Oleoyl-CoA (BioDeep_00000004437)
Secondary id: BioDeep_00000605035, BioDeep_00000630242
human metabolite Endogenous
代谢物信息卡片
化学式: C39H68N7O17P3S (1031.3605)
中文名称:
谱图信息:
最多检出来源 Mus musculus(lipidsearch) 41.33%
分子结构信息
SMILES: CCCCCCCC/C=C\CCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@@H](C(C)(C)COP(=O)(O)OP(=O)(O)OC[C@@H]1[C@H]([C@H]([C@H](n2cnc3c(N)ncnc23)O1)O)OP(=O)(O)O)O
InChI: InChI=1S/C39H68N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-30(48)67-23-22-41-29(47)20-21-42-37(51)34(50)39(2,3)25-60-66(57,58)63-65(55,56)59-24-28-33(62-64(52,53)54)32(49)38(61-28)46-27-45-31-35(40)43-26-44-36(31)46/h11-12,26-28,32-34,38,49-50H,4-10,13-25H2,1-3H3,(H,41,47)(H,42,51)(H,55,56)(H,57,58)(H2,40,43,44)(H2,52,53,54)/t28-,32-,33-,34?,38-/m1/s1
描述信息
Oleoyl-CoA is a substrate for Acyl-CoA desaturase and Protein FAM34A. [HMDB]. Oleoyl-CoA is found in many foods, some of which are cardoon, fruits, hyssop, and rice.
Oleoyl-CoA is a substrate for Acyl-CoA desaturase and Protein FAM34A.
同义名列表
20 个代谢物同义名
{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9Z)-octadec-9-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid; S-[(9Z)-Octadec-9-enoyl]-coenzyme A; (9Z)-Octadec-9-enoyl-coenzyme A; Coenzyme A cis-9-octadecenoate; cis-9-Octadecenoyl-coenzyme A; S-[(9Z)-Octadec-9-enoyl]-CoA; 9-Octadecenoyl-coenzyme A; (9Z)-Octadec-9-enoyl-CoA; cis-9-Octadecenoyl-CoA; (9Z)-Octadecenoyl-CoA; 9-Octadecenoyl-CoA; S-Oleoylcoenzyme A; Coenzyme A oleate; Oleoyl-coenzyme A; Oleoyl coenzyme A; Oleyl coenzyme A; Oleyl-coenzyme A; S-Oleoyl-CoA; oleoyl-CoA; Oleyl-CoA
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:15534
- KEGG: C00510
- PubChem: 5497111
- PubChem: 966
- HMDB: HMDB0001322
- MetaCyc: OLEOYL-COA
- foodb: FDB022554
- chemspider: 4593689
- CAS: 1716-06-9
- PMhub: MS000016887
- PubChem: 3793
- LipidMAPS: LMFA07050356
- PDB-CCD: 3VV
- 3DMET: B04691
- NIKKAJI: J203.108F
- RefMet: Oleoyl-CoA
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
70 个相关的代谢反应过程信息。
Reactome(68)
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Fatty acyl-CoA biosynthesis:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
Mal-CoA + PALM-CoA ⟶ 3OOD-CoA + CoA-SH + carbon dioxide
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Fatty acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Fatty acyl-CoA biosynthesis:
Mal-CoA + PALM-CoA ⟶ 3OOD-CoA + CoA-SH + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Fatty acid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Fatty acyl-CoA biosynthesis:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Fatty acid metabolism:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CoA + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
BioCyc(0)
WikiPathways(2)
- Mitochondrial beta oxidation:
5Z,8Z-tetradecadienoyl-CoA ⟶ 2E,5Z,8Z-tetradecatrienoyl-CoA
- Omega-9 fatty acid synthesis:
CoA(18:1(9Z)) ⟶ Oleic acid
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Lucas M O'Neill, Chang-An Guo, Fang Ding, Yar Xin Phang, Zhaojin Liu, Sohel Shamsuzzaman, James M Ntambi. Stearoyl-CoA Desaturase-2 in Murine Development, Metabolism, and Disease.
International journal of molecular sciences.
2020 Nov; 21(22):. doi:
10.3390/ijms21228619
. [PMID: 33207603] - Romy R Schmidt, Martin Fulda, Melanie V Paul, Max Anders, Frederic Plum, Daniel A Weits, Monika Kosmacz, Tony R Larson, Ian A Graham, Gerrit T S Beemster, Francesco Licausi, Peter Geigenberger, Jos H Schippers, Joost T van Dongen. Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA in Arabidopsis.
Proceedings of the National Academy of Sciences of the United States of America.
2018 12; 115(51):E12101-E12110. doi:
10.1073/pnas.1809429115
. [PMID: 30509981] - Rashmi Panigrahi, Tsutomu Matsui, Andrew H Song, Kristian Mark P Caldo, Howard S Young, Randall J Weselake, M Joanne Lemieux. Intrinsic disorder in the regulatory N-terminal domain of diacylglycerol acyltransferase 1 from Brassica napus.
Scientific reports.
2018 11; 8(1):16665. doi:
10.1038/s41598-018-34339-1
. [PMID: 30420764] - Kristian Mark P Caldo, Wei Shen, Yang Xu, Linda Hanley-Bowdoin, Guanqun Chen, Randall J Weselake, M Joanne Lemieux. Diacylglycerol acyltransferase 1 is activated by phosphatidate and inhibited by SnRK1-catalyzed phosphorylation.
The Plant journal : for cell and molecular biology.
2018 10; 96(2):287-299. doi:
10.1111/tpj.14029
. [PMID: 30003607] - Jessica Seeßle, Gerhard Liebisch, Gerd Schmitz, Wolfgang Stremmel, Walee Chamulitrat. Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis.
Biochimica et biophysica acta.
2015 May; 1851(5):549-65. doi:
10.1016/j.bbalip.2015.01.004
. [PMID: 25603556] - Jee-Hee Seo, Mun-Ock Kim, Ah-Reum Han, Eun-Bin Kwon, Myung Ji Kang, Sungchan Cho, Dong-Oh Moon, Jung-Ran Noh, Chul-Ho Lee, Young-Soo Kim, Hyun-Sun Lee. Oleanane-type triterpenoids of Aceriphyllum rossii and their diacylglycerol acyltransferase-inhibitory activity.
Planta medica.
2015 Feb; 81(3):228-34. doi:
10.1055/s-0034-1396242
. [PMID: 25671385] - Cristina Sáez-López, Federico Soriguer, Cristina Hernandez, Gemma Rojo-Martinez, Elehazara Rubio-Martín, Rafael Simó, David M Selva. Oleic acid increases hepatic sex hormone binding globulin production in men.
Molecular nutrition & food research.
2014 Apr; 58(4):760-7. doi:
10.1002/mnfr.201300304
. [PMID: 24142580] - José María Arroyo-Caro, Tarik Chileh, Diego López Alonso, Federico García-Maroto. Molecular characterization of a lysophosphatidylcholine acyltransferase gene belonging to the MBOAT family in Ricinus communis L.
Lipids.
2013 Jul; 48(7):663-74. doi:
10.1007/s11745-013-3797-z
. [PMID: 23700249] - Bin Dong, Chin Fung Kelvin Kan, Amar B Singh, Jingwen Liu. High-fructose diet downregulates long-chain acyl-CoA synthetase 3 expression in liver of hamsters via impairing LXR/RXR signaling pathway.
Journal of lipid research.
2013 May; 54(5):1241-54. doi:
10.1194/jlr.m032599
. [PMID: 23427282] - Yongcheng Huang, Jonathan C Cohen, Helen H Hobbs. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease.
The Journal of biological chemistry.
2011 Oct; 286(43):37085-93. doi:
10.1074/jbc.m111.290114
. [PMID: 21878620] - Wayland W L Cheng, Nazzareno D'Avanzo, Declan A Doyle, Colin G Nichols. Dual-mode phospholipid regulation of human inward rectifying potassium channels.
Biophysical journal.
2011 Feb; 100(3):620-628. doi:
10.1016/j.bpj.2010.12.3724
. [PMID: 21281576] - Eduardo De Gerónimo, Robert M Hagan, David C Wilton, Betina Córsico. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.
Biochimica et biophysica acta.
2010 Sep; 1801(9):1082-9. doi:
10.1016/j.bbalip.2010.05.008
. [PMID: 20541621] - Dominik P Waluk, Niklas Schultz, Mary C Hunt. Identification of glycine N-acyltransferase-like 2 (GLYATL2) as a transferase that produces N-acyl glycines in humans.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2010 Aug; 24(8):2795-803. doi:
10.1096/fj.09-148551
. [PMID: 20305126] - Shi Xiao, Qin-Fang Chen, Mee-Len Chye. Expression of ACBP4 and ACBP5 proteins is modulated by light in Arabidopsis.
Plant signaling & behavior.
2009 Nov; 4(11):1063-5. doi:
10.4161/psb.4.11.9718
. [PMID: 20009557] - Shi Xiao, Qin-Fang Chen, Mee-Len Chye. Light-regulated Arabidopsis ACBP4 and ACBP5 encode cytosolic acyl-CoA-binding proteins that bind phosphatidylcholine and oleoyl-CoA ester.
Plant physiology and biochemistry : PPB.
2009 Oct; 47(10):926-33. doi:
10.1016/j.plaphy.2009.06.007
. [PMID: 19589686] - Caryl J Antalis, Tyler Arnold, Bonggi Lee, Kimberley K Buhman, Rafat A Siddiqui. Docosahexaenoic acid is a substrate for ACAT1 and inhibits cholesteryl ester formation from oleic acid in MCF-10A cells.
Prostaglandins, leukotrienes, and essential fatty acids.
2009 Feb; 80(2-3):165-71. doi:
10.1016/j.plefa.2009.01.001
. [PMID: 19217763] - Muhammad A Abdul-Ghani, Florian L Muller, Yuhong Liu, Alberto O Chavez, Bogdan Balas, Pengou Zuo, Zhi Chang, Devjit Tripathy, Rucha Jani, Marjorie Molina-Carrion, Adriana Monroy, Franco Folli, Holly Van Remmen, Ralph A DeFronzo. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance.
American journal of physiology. Endocrinology and metabolism.
2008 Sep; 295(3):E678-85. doi:
10.1152/ajpendo.90287.2008
. [PMID: 18593850] - Gregory P Mueller, William J Driscoll. In vitro synthesis of oleoylglycine by cytochrome c points to a novel pathway for the production of lipid signaling molecules.
The Journal of biological chemistry.
2007 Aug; 282(31):22364-9. doi:
10.1074/jbc.m701801200
. [PMID: 17537719] - Ekaterina Shumilina, Nikolaj Klöcker, Ganna Korniychuk, Markus Rapedius, Florian Lang, Thomas Baukrowitz. Cytoplasmic accumulation of long-chain coenzyme A esters activates KATP and inhibits Kir2.1 channels.
The Journal of physiology.
2006 Sep; 575(Pt 2):433-42. doi:
10.1113/jphysiol.2006.111161
. [PMID: 16777940] - Ken Kitayama, Tatsuo Tanimoto, Teiichiro Koga, Naoki Terasaka, Tomoyuki Fujioka, Toshimori Inaba. Importance of acyl-coenzyme A:cholesterol acyltransferase 1/2 dual inhibition for anti-atherosclerotic potency of pactimibe.
European journal of pharmacology.
2006 Jul; 540(1-3):121-30. doi:
10.1016/j.ejphar.2006.04.022
. [PMID: 16730694] - Markus Rapedius, Malle Soom, Ekaterina Shumilina, Dirk Schulze, Roland Schönherr, Cornelia Kirsch, Florian Lang, Stephen J Tucker, Thomas Baukrowitz. Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels.
The Journal of biological chemistry.
2005 Sep; 280(35):30760-7. doi:
10.1074/jbc.m503503200
. [PMID: 15980413] - Ka-Chun Leung, Hong-Ye Li, Girish Mishra, Mee-Len Chye. ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA.
Plant molecular biology.
2004 May; 55(2):297-309. doi:
10.1007/s11103-004-0642-z
. [PMID: 15604682] - Tibor Rohács, Coeli M B Lopes, Taihao Jin, Pavan P Ramdya, Zoltán Molnár, Diomedes E Logothetis. Specificity of activation by phosphoinositides determines lipid regulation of Kir channels.
Proceedings of the National Academy of Sciences of the United States of America.
2003 Jan; 100(2):745-50. doi:
10.1073/pnas.0236364100
. [PMID: 12525701] - M Miyazaki, H J Kim, W C Man, J M Ntambi. Oleoyl-CoA is the major de novo product of stearoyl-CoA desaturase 1 gene isoform and substrate for the biosynthesis of the Harderian gland 1-alkyl-2,3-diacylglycerol.
The Journal of biological chemistry.
2001 Oct; 276(42):39455-61. doi:
10.1074/jbc.m106442200
. [PMID: 11500518] - K Murakami, T Ide, T Nakazawa, T Okazaki, T Mochizuki, T Kadowaki. Fatty-acyl-CoA thioesters inhibit recruitment of steroid receptor co-activator 1 to alpha and gamma isoforms of peroxisome-proliferator-activated receptors by competing with agonists.
The Biochemical journal.
2001 Jan; 353(Pt 2):231-8. doi:
10.1042/0264-6021:3530231
. [PMID: 11139385] - M L Chye, H Y Li, M H Yung. Single amino acid substitutions at the acyl-CoA-binding domain interrupt 14[C]palmitoyl-CoA binding of ACBP2, an Arabidopsis acyl-CoA-binding protein with ankyrin repeats.
Plant molecular biology.
2000 Dec; 44(6):711-21. doi:
10.1023/a:1026524108095
. [PMID: 11202434] - T A McKeon, G Q Chen, J T Lin. Biochemical aspects of castor oil biosynthesis.
Biochemical Society transactions.
2000 Dec; 28(6):972-4. doi:
10.1042/bst0280972
. [PMID: 11171276] - A L Thompson, G J Cooney. Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance.
Diabetes.
2000 Nov; 49(11):1761-5. doi:
10.2337/diabetes.49.11.1761
. [PMID: 11078441] - R J Weselake, E C Kazala, K Cianflone, D D Boehr, C K Middleton, C D Rennie, A Laroche, I Recnik. Human acylation stimulating protein enhances triacylglycerol biosynthesis in plant microsomes.
FEBS letters.
2000 Sep; 481(2):189-92. doi:
10.1016/s0014-5793(00)01996-7
. [PMID: 10996321] - C A Jolly, H Chao, A B Kier, J T Billheimer, F Schroeder. Sterol carrier protein-2 suppresses microsomal acyl-CoA hydrolysis.
Molecular and cellular biochemistry.
2000 Feb; 205(1-2):83-90. doi:
10.1023/a:1007001614939
. [PMID: 10821425] - H Chao, J T Billheimer, A B Kier, F Schroeder. Microsomal long chain fatty acyl-CoA transacylation: differential effect of sterol carrier protein-2.
Biochimica et biophysica acta.
1999 Aug; 1439(3):371-83. doi:
10.1016/s1388-1981(99)00109-2
. [PMID: 10498408] - M L Chye. Arabidopsis cDNA encoding a membrane-associated protein with an acyl-CoA binding domain.
Plant molecular biology.
1998 Nov; 38(5):827-38. doi:
10.1023/a:1006052108468
. [PMID: 9862500] - M G Pillai, M Certik, T Nakahara, Y Kamisaka. Characterization of triacylglycerol biosynthesis in subcellular fractions of an oleaginous fungus, Mortierella ramanniana var. angulispora.
Biochimica et biophysica acta.
1998 Jul; 1393(1):128-36. doi:
10.1016/s0005-2760(98)00069-1
. [PMID: 9714775] - L Gehring, D Haase, K Habben, C Kerkhoff, H H Meyer, V Kaever. Synthesis of an unsaturated fatty acid analogue (18-(4'-azido-2'-hydroxybenzoylamino)-oleic acid) and its interaction with lysophosphatidylcholine: acyl-CoA-O-acyltransferase.
Journal of lipid research.
1998 May; 39(5):1118-26. doi:
. [PMID: 9610781]
- A Frolov, F Schroeder. Acyl coenzyme A binding protein. Conformational sensitivity to long chain fatty acyl-CoA.
The Journal of biological chemistry.
1998 May; 273(18):11049-55. doi:
10.1074/jbc.273.18.11049
. [PMID: 9556588] - C Kerkhoff, M Beuck, J Threige-Rasmussen, F Spener, J Knudsen, G Schmitz. Acyl-CoA binding protein (ACBP) regulates acyl-CoA:cholesterol acyltransferase (ACAT) in human mononuclear phagocytes.
Biochimica et biophysica acta.
1997 Jun; 1346(2):163-72. doi:
10.1016/s0005-2760(97)00030-1
. [PMID: 9219899] - S R Ferri, T Toguri. Substrate specificity modification of the stromal glycerol-3-phosphate acyltransferase.
Archives of biochemistry and biophysics.
1997 Jan; 337(2):202-8. doi:
10.1006/abbi.1996.9769
. [PMID: 9016814] - H Juguelin, J J Bessoule, F Boiron, A Heape, B Garbay, E Testet, C Cassagne. Acylation of endogenous acyl acceptors by mouse sciatic nerve microsomes.
Neurochemistry international.
1996 Mar; 28(3):271-6. doi:
10.1016/0197-0186(95)00082-8
. [PMID: 8813244] - A A Bello, C Bright, B J Burton, R C Bush, J H Casey, D I Dron, V Facchini, P P Joannou, D P Parrott, D Riddell, S A Roberts, R J Williams. RP 64477: a potent inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase with low systemic bioavailability.
Biochemical pharmacology.
1996 Feb; 51(4):413-21. doi:
10.1016/0006-2952(95)02186-8
. [PMID: 8619885] - T Treloar, L J Madden, J S Winter, J L Smith, J de Jersey. Fatty acid ethyl ester synthesis by human liver microsomes.
Biochimica et biophysica acta.
1996 Jan; 1299(2):160-6. doi:
10.1016/0005-2760(95)00199-9
. [PMID: 8555260] - W H Roark, J Padia, G L Bolton, C J Blankley, A D Essenburg, R L Stanfield, R F Bousley, B R Krause, B D Roth. Bioisosterism in drug design: identification of and structure-activity relationships in a series of glycine anilide ACAT inhibitors.
Bioorganic & medicinal chemistry.
1995 Jan; 3(1):29-39. doi:
10.1016/0968-0896(94)00144-r
. [PMID: 8612044] - A E Thumser, C Evans, A F Worrall, D C Wilton. Effect on ligand binding of arginine mutations in recombinant rat liver fatty acid-binding protein.
The Biochemical journal.
1994 Jan; 297 ( Pt 1)(?):103-7. doi:
10.1042/bj2970103
. [PMID: 8280088] - A Cantafora, C C Yan, Y Sun, R Masella. Effects of taurine on microsomal enzyme activities involved in liver lipid metabolism of Wistar rats.
Advances in experimental medicine and biology.
1994; 359(?):99-110. doi:
10.1007/978-1-4899-1471-2_11
. [PMID: 7887294] - W S Garver, J D Kemp, G D Kuehn. A high-performance liquid chromatography-based radiometric assay for acyl-CoA:alcohol transacylase from jojoba.
Analytical biochemistry.
1992 Dec; 207(2):335-40. doi:
10.1016/0003-2697(92)90021-x
. [PMID: 1481989] - M T Chen, L N Kaufman, T Spennetta, E Shrago. Effects of high fat-feeding to rats on the interrelationship of body weight, plasma insulin, and fatty acyl-coenzyme A esters in liver and skeletal muscle.
Metabolism: clinical and experimental.
1992 May; 41(5):564-9. doi:
10.1016/0026-0495(92)90221-u
. [PMID: 1588840] - J G Boylan, J A Hamilton. Interactions of acyl-coenzyme A with phosphatidylcholine bilayers and serum albumin.
Biochemistry.
1992 Jan; 31(2):557-67. doi:
10.1021/bi00117a037
. [PMID: 1731912] - V Arondel, C Vergnolle, F Tchang, J C Kader. Bifunctional lipid-transfer: fatty acid-binding proteins in plants.
Molecular and cellular biochemistry.
1990 Oct; 98(1-2):49-56. doi:
10.1007/bf00231367
. [PMID: 2266969] - K Einarsson, L Benthin, S Ewerth, G Hellers, D Ståhlberg, B Angelin. Studies on acyl-coenzyme A: cholesterol acyltransferase activity in human liver microsomes.
Journal of lipid research.
1989 May; 30(5):739-46. doi:
"
. [PMID: 2760547] - J A Kelleher, G Y Sun. Effects of free fatty acids and acyl-coenzyme A on diacylglycerol kinase in rat brain.
Journal of neuroscience research.
1989 May; 23(1):87-94. doi:
10.1002/jnr.490230112
. [PMID: 2545896] - K K Vaswani, R W Ledeen. Purified rat brain myelin contains measurable acyl-CoA:lysophospholipid acyltransferase(s) but little, if any, glycerol-3-phosphate acyltransferase.
Journal of neurochemistry.
1989 Jan; 52(1):69-74. doi:
10.1111/j.1471-4159.1989.tb10899.x
. [PMID: 2908893] - I Lascu, B Edwards, M P Cucuianu, D W Deamer. Platelet aggregation is inhibited by long chain acyl-CoA.
Biochemical and biophysical research communications.
1988 Oct; 156(2):1020-5. doi:
10.1016/s0006-291x(88)80946-x
. [PMID: 3142460] - J L Smith, J de Jersey, S P Pillay, I R Hardie. Hepatic acyl-CoA:cholesterol acyltransferase. Development of a standard assay and determination in patients with cholesterol gallstones.
Clinica chimica acta; international journal of clinical chemistry.
1986 Aug; 158(3):271-82. doi:
10.1016/0009-8981(86)90291-3
. [PMID: 3769201] - J M Dugan, C A Dise, D B Goodman. Preparation of inside-out vesicles from erythrocyte membranes inactivates the pathway for oleic acid incorporation into phospholipid.
Biochimica et biophysica acta.
1985 Jun; 816(1):93-101. doi:
10.1016/0005-2736(85)90397-9
. [PMID: 4005242] - K Domańska-Janik, J Lazarewicz, K Noremberg, J Strosznajder, T Zalewska. Metabolic disturbances of synaptosomes isolated from ischemic gerbil brain.
Neurochemical research.
1985 May; 10(5):649-65. doi:
10.1007/bf00964404
. [PMID: 2861577] - A Y Lin, G Y Sun, R MacQuarrie. Partial purification and properties of long-chain acyl-CoA hydrolase from rat brain cytosol.
Neurochemical research.
1984 Nov; 9(11):1571-91. doi:
10.1007/bf00964592
. [PMID: 6151625] - P T Normann, T Flatmark. Increase in mitochondrial content of long-chain acyl-CoA in brown adipose tissue during cold-acclimation.
Biochimica et biophysica acta.
1984 Jul; 794(2):225-33. doi:
10.1016/0005-2760(84)90149-8
. [PMID: 6145447] - C P Rochester, D G Bishop. The role of lysophosphatidylcholine in lipid synthesis by developing sunflower (Helianthus annuus L.) seed microsomes.
Archives of biochemistry and biophysics.
1984 Jul; 232(1):249-58. doi:
10.1016/0003-9861(84)90541-1
. [PMID: 6742852] - D J Murphy, K D Mukherjee, I E Woodrow. Functional association of a monoacylglycerophosphocholine acyltransferase and the oleoylglycerophosphocholine desaturase in microsomes from developing leaves.
European journal of biochemistry.
1984 Mar; 139(2):373-9. doi:
10.1111/j.1432-1033.1984.tb08016.x
. [PMID: 6698020] - A H Merrill, R D Williams. Utilization of different fatty acyl-CoA thioesters by serine palmitoyltransferase from rat brain.
Journal of lipid research.
1984 Feb; 25(2):185-8. doi:
"
. [PMID: 6707526] - G Ferrante, M Kates. Pathways for desaturation of oleoyl chains in Candida lipolytica.
Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire.
1983 Nov; 61(11):1191-6. doi:
10.1139/o83-153
. [PMID: 6667424] - D J Murphy, K D Mukherjee, E Latzko. Lipid metabolism in microsomal fraction from photosynthetic tissue. Effects of catalase and hydrogen peroxide on oleate desaturation.
The Biochemical journal.
1983 Jul; 213(1):249-52. doi:
10.1042/bj2130249
. [PMID: 6615427] - B Tiałowska, J Klimek, L Zelewski. Progesterone biosynthesis supported by fatty acid oxidation in the mitochondrial fraction of human term placenta.
Acta biochimica Polonica.
1983; 30(1):11-21. doi:
NULL
. [PMID: 6868904] - M Zatz, S J Engelsen, S P Markey. Biosynthesis of S-methyl-N-oleoylmercaptoethylamide from oleoyl coenzyme A and S-adenosylmethionine.
The Journal of biological chemistry.
1982 Nov; 257(22):13673-8. doi:
. [PMID: 7142172]
- P Helgerud, K Saarem, K R Norum. Acyl-CoA:cholesterol acyltransferase in human small intestine: its activity and some properties of the enzymic reaction.
Journal of lipid research.
1981 Feb; 22(2):271-7. doi:
. [PMID: 6113262]
- A H Lichtenstein, P Brecher. Properties of acyl-CoA:cholesterol acyltransferase in rat liver microsomes. Topological localization and effects of detergents, albumin, and polar steroids.
The Journal of biological chemistry.
1980 Oct; 255(19):9098-104. doi:
10.1016/s0021-9258(19)70532-8
. [PMID: 6251076] - S K Erickson, M A Shrewsbury, C Brooks, D J Meyer. Rat liver acyl-coenzyme A:cholesterol acyltransferase: its regulation in vivo and some of its properties in vitro.
Journal of lipid research.
1980 Sep; 21(7):930-41. doi:
10.1016/s0022-2275(20)34791-x
. [PMID: 7441061] - A F Cacciapuoti, S A Morse. Glucose-6-phosphate dehydrogenase from Neisseria gonorrhoeae: partical characterization of the enzyme and inhibition by long-chain fatty acid acyl-coenzyme A derivatives.
Canadian journal of microbiology.
1980 Aug; 26(8):863-73. doi:
10.1139/m80-151
. [PMID: 6780174] - . .
.
. doi:
. [PMID: 17379924]