 2000 Apr; 3(4):315-22. doi: 10.1038/73877. [PMID: 10725919]
  • G De Sarro, M Rizzo, C Spagnolo, R Gitto, A De Sarro, G Scotto, M Zappala, A Chimirri. Anticonvulsant activity and plasma level of 2,3-benzodiazepin-4-ones (CFMs) in genetically epilepsy-prone rats. Pharmacology, biochemistry, and behavior. 1999 Aug; 63(4):621-7. doi: 10.1016/s0091-3057(99)00027-1. [PMID: 10462191]
  • D Zelena, G B Makara, D Jezova. Simultaneous blockade of two glutamate receptor subtypes (NMDA and AMPA) results in stressor-specific inhibition of prolactin and corticotropin release. Neuroendocrinology. 1999 May; 69(5):316-23. doi: 10.1159/000054433. [PMID: 10343172]
  • G De Sarro, M Rizzo, V A Sinopoli, R Gitto, A De Sarro, M Zappala, A Chimirri. Relationship between anticonvulsant activity and plasma level of some 2,3-benzodiazepines in genetically epilepsy-prone rats. Pharmacology, biochemistry, and behavior. 1998 Nov; 61(3):215-20. doi: 10.1016/s0091-3057(98)00036-7. [PMID: 9768555]
  • S J Czuczwar, M Gasior, R Kamiński, Z Kleinrok, M Kozicka, G Ossowska, T Pietrasiewicz. GYKI 52466 [1-(4-aminophenyl)-4-methoxy-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride] and the anticonvulsive activity of conventional antiepileptics against pentetrazol in mice. Molecular and chemical neuropathology. 1998 Apr; 33(3):149-62. doi: 10.1007/bf02815178. [PMID: 9642669]
  • J C Pelletier, D P Hesson, K A Jones, A M Costa. Substituted 1,2-dihydrophthalazines: potent, selective, and noncompetitive inhibitors of the AMPA receptor. Journal of medicinal chemistry. 1996 Jan; 39(2):343-6. doi: 10.1021/jm950740w. [PMID: 8558499]
  • D Bleakman, B A Ballyk, D D Schoepp, A J Palmer, C P Bath, E F Sharpe, M L Woolley, H R Bufton, R K Kamboj, I Tarnawa, D Lodge. Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology. 1996; 35(12):1689-702. doi: 10.1016/s0028-3908(96)00156-6. [PMID: 9076748]
  • T H Johansen, A Chaudhary, T A Verdoorn. Interactions among GYKI-52466, cyclothiazide, and aniracetam at recombinant AMPA and kainate receptors. Molecular pharmacology. 1995 Nov; 48(5):946-55. doi: . [PMID: 7476926]
  • K K Borowicz, M Gasior, Z Kleinrok, S J Czuczwar. The non-competitive AMPA/kainate receptor antagonist, GYKI 52466, potentiates the anticonvulsant activity of conventional antiepileptics. European journal of pharmacology. 1995 Aug; 281(3):319-26. doi: 10.1016/0014-2999(95)00266-n. [PMID: 8521916]
  • D Xue, Z G Huang, K Barnes, H J Lesiuk, K E Smith, A M Buchan. Delayed treatment with AMPA, but not NMDA, antagonists reduces neocortical infarction. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1994 Mar; 14(2):251-61. doi: 10.1038/jcbfm.1994.32. [PMID: 7509339]