lipid IVA (BioDeep_00000005700)

 

Secondary id: BioDeep_00000180496

natural product


代谢物信息卡片


[(3S,5S,6R)-3-hydroxy-2-[[(2R,3S,5S)-6-(hydroxymethyl)-3-[[(3R)-3-hydroxytetradecanoyl]amino]-4-[(3R)-3-hydroxytetradecanoyl]oxy-5-phosphonooxyoxan-2-yl]oxymethyl]-5-[[(3R)-3-hydroxytetradecanoyl]amino]-6-phosphonooxyoxan-4-yl] (3R)-3-hydroxytetradecanoate

化学式: C68H130N2O23P2 (1404.8539)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 92.68%

分子结构信息

SMILES: CCCCCCCCCCCC(CC(=O)NC1C(C(C(OC1OP(=O)(O)O)COC2C(C(C(C(O2)CO)OP(=O)(O)O)OC(=O)CC(CCCCCCCCCCC)O)NC(=O)CC(CCCCCCCCCCC)O)O)OC(=O)CC(CCCCCCCCCCC)O)O
InChI: InChI=1S/C68H130N2O23P2/c1-5-9-13-17-21-25-29-33-37-41-51(72)45-57(76)69-61-65(90-59(78)47-53(74)43-39-35-31-27-23-19-15-11-7-3)63(80)56(89-68(61)93-95(84,85)86)50-87-67-62(70-58(77)46-52(73)42-38-34-30-26-22-18-14-10-6-2)66(64(55(49-71)88-67)92-94(81,82)83)91-60(79)48-54(75)44-40-36-32-28-24-20-16-12-8-4/h51-56,61-68,71-75,80H,5-50H2,1-4H3,(H,69,76)(H,70,77)(H2,81,82,83)(H2,84,85,86)/t51-,52-,53-,54-,55-,56-,61-,62-,63-,64-,65-,66-,67-,68-/m1/s1



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

85 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(84)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 CCL5, HMGB1, IRF3, MYD88, NFKBIA, TLR2, TLR4, TRIM69
Peripheral membrane protein 1 HMGB1
Endosome membrane 4 CD14, LY96, MYD88, TLR4
Nucleus 5 HMGB1, IRF3, MYD88, NFKBIA, TRIM69
cytosol 5 IL1B, IRF3, MYD88, NFKBIA, TRIM69
centrosome 1 TRIM69
nucleoplasm 4 CD180, HMGB1, IRF3, NFKBIA
Cell membrane 7 CD14, HMGB1, ITGAM, ITGB2, TLR1, TLR4, TNF
cell surface 7 HMGB1, ITGAM, ITGB2, MYD88, TLR2, TLR4, TNF
Golgi apparatus 4 ATRN, CD14, TLR1, TLR2
neuronal cell body 1 TNF
Cytoplasm, cytosol 1 IL1B
Lysosome 1 IL1B
endosome 1 HMGB1
plasma membrane 13 ATRN, CD14, CD180, HMGB1, ITGAM, ITGB2, LY96, MYD88, NFKBIA, TLR1, TLR2, TLR4, TNF
Membrane 5 ITGAM, ITGB2, TLR1, TLR2, TLR4
extracellular exosome 4 ATRN, CD14, ITGAM, ITGB2
endoplasmic reticulum 1 HMGB1
extracellular space 9 ATRN, CCL5, CD14, CD180, HMGB1, IL1B, IL6, ITGAM, TNF
perinuclear region of cytoplasm 1 TLR4
mitochondrion 1 IRF3
protein-containing complex 1 MYD88
Single-pass type I membrane protein 6 ATRN, ITGAM, ITGB2, TLR1, TLR2, TLR4
Secreted 7 AOAH, CCL5, CD14, HMGB1, IL1B, IL6, LY96
extracellular region 9 AOAH, CCL5, CD14, HMGB1, IL1B, IL6, LY86, LY96, TNF
[Isoform 2]: Secreted 1 ATRN
Extracellular side 1 HMGB1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TRIM69
external side of plasma membrane 5 CD14, ITGAM, ITGB2, TLR4, TNF
Extracellular vesicle 1 ITGB2
cytoplasmic vesicle 1 AOAH
nucleolus 1 CD180
Early endosome 1 TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 6 CD14, ITGAM, ITGB2, TLR1, TLR2, TNF
focal adhesion 1 ITGB2
extracellular matrix 1 CD180
secretory granule 1 IL1B
nuclear speck 1 TRIM69
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 5 ITGB2, LY96, TLR1, TLR2, TLR4
chromatin 1 IRF3
Cytoplasmic vesicle, phagosome membrane 2 TLR1, TLR2
cell projection 1 TLR2
phagocytic cup 2 TLR4, TNF
phagocytic vesicle membrane 2 TLR1, TLR2
mitotic spindle 1 CD180
Chromosome 1 HMGB1
Secreted, extracellular space 1 LY96
Lipid-anchor, GPI-anchor 1 CD14
[Isoform 3]: Secreted 1 ATRN
specific granule membrane 2 ITGAM, ITGB2
tertiary granule membrane 2 ITGAM, ITGB2
Nucleus speckle 1 TRIM69
cell body 1 TLR2
side of membrane 1 CD14
lipopolysaccharide receptor complex 3 CD14, LY96, TLR4
plasma membrane raft 2 ITGAM, ITGB2
ficolin-1-rich granule lumen 1 HMGB1
secretory granule lumen 1 HMGB1
secretory granule membrane 2 CD14, TLR2
endoplasmic reticulum lumen 1 IL6
transcription repressor complex 1 HMGB1
Secreted, extracellular exosome 1 IL1B
endoplasmic reticulum-Golgi intermediate compartment 1 HMGB1
extrinsic component of cytoplasmic side of plasma membrane 1 MYD88
ficolin-1-rich granule membrane 1 ITGB2
[Isoform 1]: Cell membrane 1 ATRN
condensed chromosome 1 HMGB1
Toll-like receptor 1-Toll-like receptor 2 protein complex 2 TLR1, TLR2
Toll-like receptor 2-Toll-like receptor 6 protein complex 1 TLR2
extrinsic component of plasma membrane 1 MYD88
integrin complex 2 ITGAM, ITGB2
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
alphav-beta3 integrin-HMGB1 complex 1 HMGB1
integrin alphaL-beta2 complex 1 ITGB2
integrin alphaM-beta2 complex 2 ITGAM, ITGB2
integrin alphaX-beta2 complex 1 ITGB2
interleukin-6 receptor complex 1 IL6
I-kappaB/NF-kappaB complex 1 NFKBIA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Debjyoti Boral, Koteswara Rao Vankudoth, Sureshkumar Ramasamy. Structural Insight into a Membrane Intrinsic Acyltransferase from Chlorobium tepidum. Current microbiology. 2019 Nov; 76(11):1290-1297. doi: 10.1007/s00284-019-01743-3. [PMID: 31321468]
  • Karthik Sankaranarayanan, Xirui X Antaris, Brad A Palanski, Abrahim El Gamal, Camilla M Kao, William L Fitch, Curt R Fischer, Chaitan Khosla. Tunable Enzymatic Synthesis of the Immunomodulator Lipid IVA To Enable Structure-Activity Analysis. Journal of the American Chemical Society. 2019 06; 141(24):9474-9478. doi: 10.1021/jacs.9b03066. [PMID: 31184877]
  • Ran Meng, Lan Gu, Yanyan Lu, Kai Zhao, Jianfeng Wu, Haichao Wang, Jiahuai Han, Yiting Tang, Ben Lu. High mobility group box 1 enables bacterial lipids to trigger receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis and apoptosis in mice. The Journal of biological chemistry. 2019 05; 294(22):8872-8884. doi: 10.1074/jbc.ra118.007040. [PMID: 31000631]
  • Tereza Králová, Tomáš Albrecht, Josef Bryja, David Hořák, Arild Johnsen, Jan T Lifjeld, Marian Novotný, Ondřej Sedláček, Hana Velová, Michal Vinkler. Signatures of diversifying selection and convergence acting on passerine Toll-like receptor 4 in an evolutionary context. Molecular ecology. 2018 07; 27(13):2871-2883. doi: 10.1111/mec.14724. [PMID: 29772096]
  • Terukazu Sanui, Masaaki Takeshita, Takao Fukuda, Akira Haraguchi, Yoshitomi Aida, Fusanori Nishimura. Anti-CD14 Antibody-treated Neutrophils Respond to LPS: Possible Involvement of CD14 Upregulated by Anti-CD14 Antibody Binding. Immunological investigations. 2017 Feb; 46(2):190-200. doi: 10.1080/08820139.2016.1238925. [PMID: 27911102]
  • Uwe Mamat, Kathleen Wilke, David Bramhill, Andra Beate Schromm, Buko Lindner, Thomas Andreas Kohl, José Luis Corchero, Antonio Villaverde, Lana Schaffer, Steven Robert Head, Chad Souvignier, Timothy Charles Meredith, Ronald Wesley Woodard. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microbial cell factories. 2015 Apr; 14(?):57. doi: 10.1186/s12934-015-0241-5. [PMID: 25890161]
  • Hak Suk Chung, Eun Gyeong Yang, Dohyeon Hwang, Ji Eun Lee, Ziqiang Guan, Christian R H Raetz. Kdo hydroxylase is an inner core assembly enzyme in the Ko-containing lipopolysaccharide biosynthesis. Biochemical and biophysical research communications. 2014 Sep; 452(3):789-94. doi: 10.1016/j.bbrc.2014.08.153. [PMID: 25204504]
  • Nusa Resman, Alja Oblak, Theresa L Gioannini, Jerrold P Weiss, Roman Jerala. Tetraacylated lipid A and paclitaxel-selective activation of TLR4/MD-2 conferred through hydrophobic interactions. Journal of immunology (Baltimore, Md. : 1950). 2014 Feb; 192(4):1887-95. doi: 10.4049/jimmunol.1302119. [PMID: 24420921]
  • Jose Antonio Garate, Chris Oostenbrink. Lipid A from lipopolysaccharide recognition: structure, dynamics and cooperativity by molecular dynamics simulations. Proteins. 2013 Apr; 81(4):658-74. doi: 10.1002/prot.24223. [PMID: 23184816]
  • Norihiko Ogura, Masashi Muroi, Yuka Sugiura, Ken-ichi Tanamoto. Lipid IVa incompletely activates MyD88-independent Toll-like receptor 4 signaling in mouse macrophage cell lines. Pathogens and disease. 2013 Apr; 67(3):199-205. doi: 10.1111/2049-632x.12031. [PMID: 23620183]
  • Umeharu Ohto, Koichi Fukase, Kensuke Miyake, Toshiyuki Shimizu. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proceedings of the National Academy of Sciences of the United States of America. 2012 May; 109(19):7421-6. doi: 10.1073/pnas.1201193109. [PMID: 22532668]
  • Sun Hong Park, Nam Doo Kim, Jae-Kyung Jung, Chong-Kil Lee, Sang-Bae Han, Youngsoo Kim. Myeloid differentiation 2 as a therapeutic target of inflammatory disorders. Pharmacology & therapeutics. 2012 Mar; 133(3):291-8. doi: 10.1016/j.pharmthera.2011.11.001. [PMID: 22119168]
  • Kenji Takasawa, Rui Kano, Haruhiko Maruyama, Atsuhiko Hasegawa, Hiroshi Kamata. The antagonist activity of lipid IVa on the stimulation by lipid A of TNF-alpha production from canine blood mononuclear cells. Veterinary immunology and immunopathology. 2011 Sep; 143(1-2):167-9. doi: 10.1016/j.vetimm.2011.06.024. [PMID: 21782253]
  • Jianmin Meng, Joshua R Drolet, Brian G Monks, Douglas T Golenbock. MD-2 residues tyrosine 42, arginine 69, aspartic acid 122, and leucine 125 provide species specificity for lipid IVA. The Journal of biological chemistry. 2010 Sep; 285(36):27935-43. doi: 10.1074/jbc.m110.134668. [PMID: 20592019]
  • Sung-il Yoon, Minsun Hong, Gye Won Han, Ian A Wilson. Crystal structure of soluble MD-1 and its interaction with lipid IVa. Proceedings of the National Academy of Sciences of the United States of America. 2010 Jun; 107(24):10990-5. doi: 10.1073/pnas.1004153107. [PMID: 20534476]
  • Ryusuke Yamaguchi, Atsutoshi Yoshimura, Hidenobu Yoshioka, Takashi Kaneko, Yoshitaka Hara. Ability of supragingival plaque to induce toll-like receptor 4-mediated stimulation is associated with cytokine production by peripheral blood mononuclear cells. Journal of periodontology. 2009 Mar; 80(3):512-20. doi: 10.1902/jop.2009.080393. [PMID: 19254136]
  • Catherine Walsh, Monique Gangloff, Tom Monie, Tomoko Smyth, Bin Wei, Trevelyan J McKinley, Duncan Maskell, Nicholas Gay, Clare Bryant. Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. Journal of immunology (Baltimore, Md. : 1950). 2008 Jul; 181(2):1245-54. doi: 10.4049/jimmunol.181.2.1245. [PMID: 18606678]
  • Uwe Mamat, Timothy C Meredith, Parag Aggarwal, Annika Kühl, Paul Kirchhoff, Buko Lindner, Anna Hanuszkiewicz, Jennifer Sun, Otto Holst, Ronald W Woodard. Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d-manno-oct-2-ulosonic acid-depleted Escherichia coli. Molecular microbiology. 2008 Feb; 67(3):633-48. doi: 10.1111/j.1365-2958.2007.06074.x. [PMID: 18093093]
  • Katherine A Fitzgerald, Douglas T Golenbock. Immunology. The shape of things to come. Science (New York, N.Y.). 2007 Jun; 316(5831):1574-6. doi: 10.1126/science.1144483. [PMID: 17569850]
  • Umeharu Ohto, Koichi Fukase, Kensuke Miyake, Yoshinori Satow. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science (New York, N.Y.). 2007 Jun; 316(5831):1632-4. doi: 10.1126/science.1139111. [PMID: 17569869]
  • Holger Heine, Sabine Gronow, Alla Zamyatina, Paul Kosma, Helmut Brade. Investigation on the agonistic and antagonistic biological activities of synthetic Chlamydia lipid A and its use in in vitro enzymatic assays. Journal of endotoxin research. 2007; 13(2):126-32. doi: 10.1177/0968051907079122. [PMID: 17621554]
  • Masashi Muroi, Ken-ichi Tanamoto. Structural regions of MD-2 that determine the agonist-antagonist activity of lipid IVa. The Journal of biological chemistry. 2006 Mar; 281(9):5484-91. doi: 10.1074/jbc.m509193200. [PMID: 16407172]
  • Stefan Dunzendorfer, Hyun-Ku Lee, Katrin Soldau, Peter S Tobias. Toll-like receptor 4 functions intracellularly in human coronary artery endothelial cells: roles of LBP and sCD14 in mediating LPS responses. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2004 Jul; 18(10):1117-9. doi: 10.1096/fj.03-1263fje. [PMID: 15132988]
  • Shin-ichiroh Saitoh, Sachiko Akashi, Takenao Yamada, Natsuko Tanimura, Makiko Kobayashi, Kazunori Konno, Fumi Matsumoto, Koichi Fukase, Shoichi Kusumoto, Yoshinori Nagai, Yutaka Kusumoto, Atsushi Kosugi, Kensuke Miyake. Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. International immunology. 2004 Jul; 16(7):961-9. doi: 10.1093/intimm/dxh097. [PMID: 15184344]
  • Mareike Mueller, Buko Lindner, Shoichi Kusumoto, Koichi Fukase, Andra B Schromm, Ulrich Seydel. Aggregates are the biologically active units of endotoxin. The Journal of biological chemistry. 2004 Jun; 279(25):26307-13. doi: 10.1074/jbc.m401231200. [PMID: 15096514]
  • Nanette L S Que-Gewirth, Shanhua Lin, Robert J Cotter, Christian R H Raetz. An outer membrane enzyme that generates the 2-amino-2-deoxy-gluconate moiety of Rhizobium leguminosarum lipid A. The Journal of biological chemistry. 2003 Apr; 278(14):12109-19. doi: 10.1074/jbc.m300378200. [PMID: 12531907]
  • M Müller, O Scheel, B Lindner, T Gutsmann, U Seydel. The role of membrane-bound LBP, endotoxin aggregates, and the MaxiK channel in LPS-induced cell activation. Journal of endotoxin research. 2003; 9(3):181-6. doi: 10.1179/096805103125001595. [PMID: 12831460]
  • Stefanie Zeuke, Artur J Ulmer, Shoichi Kusumoto, Hugo A Katus, Holger Heine. TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS. Cardiovascular research. 2002 Oct; 56(1):126-34. doi: 10.1016/s0008-6363(02)00512-6. [PMID: 12237173]
  • S Akashi, Y Nagai, H Ogata, M Oikawa, K Fukase, S Kusumoto, K Kawasaki, M Nishijima, S Hayashi, M Kimoto, K Miyake. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. International immunology. 2001 Dec; 13(12):1595-9. doi: 10.1093/intimm/13.12.1595. [PMID: 11717200]
  • R Blunck, O Scheel, M Müller, K Brandenburg, U Seitzer, U Seydel. New insights into endotoxin-induced activation of macrophages: involvement of a K+ channel in transmembrane signaling. Journal of immunology (Baltimore, Md. : 1950). 2001 Jan; 166(2):1009-15. doi: 10.4049/jimmunol.166.2.1009. [PMID: 11145680]
  • E Lien, T K Means, H Heine, A Yoshimura, S Kusumoto, K Fukase, M J Fenton, M Oikawa, N Qureshi, B Monks, R W Finberg, R R Ingalls, D T Golenbock. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. The Journal of clinical investigation. 2000 Feb; 105(4):497-504. doi: 10.1172/jci8541. [PMID: 10683379]
  • A Lentschat, V T El-Samalouti, J Schletter, S Kusumoto, L Brade, E T Rietschel, J Gerdes, M Ernst, H Flad, A J Ulmer. The internalization time course of a given lipopolysaccharide chemotype does not correspond to its activation kinetics in monocytes. Infection and immunity. 1999 May; 67(5):2515-21. doi: 10.1128/iai.67.5.2515-2521.1999. [PMID: 10225915]
  • Y Suda, K Aoyama, K Arimoto, T Tamura, S Kusumoto. S-form lipopolysaccharide (LPS), but not lipid A or R-chemo-type LPS, induces interleukin-6 production in vitamin D3-differentiated THP-1 cells. Biochemical and biophysical research communications. 1999 Apr; 257(2):327-32. doi: 10.1006/bbrc.1999.0464. [PMID: 10198211]
  • M Münstermann, A Wiese, K Brandenburg, U Zähringer, L Brade, K Kawahara, U Seydel. Complement activation by bacterial surface glycolipids: a study with planar bilayer membranes. The Journal of membrane biology. 1999 Feb; 167(3):223-32. doi: 10.1007/s002329900486. [PMID: 9929374]
  • J L Kadrmas, C R Raetz. Enzymatic synthesis of lipopolysaccharide in Escherichia coli. Purification and properties of heptosyltransferase i. The Journal of biological chemistry. 1998 Jan; 273(5):2799-807. doi: 10.1074/jbc.273.5.2799. [PMID: 9446588]
  • K A Brozek, R W Carlson, C R Raetz. A special acyl carrier protein for transferring long hydroxylated fatty acids to lipid A in Rhizobium. The Journal of biological chemistry. 1996 Dec; 271(50):32126-36. doi: 10.1074/jbc.271.50.32126. [PMID: 8943266]
  • K A Brozek, J L Kadrmas, C R Raetz. Lipopolysaccharide biosynthesis in Rhizobium leguminosarum. Novel enzymes that process precursors containing 3-deoxy-D-manno-octulosonic acid. The Journal of biological chemistry. 1996 Dec; 271(50):32112-8. doi: . [PMID: 8943264]
  • J L Kadrmas, K A Brozek, C R Raetz. Lipopolysaccharide core glycosylation in Rhizobium leguminosarum. An unusual mannosyl transferase resembling the heptosyl transferase I of Escherichia coli. The Journal of biological chemistry. 1996 Dec; 271(50):32119-25. doi: . [PMID: 8943265]
  • M Shiozaki, N Deguchi, W M Macindoe, M Arai, H Miyazaki, T Mochizuki, T Tatsuta, J Ogawa, H Maeda, S Kurakata. Syntheses of 1-O-carboxyalkyl GLA-60 analogues. Carbohydrate research. 1996 Mar; 283(?):27-51. doi: 10.1016/0008-6215(95)00402-5. [PMID: 8901261]
  • Y Aida, K Kusumoto, K Nakatomi, H Takada, M J Pabst, K Maeda. An analogue of lipid A and LPS from Rhodobacter sphaeroides inhibits neutrophil responses to LPS by blocking receptor recognition of LPS and by depleting LPS-binding protein in plasma. Journal of leukocyte biology. 1995 Dec; 58(6):675-82. doi: 10.1002/jlb.58.6.675. [PMID: 7499965]
  • K Tanamoto. Chemically detoxified lipid A precursor derivatives antagonize the TNF-alpha-inducing action of LPS in both murine macrophages and a human macrophage cell line. Journal of immunology (Baltimore, Md. : 1950). 1995 Dec; 155(11):5391-6. doi: ". [PMID: 7594555]
  • R L Delude, R Savedra, H Zhao, R Thieringer, S Yamamoto, M J Fenton, D T Golenbock. CD14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Proceedings of the National Academy of Sciences of the United States of America. 1995 Sep; 92(20):9288-92. doi: 10.1073/pnas.92.20.9288. [PMID: 7568119]
  • Y Aida, T Kukita, H Takada, K Maeda, M J Pabst. Lipopolysaccharides from periodontal pathogens prime neutrophils for enhanced respiratory burst: differential effect of a synthetic lipid a precursor IVA (LA-14-PP). Journal of periodontal research. 1995 Mar; 30(2):116-23. doi: 10.1111/j.1600-0765.1995.tb01260.x. [PMID: 7539837]
  • R L Delude, R Savedra, S Yamamoto, D T Golenbock. Use of CD14 transfected cells to study LPS-antagonist action. Progress in clinical and biological research. 1995; 392(?):487-97. doi: ". [PMID: 8524956]
  • S Mohan, C R Raetz. Endotoxin biosynthesis in Pseudomonas aeruginosa: enzymatic incorporation of laurate before 3-deoxy-D-manno-octulosonate. Journal of bacteriology. 1994 Nov; 176(22):6944-51. doi: 10.1128/jb.176.22.6944-6951.1994. [PMID: 7961456]
  • N P Price, T M Kelly, C R Raetz, R W Carlson. Biosynthesis of a structurally novel lipid A in Rhizobium leguminosarum: identification and characterization of six metabolic steps leading from UDP-GlcNAc to 3-deoxy-D-manno-2-octulosonic acid2-lipid IVA. Journal of bacteriology. 1994 Aug; 176(15):4646-55. doi: 10.1128/jb.176.15.4646-4655.1994. [PMID: 8045896]
  • T Kirikae, F U Schade, U Zähringer, F Kirikae, H Brade, S Kusumoto, T Kusama, E T Rietschel. The significance of the hydrophilic backbone and the hydrophobic fatty acid regions of lipid A for macrophage binding and cytokine induction. FEMS immunology and medical microbiology. 1994 Jan; 8(1):13-26. doi: 10.1111/j.1574-695x.1994.tb00421.x. [PMID: 8156049]
  • C F Moldow, R R Bach, K Staskus, P D Rick. Induction of endothelial tissue factor by endotoxin and its precursors. Thrombosis and haemostasis. 1993 Oct; 70(4):702-6. doi: . [PMID: 8116000]
  • H D Flad, H Loppnow, E T Rietschel, A J Ulmer. Agonists and antagonists for lipopolysaccharide-induced cytokines. Immunobiology. 1993 Apr; 187(3-5):303-16. doi: 10.1016/s0171-2985(11)80346-3. [PMID: 8330901]
  • M H Wang, H D Flad, W Feist, J Musehold, S Kusumoto, H Brade, J Gerdes, H T Rietschel, A J Ulmer. Inhibition of endotoxin or lipid A-induced tumor necrosis factor production by synthetic lipid A partial structures in human peripheral blood mononuclear cells. Lymphokine and cytokine research. 1992 Feb; 11(1):23-31. doi: . [PMID: 1576244]
  • W Feist, A J Ulmer, M H Wang, J Musehold, C Schlüter, J Gerdes, H Herzbeck, H Brade, S Kusumoto, T Diamantstein. Modulation of lipopolysaccharide-induced production of tumor necrosis factor, interleukin 1, and interleukin 6 by synthetic precursor Ia of lipid A. FEMS microbiology immunology. 1992 Jan; 4(2):73-89. doi: 10.1111/j.1574-6968.1992.tb04973.x. [PMID: 1547025]
  • K A Brozek, C R Raetz. 3-deoxy-D-manno-octulosonate transferase and late acyltransferases of lipopolysaccharide biosynthesis. Methods in enzymology. 1992; 209(?):476-85. doi: 10.1016/0076-6879(92)09058-b. [PMID: 1495427]
  • R Y Hampton, C R Raetz. Lipid A 4'-kinase from Escherichia coli: enzyme assay and preparation of 4'-32P-labeled probes of high specific radioactivity. Methods in enzymology. 1992; 209(?):466-75. doi: 10.1016/0076-6879(92)09057-a. [PMID: 1323052]
  • M H Wang, H D Flad, W Feist, H Brade, S Kusumoto, E T Rietschel, A J Ulmer. Inhibition of endotoxin-induced interleukin-6 production by synthetic lipid A partial structures in human peripheral blood mononuclear cells. Infection and immunity. 1991 Dec; 59(12):4655-64. doi: 10.1128/iai.59.12.4655-4664.1991. [PMID: 1937825]
  • M Hofer, R Y Hampton, C R Raetz, H Yu. Aggregation behavior of lipid IVA in aqueous solutions at physiological pH. 1: Simple buffer solutions. Chemistry and physics of lipids. 1991 Sep; 59(2):167-81. doi: 10.1016/0009-3084(91)90005-v. [PMID: 1742809]
  • B Benninghoff, V Lehmann, H P Eck, W Dröge. Production of citrulline and ornithine by interferon-gamma treated macrophages. International immunology. 1991 May; 3(5):413-7. doi: 10.1093/intimm/3.5.413. [PMID: 1911530]
  • K Takayama, M Olsen, P Datta, R L Hunter. Adjuvant activity of non-ionic block copolymers. V. Modulation of antibody isotype by lipopolysaccharides, lipid A and precursors. Vaccine. 1991 Apr; 9(4):257-65. doi: 10.1016/0264-410x(91)90109-j. [PMID: 2058268]
  • M H Wang, W Feist, H Herzbeck, H Brade, S Kusumoto, E T Rietschel, H D Flad, A J Ulmer. Suppressive effect of lipid A partial structures on lipopolysaccharide or lipid A-induced release of interleukin 1 by human monocytes. FEMS microbiology immunology. 1990 Oct; 2(3):179-85. doi: 10.1111/j.1574-6968.1990.tb03517.x. [PMID: 2257173]
  • N L Kovach, E Yee, R S Munford, C R Raetz, J M Harlan. Lipid IVA inhibits synthesis and release of tumor necrosis factor induced by lipopolysaccharide in human whole blood ex vivo. The Journal of experimental medicine. 1990 Jul; 172(1):77-84. doi: 10.1084/jem.172.1.77. [PMID: 2193101]
  • T P Birkland, R D Cornwell, D T Golenbock, R A Proctor. Comparative study of lipopolysaccharide-, lipid IVa-, and lipid X-induced tumor necrosis factor production in murine macrophage-like cell lines. Advances in experimental medicine and biology. 1990; 256(?):399-402. doi: 10.1007/978-1-4757-5140-6_35. [PMID: 2327296]
  • R A Proctor. Lipid A precursors protect against endotoxin challenge. Advances in experimental medicine and biology. 1990; 256(?):641-52. doi: 10.1007/978-1-4757-5140-6_59. [PMID: 2183568]
  • H D Flad. Induction of IL-1 by lipopolysaccharide (LPS) and its modulation by synthetic lipid A precursor Ia. Lymphokine research. 1990; 9(4):557-60. doi: ". [PMID: 2090882]
  • B Benninghoff, W Dröge, V Lehmann. The lipopolysaccharide-induced stimulation of peritoneal macrophages involves at least two signal pathways. Partial stimulation by lipid A precursors. European journal of biochemistry. 1989 Feb; 179(3):589-94. doi: 10.1111/j.1432-1033.1989.tb14587.x. [PMID: 2537724]
  • R A Proctor. Endotoxin biosynthetic precursors: biologic and therapeutic activities. Progress in clinical and biological research. 1989; 299(?):169-79. doi: ". [PMID: 2657788]
  • R C Goldman, M F Miller. Complement attack of altered outer membrane areas synthesized after inhibition of the 3-deoxy-D-manno-octulosonate pathway leads to cell death. Journal of immunology (Baltimore, Md. : 1950). 1989 Jan; 142(1):185-94. doi: . [PMID: 2535855]
  • J J Naleway, C R Raetz, L Anderson. A convenient synthesis of 4-amino-4-deoxy-L-arabinose and its reduction product, 1,4-dideoxy-1,4-imino-L-arabinitol. Carbohydrate research. 1988 Aug; 179(?):199-209. doi: 10.1016/0008-6215(88)84118-1. [PMID: 3061644]
  • C H Sibley, A Terry, C R Raetz. Induction of kappa light chain synthesis in 70Z/3 B lymphoma cells by chemically defined lipid A precursors. The Journal of biological chemistry. 1988 Apr; 263(11):5098-103. doi: . [PMID: 3128535]
  • R C Goldman, C C Doran, S K Kadam, J O Capobianco. Lipid A precursor from Pseudomonas aeruginosa is completely acylated prior to addition of 3-deoxy-D-manno-octulosonate. The Journal of biological chemistry. 1988 Apr; 263(11):5217-23. doi: . [PMID: 2833499]
  • J O Capobianco, R P Darveau, R C Goldman, P A Lartey, A G Pernet. Inhibition of exogenous 3-deoxy-D-manno-octulosonate incorporation into lipid A precursor of toluene-treated Salmonella typhimurium cells. Journal of bacteriology. 1987 Sep; 169(9):4030-5. doi: 10.1128/jb.169.9.4030-4035.1987. [PMID: 3040673]
  • C R Raetz, S Purcell, M V Meyer, N Qureshi, K Takayama. Isolation and characterization of eight lipid A precursors from a 3-deoxy-D-manno-octylosonic acid-deficient mutant of Salmonella typhimurium. The Journal of biological chemistry. 1985 Dec; 260(30):16080-8. doi: ". [PMID: 3905804]
  • T Hansen-Hagge, V Lehmann, U Seydel, B Lindner, U Zähringer. Isolation and structural analysis of two lipid A precursors from a KDO deficient mutant of Salmonella typhimurium differing in their hexadecanoic acid content. Archives of microbiology. 1985 May; 141(4):353-8. doi: 10.1007/bf00428849. [PMID: 3893354]
  • C Galanos, T Hansen-Hagge, V Lehmann, O Lüderitz. Comparison of the capacity of two lipid A precursor molecules to express the local Shwartzman phenomenon. Infection and immunity. 1985 May; 48(2):355-8. doi: 10.1128/iai.48.2.355-358.1985. [PMID: 3886545]
  • K Elkins, E S Metcalf. Binding activity of a murine anti-lipid A monoclonal antibody. Infection and immunity. 1985 May; 48(2):597-600. doi: 10.1128/iai.48.2.597-600.1985. [PMID: 2580797]
  • S N Vogel, G S Madonna, L M Wahl, P D Rick. In vitro stimulation of C3H/HeJ spleen cells and macrophages by a lipid A precursor molecule derived from Salmonella typhimurium. Journal of immunology (Baltimore, Md. : 1950). 1984 Jan; 132(1):347-53. doi: ". [PMID: 6361124]