Acrolein (BioDeep_00000004696)
Secondary id: BioDeep_00000864481, BioDeep_00001867609
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin
代谢物信息卡片
化学式: C3H4O (56.0262)
中文名称: 丙烯醛, 丙烯醛 107-02-8 标准品
谱图信息:
最多检出来源 Homo sapiens(plant) 12.75%
分子结构信息
SMILES: C=CC=O
InChI: InChI=1S/C3H4O/c1-2-3-4/h2-3H,1H2
描述信息
Acrolein (systematic name: propenal) is the simplest unsaturated aldehyde. It is a colourless liquid with a piercing, disagreeable, acrid smell. The smell of burnt fat (i.e. when cooking oil is heated to its smoke point) is caused by glycerol in the burning fat breaking down into acrolein. It is produced industrially from propylene and mainly used as a biocide and a building block to other chemical compounds, such as the amino acid methionine. Acrolein is used as an etherification agent in the preparation of modified food starches. Acrolein is an herbicide and algicide used in water treatment. It is produced by microorganisms, e.g. Clostridium perfringens. Acrolein is a relatively electrophilic compound and a reactive one, hence its high toxicity. It is a good Michael acceptor, hence its useful reaction with thiols. It forms acetals readily, a prominent one being the spirocycle derived from pentaerythritol, diallylidene pentaerythritol. Acrolein participates in many Diels-Alder reactions, even with itself. Via Diels-Alder reactions, it is a precursor to some commercial fragrances, including lyral, norbornene-2-carboxaldehyde, and myrac aldehyde. Acrolein is toxic and is a strong irritant for the skin, eyes, and nasal passages. The main metabolic pathway for acrolein is the alkylation of glutathione. The WHO suggests a tolerable oral acrolein intake of 7.5 µg/day per kilogram of body weight. Although acrolein occurs in French fries, the levels are only a few micrograms per kilogram. Acrolein has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821).
Present in fruit aromas, black tea, carrot, cooked potato, cheeses, white wine, hydrolyzed soy protein, turkey, pork, beef fat and other foods. It is used as an etherification agent in the preparation of modified food starches. Herbicide and algicide used in water treatment. Production by microorganisms, e.g. Clostridium perfringens. 2-Propenal is found in many foods, some of which are napa cabbage, sacred lotus, devilfish, and garlic.
同义名列表
33 个代谢物同义名
trans-Acrolein formylethylene; Propylene aldehyde; Aldehyde, ethylene; Ethylene aldehyde; Aldehyde, acrylic; Magnacide H and b; Acrylic aldehyde; 2-Propenaldehyde; Aldehyde, allyl; Allyl aldehyde; Prop-2-en-1-al; Propenaldehyde; 2-Propen-1-one; Acrylaldehyde; Magnacide H; Acraldehyde; Prop-2-enal; 2 Propenal; 2-Propenal; Acroleina; Acquinite; Slimicide; CH2=chcho; Magnacide; ACROLEIN; Aqualine; Propenal; Aqualin; Biocide; Crolean; Papite; Acrolein; Acrolein
数据库引用编号
21 个数据库交叉引用编号
- ChEBI: CHEBI:15368
- KEGG: C01471
- PubChem: 7847
- HMDB: HMDB0041822
- Metlin: METLIN65603
- ChEMBL: CHEMBL721
- Wikipedia: Acrolein
- MeSH: Acrolein
- MetaCyc: ACROLEIN
- KNApSAcK: C00052796
- foodb: FDB008307
- chemspider: 7559
- CAS: 25068-14-8
- CAS: 81788-96-7
- CAS: 107-02-8
- PMhub: MS000017253
- PubChem: 4646
- 3DMET: B00297
- NIKKAJI: J4.045B
- RefMet: Acrolein
- KNApSAcK: 15368
分类词条
相关代谢途径
Reactome(0)
代谢反应
125 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(119)
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
NADP+ + allyl alcohol ⟶ H+ + NADPH + acrolein
COVID-19 Disease Map(0)
PathBank(4)
- Ifosfamide Action Pathway:
Ifosfamide + Oxygen + Water ⟶ 2-Dechloroethylifosfamide + 3-Dechloroethylifosfamide + Chloroacetaldehyde + Hydrogen peroxide
- Ifosfamide Metabolism Pathway:
Ifosfamide + Oxygen + Water ⟶ 2-Dechloroethylifosfamide + 3-Dechloroethylifosfamide + Chloroacetaldehyde + Hydrogen peroxide
- Cyclophosphamide Action Pathway:
Aldophosphamide + Glutathione ⟶ 4-Glutathionyl cyclophosphamide + Water
- Cyclophosphamide Metabolism Pathway:
Aldophosphamide + Glutathione ⟶ 4-Glutathionyl cyclophosphamide + Water
PharmGKB(0)
3 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 4097 - Nicotiana tabacum: 10.1016/0378-8741(88)90069-4
- 354530 - Zanthoxylum schinifolium: 10.1021/JF0728101
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Chen-Yan Li, Li-Juan Liao, Shi-Xian Yang, Lu-Yao Wang, Hao Chen, Peipei Luo, Gan-Rong Huang, Yan-Qiang Huang. Cinnamaldehyde: An effective component of Cinnamomum cassia inhibiting Helicobacter pylori.
Journal of ethnopharmacology.
2024 Aug; 330(?):118222. doi:
10.1016/j.jep.2024.118222
. [PMID: 38663778] - Fugang Liu, Yanfang Yang, Haoran Dong, Yanhui Zhu, Weisheng Feng, Hezhen Wu. Essential oil from Cinnamomum cassia Presl bark regulates macrophage polarization and ameliorates lipopolysaccharide-induced acute lung injury through TLR4/MyD88/NF-κB pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155651. doi:
10.1016/j.phymed.2024.155651
. [PMID: 38688144] - Narges Hojati, Sedigheh Amiri, Elahe Abedi, Mohsen Radi. Effect of cinnamaldehyde-nanoemulsion and nanostructured lipid carriers on physicochemical attributes of reduced-nitrite sausages.
Food chemistry.
2024 Jun; 444(?):138658. doi:
10.1016/j.foodchem.2024.138658
. [PMID: 38325076] - Jinyue Sun, Qian-Jun Shen, Jia-Neng Pan, Xiaodong Zheng, Ting Yu, Wen-Wen Zhou. Ferrous sulfate combined with ultrasound emulsified cinnamaldehyde nanoemulsion to cause ferroptosis in Escherichia coli O157:H7.
Ultrasonics sonochemistry.
2024 Jun; 106(?):106884. doi:
10.1016/j.ultsonch.2024.106884
. [PMID: 38677267] - Abeer S Elsherbiny, Alyaa Galal, Khalid M Ghoneem, Nehal A Salahuddin. Graphene oxide-based nanocomposites for outstanding eco-friendly antifungal potential against tomato phytopathogens.
Biomaterials advances.
2024 Jun; 160(?):213863. doi:
10.1016/j.bioadv.2024.213863
. [PMID: 38642516] - Nesma A Ghazal, Yara T Agamia, Basant K Meky, Nagwa M Assem, Wafaa M Abdel-Rehim, Sara A Shaker. Cinnamaldehyde ameliorates STZ-induced diabetes through modulation of autophagic process in adipocyte and hepatic tissues on rats.
Scientific reports.
2024 05; 14(1):10053. doi:
10.1038/s41598-024-60150-2
. [PMID: 38698047] - Peng Ye, Jianmu Su, Jianhao Lin, Yanqun Li, Hong Wu. Identification of a cinnamoyl-CoA reductase from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis.
Planta.
2024 Apr; 259(6):138. doi:
10.1007/s00425-024-04419-w
. [PMID: 38687380] - Antonella L Grosso, Ksenia Morozova, Giovanna Ferrentino, Franco Biasioli, Matteo Scampicchio. Early detection of acrolein precursors in vegetable oils by using proton transfer reaction - mass spectrometry.
Talanta.
2024 Apr; 270(?):125513. doi:
10.1016/j.talanta.2023.125513
. [PMID: 38128278] - Yan-Guang Li, Jiang-Hong Li, Hai-Qin Wang, Junhua Liao, Xiao-Ya Du. Cinnamaldehyde protects cardiomyocytes from oxygen-glucose deprivation/reoxygenation-induced lipid peroxidation and DNA damage via activating the Nrf2 pathway.
Chemical biology & drug design.
2024 02; 103(2):e14489. doi:
10.1111/cbdd.14489
. [PMID: 38404216] - Yun Meng, Ye Cai, Mengyao Cui, Yuhang Xu, Long Wu, Xiang Li, Xiaoqin Chu. Solid self-microemulsifying drug delivery system (S-SMEDDS) prepared by spray drying to improve the oral bioavailability of cinnamaldehyde (CA).
Pharmaceutical development and technology.
2024 Feb; 29(2):112-122. doi:
10.1080/10837450.2024.2312851
. [PMID: 38308442] - Aleksandra Zimińska, Izabela Lipska, Joanna Gajewska, Anna Draszanowska, Manuel Simões, Magdalena A Olszewska. Antibacterial and Antibiofilm Effects of Photodynamic Treatment with Curcuma L. and Trans-Cinnamaldehyde against Listeria monocytogenes.
Molecules (Basel, Switzerland).
2024 Feb; 29(3):. doi:
10.3390/molecules29030685
. [PMID: 38338429] - Mustafa Cemre Sonmez, Side Selin Su Yirmibesoglu, Rengin Ozgur, Baris Uzilday, Ismail Turkan. Roles of Reactive Carbonyl Species (RCS) in Plant Response to Abiotic Stress.
Methods in molecular biology (Clifton, N.J.).
2024; 2798(?):101-130. doi:
10.1007/978-1-0716-3826-2_7
. [PMID: 38587738] - Jishuai Sun, Xiaojing Leng, Jiachen Zang, Guanghua Zhao. Bio-based antibacterial food packaging films and coatings containing cinnamaldehyde: A review.
Critical reviews in food science and nutrition.
2024; 64(1):140-152. doi:
10.1080/10408398.2022.2105300
. [PMID: 35900224] - Edouard Pesquet, Leonard Blaschek, Junko Takahashi, Masanobu Yamamoto, Antoine Champagne, Nuoendagula, Elena Subbotina, Charilaos Dimotakis, Zoltan Bascik, Shinya Kajita. Bulk and In Situ Quantification of Coniferaldehyde Residues in Lignin.
Methods in molecular biology (Clifton, N.J.).
2024; 2722(?):201-226. doi:
10.1007/978-1-0716-3477-6_14
. [PMID: 37897609] - Jihye Jung, Dawon Jo, Soo-Jin Kim. Transcriptional Response of Pectobacterium carotovorum to Cinnamaldehyde Treatment.
Journal of microbiology and biotechnology.
2023 Dec; 34(4):1-9. doi:
10.4014/jmb.2311.11043
. [PMID: 38146216] - Huihui Gu, Bo Si, Chen Yang, Mengwei Jia, Yongling Lu, Lishuang Lv, Yuxing Guo. Elimination of Acrolein by Disodium 5'-Guanylate or Disodium 5'-Inosinate at High Temperature and Its Application in Roasted Pork Patty.
Journal of agricultural and food chemistry.
2023 Dec; 71(50):20314-20324. doi:
10.1021/acs.jafc.3c05064
. [PMID: 38078910] - Imam Tri Wahyudi, Dedi Jusadi, Mia Setiawati, Julie Ekasari, Muhammad Agus Suprayudi. Dietary supplementation of cinnamaldehyde positively affects the physiology, feed utilization, growth, and body composition of striped catfish Pangasianodon hypophthalmus.
Fish physiology and biochemistry.
2023 Dec; ?(?):. doi:
10.1007/s10695-023-01287-1
. [PMID: 38112905] - Joshua M Lyte, Komala Arsi, Valentina Caputi, Rohana Liyanage, Anna L Facchetti V Assumpcao, Palmy R R Jesudhasan, Annie M Donoghue. Inclusion of trans-cinnamaldehyde and caprylic acid in feed results in detectable concentrations in the chicken gut and reduces foodborne pathogen carriage.
Poultry science.
2023 Dec; 103(2):103368. doi:
10.1016/j.psj.2023.103368
. [PMID: 38157787] - Devin I Alewel, Katherine M Rentschler, Thomas W Jackson, Mette C Schladweiler, Anna Astriab-Fisher, Paul A Evansky, Urmila P Kodavanti. Serum metabolome and liver transcriptome reveal acrolein inhalation-induced sex-specific homeostatic dysfunction.
Scientific reports.
2023 12; 13(1):21179. doi:
10.1038/s41598-023-48413-w
. [PMID: 38040807] - Bing Qian, Yonghua Hu, Minggao Xu, Jiuzhong Yang, Chengyuan Liu, Yang Pan. Study on the thermal oxidation of oleic, linoleic and linolenic acids by synchrotron radiation photoionization mass spectrometry.
Rapid communications in mass spectrometry : RCM.
2023 Nov; 37(21):e9634. doi:
10.1002/rcm.9634
. [PMID: 37799030] - Chen Yan, Na Li, Yuchi Zhang, Yun Wei. Enrichment of cinnamaldehyde from Cinnamomum cassia by electroosmotic coupled particle-assisted solvent flotation.
Journal of chromatography. A.
2023 Nov; 1710(?):464411. doi:
10.1016/j.chroma.2023.464411
. [PMID: 37778100] - Chunbo Kang, Jie Zhang, Mei Xue, Xiaowei Li, Danyang Ding, Ye Wang, Shujing Jiang, Fong-Fong Chu, Qiang Gao, Mengqiao Zhang. Metabolomics analyses of cancer tissue from patients with colorectal cancer.
Molecular medicine reports.
2023 Nov; 28(5):. doi:
10.3892/mmr.2023.13106
. [PMID: 37772396] - Koichi Yoshioka, Hoon Kim, Fachuang Lu, Nette De Ridder, Ruben Vanholme, Shinya Kajita, Wout Boerjan, John Ralph. Hydroxycinnamaldehyde-derived benzofuran components in lignins.
Plant physiology.
2023 Sep; ?(?):. doi:
10.1093/plphys/kiad514
. [PMID: 37773018] - Sanne van Gastelen, David Yáñez-Ruiz, Hajer Khelil-Arfa, Alexandra Blanchard, André Bannink. Effect of a blend of cinnamaldehyde, eugenol, and capsicum oleoresin on methane emission and lactation performance of Holstein-Friesian dairy cows.
Journal of dairy science.
2023 Sep; ?(?):. doi:
10.3168/jds.2023-23406
. [PMID: 37709037] - Hend Dawood, Ismail Celik, Reham S Ibrahim. Computational biology and in vitro studies for anticipating cancer-related molecular targets of sweet wormwood (Artemisia annua).
BMC complementary medicine and therapies.
2023 Sep; 23(1):312. doi:
10.1186/s12906-023-04135-0
. [PMID: 37684586] - Faizan Abul Qais, Mohammad Shavez Khan, Iqbal Ahmad, Fohad Mabood Husain, Mohammed Arshad, Altaf Khan, Mohd Adil. Modulation of quorum sensing and biofilm of Gram-negative bacterial pathogens by Cinnamomum zeylanicum L.
Microscopy research and technique.
2023 Sep; ?(?):. doi:
10.1002/jemt.24410
. [PMID: 37660303] - Suneel Gupta, Lynn M Martin, Eric Zhang, Prashant R Sinha, James Landreneau, Nishant R Sinha, Nathan P Hesemann, Rajiv R Mohan. Toxicological effects of ocular acrolein exposure to eyelids in rabbits in vivo.
Experimental eye research.
2023 09; 234(?):109575. doi:
10.1016/j.exer.2023.109575
. [PMID: 37451567] - Mohaddeseh Khaafi, Zahra Tayarani-Najaran, Behjat Javadi. Cinnamaldehyde as a promising dietary phytochemical against metabolic syndrome: A systematic review.
Mini reviews in medicinal chemistry.
2023 Jul; ?(?):. doi:
10.2174/1389557523666230725113446
. [PMID: 37489782] - Hong-Chieh Tsai, Zhen-Jie Tong, Tsong-Long Hwang, Kuo-Chen Wei, Pin-Yuan Chen, Chiung-Yin Huang, Ko-Ting Chen, Ya-Jui Lin, Hsiao-Wei Cheng, Hsiang-Tsui Wang. Acrolein produced by glioma cells under hypoxia inhibits neutrophil AKT activity and suppresses anti-tumoral activities.
Free radical biology & medicine.
2023 Jul; ?(?):. doi:
10.1016/j.freeradbiomed.2023.06.027
. [PMID: 37414347] - Jiang Chen, Hua Wang, Yuanshan Chen, Qiujin Zhu, Jing Wan. Inhibitive effect and mechanism of cinnamaldehyde on growth and OTA production of Aspergillus niger in vitro and in dried red chilies.
Food research international (Ottawa, Ont.).
2023 06; 168(?):112794. doi:
10.1016/j.foodres.2023.112794
. [PMID: 37120239] - Bin Wang, Wei Liu, Linling Yu, Zi Ye, Man Cheng, Weihong Qiu, Min Zhou, Jixuan Ma, Xing Wang, Meng Yang, Jiahao Song, Weihong Chen. Acrolein Exposure Impaired Glucose Homeostasis and Increased Risk of Type 2 Diabetes: An Urban Adult Population-Based Cohort Study with Repeated Measures.
Environmental science & technology.
2023 May; 57(18):7162-7173. doi:
10.1021/acs.est.2c09299
. [PMID: 37098180] - Anita Vidács, Erika Beáta Kerekes, Miklós Takó, Csaba Vágvölgyi, Judit Krisch. Eradication of multiple-species biofilms from food industrial and domestic surfaces using essential oils.
Food science and technology international = Ciencia y tecnologia de los alimentos internacional.
2023 Mar; ?(?):10820132231165543. doi:
10.1177/10820132231165543
. [PMID: 36959708] - Yanrong Liu, Zhengqun Liu, Qiang Luo, Zhuwen Sun, Ning Li, Zi Zheng, Shuqin Mu, Xiaoqiao Zhou, Jun Yan, Chao Sun, Hongfu Zhang. Cinnamaldehyde affects lipid droplets metabolism after adipogenic differentiation of C2C12 cells.
Molecular biology reports.
2023 Mar; 50(3):2033-2039. doi:
10.1007/s11033-022-08101-w
. [PMID: 36538173] - Xin Quan, Caiyong Yu, Zhongmin Fan, Tong Wu, Chuchu Qi, Haoying Zhang, Shengxi Wu, Xi Wang. Hydralazine plays an immunomodulation role of pro-regeneration in a mouse model of spinal cord injury.
Experimental neurology.
2023 Feb; ?(?):114367. doi:
10.1016/j.expneurol.2023.114367
. [PMID: 36858281] - Guang Cheng, Jiehong Guo, Renwei Wang, Jian-Min Yuan, Silvia Balbo, Stephen S Hecht. Quantitation by Liquid Chromatography-Nanoelectrospray Ionization-High-Resolution Tandem Mass Spectrometry of Multiple DNA Adducts Related to Cigarette Smoking in Oral Cells in the Shanghai Cohort Study.
Chemical research in toxicology.
2023 Feb; 36(2):305-312. doi:
10.1021/acs.chemrestox.2c00393
. [PMID: 36719849] - Hauh-Jyun Candy Chen. Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example.
Chemical research in toxicology.
2023 02; 36(2):132-140. doi:
10.1021/acs.chemrestox.2c00354
. [PMID: 36626705] - Yuanyuan Wang, Maofeng Dong, Limin Guo, Yamin Zhu, Qingqing Jiang, Jianbo Xiao, Mingfu Wang, Yueliang Zhao. Effect of acrolein on the formation of harman and norharman in chemical models and roast beef patties.
Food research international (Ottawa, Ont.).
2023 02; 164(?):112465. doi:
10.1016/j.foodres.2023.112465
. [PMID: 36738015] - Hauh-Jyun Candy Chen, Shu-Wei Cheng, Nai-Ying Chen, Deng-Chyang Wu. Characterization and Quantification of Acrolein-Induced Modifications in Hemoglobin by Mass Spectrometry─Effect of Cigarette Smoking.
Chemical research in toxicology.
2022 12; 35(12):2260-2270. doi:
10.1021/acs.chemrestox.2c00262
. [PMID: 36367988] - Kaihui Chang, Nan Zeng, Yonghe Ding, Xiangzhong Zhao, Chengwen Gao, Yafang Li, Haoxu Wang, Xiaoyu Liu, Yujuan Niu, Yuanchao Sun, Teng Li, Yongyong Shi, Chuanhong Wu, Zhiqiang Li. Cinnamaldehyde causes developmental neurotoxicity in zebrafish via the oxidative stress pathway that is rescued by astaxanthin.
Food & function.
2022 Dec; 13(24):13028-13039. doi:
10.1039/d2fo02309a
. [PMID: 36449017] - Qi Xiao. Cinnamaldehyde attenuates kidney senescence and injury through PI3K/Akt pathway-mediated autophagy via downregulating miR-155.
Renal failure.
2022 Dec; 44(1):601-614. doi:
10.1080/0886022x.2022.2056485
. [PMID: 35361048] - Danni Feng, Zhongxiang Fang, Pangzhen Zhang. The melanin inhibitory effect of plants and phytochemicals: A systematic review.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Dec; 107(?):154449. doi:
10.1016/j.phymed.2022.154449
. [PMID: 36126406] - Anne Negre-Salvayre, Audrey Swiader, Robert Salvayre, Paul Guerby. Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia.
Archives of biochemistry and biophysics.
2022 11; 730(?):109416. doi:
10.1016/j.abb.2022.109416
. [PMID: 36179910] - Farah Naz, Mukesh Kumar, Tirthankar Koley, Priyanka Sharma, Muhammad Anzarul Haque, Arti Kapil, Manoj Kumar, Punit Kaur, Abdul Samath Ethayathulla. Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies.
International journal of biological macromolecules.
2022 Oct; 219(?):428-437. doi:
10.1016/j.ijbiomac.2022.07.241
. [PMID: 35932806] - Shakeel Ahmad Khan, Ying Wu, Amy Sze-Man Li, Xiu-Qiong Fu, Zhi-Ling Yu. Network pharmacology and molecular docking-based prediction of active compounds and mechanisms of action of Cnidii Fructus in treating atopic dermatitis.
BMC complementary medicine and therapies.
2022 Oct; 22(1):275. doi:
10.1186/s12906-022-03734-7
. [PMID: 36261841] - Sungshim L Park, Loic Le Marchand, Guang Cheng, Silvia Balbo, Menglan Chen, Steven G Carmella, Nicole M Thomson, Younghan Lee, Yesha M Patel, Daniel O Stram, Joni Jensen, Dorothy K Hatsukami, Sharon E Murphy, Stephen S Hecht. Quantitation of DNA Adducts Resulting from Acrolein Exposure and Lipid Peroxidation in Oral Cells of Cigarette Smokers from Three Racial/Ethnic Groups with Differing Risks for Lung Cancer.
Chemical research in toxicology.
2022 10; 35(10):1914-1922. doi:
10.1021/acs.chemrestox.2c00171
. [PMID: 35998368] - Medjda Bellamri, Scott J Walmsley, Christina Brown, Kyle Brandt, Dmitri Konorev, Abderrahman Day, Chia-Fang Wu, Ming Tsang Wu, Robert J Turesky. DNA Damage and Oxidative Stress of Tobacco Smoke Condensate in Human Bladder Epithelial Cells.
Chemical research in toxicology.
2022 10; 35(10):1863-1880. doi:
10.1021/acs.chemrestox.2c00153
. [PMID: 35877975] - Evan C Palmer-Young, Lindsey M Markowitz, Kyle Grubbs, Yi Zhang, Miguel Corona, Ryan Schwarz, Yanping Chen, Jay D Evans. Antiparasitic effects of three floral volatiles on trypanosomatid infection in honey bees.
Journal of invertebrate pathology.
2022 10; 194(?):107830. doi:
10.1016/j.jip.2022.107830
. [PMID: 36174749] - Lin Zong, Hao Gao, Chenwei Chen, Jing Xie. Effects of starch/polyvinyl alcohol active film containing cinnamaldehyde on the quality of large yellow croaker (Pseudosciaena crocea) proteins during frozen storage.
Food chemistry.
2022 Sep; 389(?):133065. doi:
10.1016/j.foodchem.2022.133065
. [PMID: 35489262] - Ruohui Xu, Xiaoli Xiao, Shengan Zhang, Jiashu Pan, Yingjue Tang, Wenjun Zhou, Guang Ji, Yanqi Dang. The methyltransferase METTL3-mediated fatty acid metabolism revealed the mechanism of cinnamaldehyde on alleviating steatosis.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Sep; 153(?):113367. doi:
10.1016/j.biopha.2022.113367
. [PMID: 35780619] - Birsen Aydın, Ali Oğuz, Vedat Şekeroğlu, Zülal Atlı Şekeroğlu. Whey protein protects liver mitochondrial function against oxidative stress in rats exposed to acrolein.
Arhiv za higijenu rada i toksikologiju.
2022 Sep; 73(3):200-206. doi:
10.2478/aiht-2022-73-3640
. [PMID: 36226819] - Ginga Shimakawa, Anja Krieger-Liszkay, Thomas Roach. ROS-derived lipid peroxidation is prevented in barley leaves during senescence.
Physiologia plantarum.
2022 Sep; 174(5):e13769. doi:
10.1111/ppl.13769
. [PMID: 36018559] - Nanaka Murakami, Saashia Fuji, Shota Yamauchi, Sakurako Hosotani, Jun'ichi Mano, Atsushi Takemiya. Reactive Carbonyl Species Inhibit Blue-Light-Dependent Activation of the Plasma Membrane H+-ATPase and Stomatal Opening.
Plant & cell physiology.
2022 Aug; 63(8):1168-1176. doi:
10.1093/pcp/pcac094
. [PMID: 35786727] - J A Custodio-Mendoza, C Caamaño-Fernandez, M A Lage, P J Almeida, R A Lorenzo, A M Carro. GC-MS determination of malondialdehyde, acrolein, and 4-hydroxy-2-nonenal by ultrasound-assisted dispersive liquid-liquid microextraction in beverages.
Food chemistry.
2022 Aug; 384(?):132530. doi:
10.1016/j.foodchem.2022.132530
. [PMID: 35227997] - Huanhuan Cui, Cuie Tang, Shan Wu, David Julian McClements, Shilin Liu, Bin Li, Yan Li. Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs.
Food chemistry.
2022 Aug; 384(?):132589. doi:
10.1016/j.foodchem.2022.132589
. [PMID: 35258001] - Yang Lu, Juan Liu, Jiaqi Tong, Chenxiao Zhang, Yi Duan, Xiaoli Song, Yongling Lu, Lishuang Lv. Dual effects of cardamonin/alpinetin and their acrolein adducts on scavenging acrolein and the anti-bacterial activity from Alpinia katsumadai Hayata as a spice in roasted meat.
Food & function.
2022 Jul; 13(13):7088-7097. doi:
10.1039/d2fo00100d
. [PMID: 35697027] - Jingbao Chen, Wu Long, Baoqi Dong, Wenxuan Cao, Xu Yuhang, Yun Meng, Chu Xiaoqin. Hexagonal liquid crystalline system containing cinnamaldehyde for enhancement of skin permeation of sinomenine hydrochloride.
Pharmaceutical development and technology.
2022 Jul; 27(6):684-694. doi:
10.1080/10837450.2022.2107011
. [PMID: 35880620] - Tahere Molania, Ali Malekzadeh Shafaroudi, Majid Saeedi, Mahmood Moosazadeh, Faeze Valipour, Seyyed Sohrab Rostamkalaei, Negareh Salehabadi, Maede Salehi. Evaluation of cinnamaldehyde mucoadhesive patches on minor recurrent aphthous stomatitis: a randomized, double-blind, placebo-controlled clinical trial.
BMC oral health.
2022 06; 22(1):235. doi:
10.1186/s12903-022-02248-5
. [PMID: 35701773] - Ziliang Yan, Shaojie Wu, Yue Zhou, Feng Li. Acid-Responsive Micelles Releasing Cinnamaldehyde Enhance RSL3-Induced Ferroptosis in Tumor Cells.
ACS biomaterials science & engineering.
2022 06; 8(6):2508-2517. doi:
10.1021/acsbiomaterials.2c00236
. [PMID: 35648631] - Guang Cheng, Jiehong Guo, Steven G Carmella, Bruce Lindgren, Joshua Ikuemonisan, Brittany Niesen, Joni Jensen, Dorothy K Hatsukami, Silvia Balbo, Stephen S Hecht. Increased acrolein-DNA adducts in buccal brushings of e-cigarette users.
Carcinogenesis.
2022 06; 43(5):437-444. doi:
10.1093/carcin/bgac026
. [PMID: 35239969] - Jiehao Chen, Wenyan Wei, Chao Liang, Yongqiang Ren, Yi Geng, Defang Chen, Weiming Lai, Hongrui Guo, Huidan Deng, Xiaoli Huang, Ping Ouyang. Protective effect of cinnamaldehyde on channel catfish infected by drug-resistant Aeromonas hydrophila.
Microbial pathogenesis.
2022 Jun; 167(?):105572. doi:
10.1016/j.micpath.2022.105572
. [PMID: 35561978] - Pantea Kianmehr, Mohammad Ali Azarbayjani, Maghsoud Peeri, Parvin Farzanegi. The effects of aerobic exercise training with octopamine supplementation on cardiomyocyte apoptosis induced by deep-frying oil: The role of caspase and procaspase 3.
Clinical nutrition ESPEN.
2022 06; 49(?):529-535. doi:
10.1016/j.clnesp.2022.02.008
. [PMID: 35623862] - Ya Jiang, Qingqing Jiang, Daming Fan, Mingfu Wang, Yueliang Zhao. Effect of Acrolein, a Lipid Oxidation Product, on the Formation of the Heterocyclic Aromatic Amine 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) in Model Systems and Roast Salmon Patties.
Journal of agricultural and food chemistry.
2022 May; 70(19):5887-5895. doi:
10.1021/acs.jafc.2c00970
. [PMID: 35504016] - Jingshu Guo, Joseph S Koopmeiners, Scott J Walmsley, Peter W Villalta, Lihua Yao, Paari Murugan, Resha Tejpaul, Christopher J Weight, Robert J Turesky. The Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine Hair Dosimeter, DNA Adductomics Discovery, and Associations with Prostate Cancer Pathology Biomarkers.
Chemical research in toxicology.
2022 05; 35(5):703-730. doi:
10.1021/acs.chemrestox.2c00012
. [PMID: 35446561] - Seth A Herr, Spencer S Gardeen, Philip S Low, Riyi Shi. Targeted delivery of acrolein scavenger hydralazine in spinal cord injury using folate-linker-drug conjugation.
Free radical biology & medicine.
2022 05; 184(?):66-73. doi:
10.1016/j.freeradbiomed.2022.04.003
. [PMID: 35398493] - Bükay Yenice Gursu, İlknur Dag, Gökhan Dikmen. Antifungal and antibiofilm efficacy of cinnamaldehyde-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans.
International microbiology : the official journal of the Spanish Society for Microbiology.
2022 May; 25(2):245-258. doi:
10.1007/s10123-021-00210-z
. [PMID: 34528147] - Kenneth W Fent, Alexander C Mayer, Christine Toennis, Deborah Sammons, Shirley Robertson, I-Chen Chen, Deepak Bhandari, Benjamin C Blount, Steve Kerber, Denise L Smith, Gavin P Horn. Firefighters' urinary concentrations of VOC metabolites after controlled-residential and training fire responses.
International journal of hygiene and environmental health.
2022 05; 242(?):113969. doi:
10.1016/j.ijheh.2022.113969
. [PMID: 35421664] - Yingdong Zhu, Weixin Wang, Qiju Huang, Changlin Hu, Shengmin Sang. Metabolic Investigation on the Interaction Mechanism between Dietary Dihydrochalcone Intake and Lipid Peroxidation Product Acrolein Reduction.
Molecular nutrition & food research.
2022 05; 66(9):e2101107. doi:
10.1002/mnfr.202101107
. [PMID: 35194934] - Remzi Çelik, Handan Mert, Bahat Comba, Nihat Mert. Effects of cinnamaldehyde on glucose-6-phosphate dehydrogenase activity, some biochemical and hematological parameters in diabetic rats.
Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.
2022 May; 27(3):270-277. doi:
10.1080/1354750x.2022.2032351
. [PMID: 35078379] - Dongdong Qian, Jing Tian, Sining Wang, Xiaoli Shan, Pei Zhao, Huihua Chen, Ming Xu, Wei Guo, Chen Zhang, Rong Lu. Trans-cinnamaldehyde protects against phenylephrine-induced cardiomyocyte hypertrophy through the CaMKII/ERK pathway.
BMC complementary medicine and therapies.
2022 Apr; 22(1):115. doi:
10.1186/s12906-022-03594-1
. [PMID: 35468773] - Abeer S Elsherbiny, Alyaa Galal, Khalid M Ghoneem, Nehal A Salahuddin. Novel chitosan-based nanocomposites as ecofriendly pesticide carriers: Synthesis, root rot inhibition and growth management of tomato plants.
Carbohydrate polymers.
2022 Apr; 282(?):119111. doi:
10.1016/j.carbpol.2022.119111
. [PMID: 35123746] - Aaron Priester, Richard Waters, Ashleigh Abbott, Krista Hilmas, Klaus Woelk, Hunter A Miller, Aria W Tarudji, Connor C Gee, Brandon McDonald, Forrest M Kievit, Anthony J Convertine. Theranostic Copolymers Neutralize Reactive Oxygen Species and Lipid Peroxidation Products for the Combined Treatment of Traumatic Brain Injury.
Biomacromolecules.
2022 04; 23(4):1703-1712. doi:
10.1021/acs.biomac.1c01635
. [PMID: 35316025] - Zeyu Zhu, Junfeng Lu, Shuyi Wang, Weijia Peng, Yang Yang, Chen Chen, Xin Zhou, Xifei Yang, Wenjun Xin, Xinyi Chen, Jiakai Pi, Wei Yin, Lin Yao, Rongbiao Pi. Acrolein, an endogenous aldehyde induces synaptic dysfunction in vitro and in vivo: Involvement of RhoA/ROCK2 pathway.
Aging cell.
2022 04; 21(4):e13587. doi:
10.1111/acel.13587
. [PMID: 35315217] - Jessika Geisebel Oliveira Neto, Silvia Karl Boechat, Juliana Santos Romão, Lia Rafaella Ballard Kuhnert, Carmen Cabanelas Pazos-Moura, Karen Jesus Oliveira. Cinnamaldehyde treatment during adolescence improves white and brown adipose tissue metabolism in a male rat model of early obesity.
Food & function.
2022 Mar; 13(6):3405-3418. doi:
10.1039/d1fo03871k
. [PMID: 35230374] - Mersady C Redding, Jeong Hoon Pan, Young Jun Kim, Mona Batish, Jillian Trabulsi, Jin Hyup Lee, Jae Kyeom Kim. Apiaceous vegetables protect against acrolein-induced pulmonary injuries through modulating hepatic detoxification and inflammation in C57BL/6 male mice.
The Journal of nutritional biochemistry.
2022 03; 101(?):108939. doi:
10.1016/j.jnutbio.2022.108939
. [PMID: 35016997] - Huxuan Wang, Zhonghua Peng, Hongmin Sun. Antifungal activities and mechanisms of trans-cinnamaldehyde and thymol against food-spoilage yeast Zygosaccharomyces rouxii.
Journal of food science.
2022 Mar; 87(3):1197-1210. doi:
10.1111/1750-3841.16075
. [PMID: 35152410] - Pawel Lorkiewicz, Rachel Keith, Jordan Lynch, Lexiao Jin, Whitney Theis, Tatiana Krivokhizhina, Daniel Riggs, Aruni Bhatnagar, Sanjay Srivastava, Daniel J Conklin. Electronic Cigarette Solvents, JUUL E-Liquids, and Biomarkers of Exposure: In Vivo Evidence for Acrolein and Glycidol in E-Cig-Derived Aerosols.
Chemical research in toxicology.
2022 02; 35(2):283-292. doi:
10.1021/acs.chemrestox.1c00328
. [PMID: 35044764] - Ling Zhu, Audrey I S Andersen-Civil, Laura J Myhill, Stig M Thamsborg, Witold Kot, Lukasz Krych, Dennis S Nielsen, Alexandra Blanchard, Andrew R Williams. The phytonutrient cinnamaldehyde limits intestinal inflammation and enteric parasite infection.
The Journal of nutritional biochemistry.
2022 02; 100(?):108887. doi:
10.1016/j.jnutbio.2021.108887
. [PMID: 34655757] - Pu Chen, Jun Zhou, Anmin Ruan, Lingfeng Zeng, Jun Liu, Qingfu Wang. Cinnamic Aldehyde, the main monomer component of Cinnamon, exhibits anti-inflammatory property in OA synovial fibroblasts via TLR4/MyD88 pathway.
Journal of cellular and molecular medicine.
2022 02; 26(3):913-924. doi:
10.1111/jcmm.17148
. [PMID: 34964259] - Nina Sang, Lixian Jiang, Zefeng Wang, Yuying Zhu, Guoqiang Lin, Ruixiang Li, Jiange Zhang. Bacteria-targeting liposomes for enhanced delivery of cinnamaldehyde and infection management.
International journal of pharmaceutics.
2022 Jan; 612(?):121356. doi:
10.1016/j.ijpharm.2021.121356
. [PMID: 34919996] - Xinhao Zhang, Liping Jiang, Huangben Chen, Sen Wei, Kun Yao, Xiance Sun, Guang Yang, Lijie Jiang, Cong Zhang, Ningning Wang, Yan Wang, Xiaofang Liu. Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress- related PERK pathway in MIN6 cells.
Toxicology.
2022 01; 465(?):153048. doi:
10.1016/j.tox.2021.153048
. [PMID: 34813903] - Jing Tian, Xiao-Li Shan, Si-Ning Wang, Hui-Hua Chen, Pei Zhao, Dong-Dong Qian, Ming Xu, Wei Guo, Chen Zhang, Rong Lu. Trans-cinnamaldehyde suppresses microtubule detyrosination and alleviates cardiac hypertrophy.
European journal of pharmacology.
2022 Jan; 914(?):174687. doi:
10.1016/j.ejphar.2021.174687
. [PMID: 34883072] - Jasleen Kaur, Vijay Kumar, Vibhu Kumar, Sadiah Shafi, Pragyanshu Khare, Neha Mahajan, Sanjay K Bhadada, Kanthi Kiran Kondepudi, Rupam Kumar Bhunia, Anurag Kuhad, Mahendra Bishnoi. Combination of TRP channel dietary agonists induces energy expending and glucose utilizing phenotype in HFD-fed mice.
International journal of obesity (2005).
2022 01; 46(1):153-161. doi:
10.1038/s41366-021-00967-3
. [PMID: 34564707] - Zeynab Aminzadeh, Nasrin Ziamajidi, Roghayeh Abbasalipourkabir. Anticancer Effects of Cinnamaldehyde Through Inhibition of ErbB2/HSF1/LDHA Pathway in 5637 Cell Line of Bladder Cancer.
Anti-cancer agents in medicinal chemistry.
2022; 22(6):1139-1148. doi:
10.2174/1871520621666210726142814
. [PMID: 34315398] - Li Lu, Yuan Xiong, Juan Zhou, Guangji Wang, Bobin Mi, Guohui Liu. The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases.
Oxidative medicine and cellular longevity.
2022; 2022(?):9177108. doi:
10.1155/2022/9177108
. [PMID: 36254234] - Basma S Ismail, Basant Mahmoud, Eman S Abdel-Reheim, Hanan A Soliman, Tarek M Ali, Basem H Elesawy, Mohamed Y Zaky. Cinnamaldehyde Mitigates Atherosclerosis Induced by High-Fat Diet via Modulation of Hyperlipidemia, Oxidative Stress, and Inflammation.
Oxidative medicine and cellular longevity.
2022; 2022(?):4464180. doi:
10.1155/2022/4464180
. [PMID: 35774377] - Dan He, Qiang Li, Guangli Du, Shaoli Chen, Puhua Zeng. Experimental Study on the Mechanism of Cinnamaldehyde Ameliorate Proteinuria Induced by Adriamycin.
BioMed research international.
2022; 2022(?):9600450. doi:
10.1155/2022/9600450
. [PMID: 35993052] - Xiaobing Feng, Ruyi Liang, Da Shi, Dongming Wang, Tao Xu, Weihong Chen. Urinary acrolein metabolites, systemic inflammation, and blood lipids: Results from the National Health and Nutrition Examination Survey.
Chemosphere.
2022 Jan; 286(Pt 2):131791. doi:
10.1016/j.chemosphere.2021.131791
. [PMID: 34371361] - Banrida Wahlang, Tyler C Gripshover, Hong Gao, Tatiana Krivokhizhina, Rachel J Keith, Israel D Sithu, Shesh N Rai, Aruni Bhatnagar, Craig J McClain, Sanjay Srivastava, Mathew C Cave. Associations Between Residential Exposure to Volatile Organic Compounds and Liver Injury Markers.
Toxicological sciences : an official journal of the Society of Toxicology.
2021 12; 185(1):50-63. doi:
10.1093/toxsci/kfab119
. [PMID: 34668566] - Taichi Yoneda, Naoto Kojima, Takahiro Matsumoto, Daisuke Imahori, Tomoe Ohta, Tatsusada Yoshida, Tetsushi Watanabe, Hisashi Matsuda, Seikou Nakamura. Construction of sulfur-containing compounds with anti-cancer stem cell activity using thioacrolein derived from garlic based on nature-inspired scaffolds.
Organic & biomolecular chemistry.
2021 12; 20(1):196-207. doi:
10.1039/d1ob01992a
. [PMID: 34878480] - Esra Pekoglu, Belgin Buyukakilli, Cagatay Han Turkseven, Ebru Balli, Gulsen Bayrak, Burak Cimen, Senay Balci. Effects of Trans-Cinnamaldehyde on Reperfused Ischemic Skeletal Muscle and the Relationship to Laminin.
Journal of investigative surgery : the official journal of the Academy of Surgical Research.
2021 Dec; 34(12):1329-1338. doi:
10.1080/08941939.2020.1802538
. [PMID: 32752972] - Moritz Lassé, Anja R Stampfli, Thomas Orban, Roshit K Bothara, Juliet A Gerrard, Antony J Fairbanks, Neil R Pattinson, Renwick C J Dobson. Reaction dynamics and residue identification of haemoglobin modification by acrolein, a lipid-peroxidation by-product.
Biochimica et biophysica acta. General subjects.
2021 12; 1865(12):130013. doi:
10.1016/j.bbagen.2021.130013
. [PMID: 34534644] - Paula Marchesini, Ari Sérgio de Oliveira Lemos, Ricardo de Oliveira Barbosa Bitencourt, Jéssica Fiorotti, Isabele da Costa Angelo, Rodrigo Luiz Fabri, Lívio Martins Costa-Júnior, Welber Daniel Zaneti Lopes, Vânia Rita Elias Pinheiro Bittencourt, Caio Monteiro. Assessment of lipid profile in fat body and eggs of Rhipicephalus microplus engorged females exposed to (E)-cinnamaldehyde and α-bisabolol, potential acaricide compounds.
Veterinary parasitology.
2021 Dec; 300(?):109596. doi:
10.1016/j.vetpar.2021.109596
. [PMID: 34695723] - Xiaoli Song, Yang Lu, Yongling Lu, Lishuang Lv. Adduct Formation of Acrolein with Cyanidin-3-O-glucoside and Its Degradants/Metabolites during Thermal Processing or In Vivo after Consumption of Red Bayberry.
Journal of agricultural and food chemistry.
2021 Nov; 69(44):13143-13154. doi:
10.1021/acs.jafc.1c05727
. [PMID: 34714663] - Jan Spaas, Wouter M A Franssen, Charly Keytsman, Laura Blancquaert, Tim Vanmierlo, Jeroen Bogie, Bieke Broux, Niels Hellings, Jack van Horssen, Dheeraj Kumar Posa, David Hoetker, Shahid P Baba, Wim Derave, Bert O Eijnde. Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation.
Journal of neuroinflammation.
2021 Nov; 18(1):255. doi:
10.1186/s12974-021-02306-9
. [PMID: 34740381] - Zhaojia Zou, Zhao Yin, Juanying Ou, Jie Zheng, Fu Liu, Caihuan Huang, Shiyi Ou. Identification of adducts formed between acrolein and alanine or serine in fried potato crisps and the cytotoxicity-lowering effect of acrolein in three cell lines.
Food chemistry.
2021 Nov; 361(?):130164. doi:
10.1016/j.foodchem.2021.130164
. [PMID: 34062460] - Birsen Aydın, Cansu Güler Şahin, Vedat Şekeroğlu, Zülal Atlı Şekeroğlu. Conjugated linoleic acid protects brain mitochondrial function in acrolein induced male rats.
Toxicology mechanisms and methods.
2021 Nov; 31(9):674-679. doi:
10.1080/15376516.2021.1952673
. [PMID: 34238125] - Bin Duan, Zhouju Gao, Okwong Oketch Reymick, Qiuli Ouyang, Yue Chen, Chunyan Long, Bao Yang, Nengguo Tao. Cinnamaldehyde promotes the defense response in postharvest citrus fruit inoculated with Penicillium digitatum and Geotrichum citri-aurantii.
Pesticide biochemistry and physiology.
2021 Nov; 179(?):104976. doi:
10.1016/j.pestbp.2021.104976
. [PMID: 34802526] - Arunaksharan Narayanankutty, Krishnaprasad Kunnath, Ahmed Alfarhan, Rajakrishnan Rajagopal, Varsha Ramesh. Chemical Composition of Cinnamomum verum Leaf and Flower Essential Oils and Analysis of Their Antibacterial, Insecticidal, and Larvicidal Properties.
Molecules (Basel, Switzerland).
2021 Oct; 26(20):. doi:
10.3390/molecules26206303
. [PMID: 34684884] - Yang Lu, Juan Liu, Anqi Tong, Yongling Lu, Lishuang Lv. Interconversion and Acrolein-Trapping Capacity of Cardamonin/Alpinetin and Their Metabolites In Vitro and In Vivo.
Journal of agricultural and food chemistry.
2021 Oct; 69(40):11926-11936. doi:
10.1021/acs.jafc.1c04373
. [PMID: 34587738]