Succinyl-CoA (BioDeep_00000004380)

 

Secondary id: BioDeep_00001868805

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


4-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-4-oxobutanoic acid

化学式: C25H40N7O19P3S (867.1312)
中文名称: 琥珀酰辅酶A
谱图信息: 最多检出来源 Homo sapiens(otcml) 8.98%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

Succinyl-CoA. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/succinyl-coa (retrieved 2024-12-18) (BioDeep RN: BioDeep_00000004380). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(C)(COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)C(C(=O)NCCC(=O)NCCSC(=O)CCC(=O)O)O
InChI: InChI=1S/C25H40N7O19P3S/c1-25(2,20(38)23(39)28-6-5-14(33)27-7-8-55-16(36)4-3-15(34)35)10-48-54(45,46)51-53(43,44)47-9-13-19(50-52(40,41)42)18(37)24(49-13)32-12-31-17-21(26)29-11-30-22(17)32/h11-13,18-20,24,37-38H,3-10H2,1-2H3,(H,27,33)(H,28,39)(H,34,35)(H,43,44)(H,45,46)(H2,26,29,30)(H2,40,41,42)/t13-,18-,19-,20+,24-/m1/s1

描述信息

Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203) [HMDB]. Succinyl-CoA is found in many foods, some of which are fruits, sea-buckthornberry, pomegranate, and sweet orange.
Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203).

同义名列表

38 个代谢物同义名

4-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-4-oxobutanoic acid; 4-[2-[3-[[4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethylsulfanyl]-4-oxobutanoic acid; coenzyme A, S-(Hydrogen butanedioic acid); coenzyme A, S-(Hydrogen butanedioate); S-(hydrogen butanedioate) Coenzyme A; S-(3-Carboxy-propionyl)-coenzym-a; Coenzyme A S-(hydrogen succinate); S-(3-Carboxypropionyl)-coenzyme A; S-(Hydrogen succinyl)coenzyme A; S-(hydrogen butanedioate) CoA; S-(hydrogen butanedioic acid; S-(3-Carboxy-propionyl)-CoA; CoA S-(hydrogen succinate); S-(Hydrogen succinyl)-CoA; S-(hydrogen butanedioate; succino-1-yl-coenzyme a; Coenzyme A S-succinate; succinyl-S-coenzyme-A; S-Succinoylcoenzyme A; succinyl-S-Coenzyme A; Succinyl-coenzyme A; Succinyl coenzyme A; succinylcoenzyme-A; succ-S-coenzyme-A; succ-S-Coenzyme A; CoA S-succinate; succ-Coenzyme A; succ-coenzyme-A; SCHEMBL4364428; succinyl-S-CoA; Succinyl CoA; Succinyl-CoA; succ-S-CoA; succ-CoA; suc-co-A; suc-coa; Succinyl-CoA; Succinyl-CoA



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(10)

PlantCyc(0)

代谢反应

885 个相关的代谢反应过程信息。

Reactome(24)

BioCyc(21)

WikiPathways(9)

Plant Reactome(612)

INOH(10)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(209)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 CMPK2, COASY, FH, KAT2A, MMAA, MMUT, PC, PKM, SUCLA2
Peripheral membrane protein 2 ALAS2, HSD17B6
Nucleus 7 CS, DLD, DLST, FH, KAT2A, PKM, SIRT5
cytosol 6 DLST, FH, MMAA, PC, PKM, SIRT5
centrosome 1 KAT2A
nucleoplasm 3 CMPK2, DLST, KAT2A
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 MMAA
Synapse 1 ALDH5A1
Golgi membrane 1 INS
mitochondrial inner membrane 1 ALAS2
Cytoplasm, cytosol 1 SIRT5
acrosomal vesicle 1 DLD
plasma membrane 1 SUCLG2
Membrane 3 CS, DLST, MMAA
extracellular exosome 5 COASY, CS, FH, PKM, SUCLA2
Lumenal side 1 HSD17B6
endoplasmic reticulum 1 HSD17B6
extracellular space 2 INS, KAT2A
mitochondrion 17 ALAS2, ALDH5A1, CMPK2, COASY, CS, DLD, DLST, FH, MCEE, MMAA, MMUT, OXCT1, PC, PKM, SIRT5, SUCLA2, SUCLG2
intracellular membrane-bounded organelle 1 HSD17B6
Microsome membrane 1 HSD17B6
Secreted 1 INS
extracellular region 2 INS, PKM
mitochondrial outer membrane 1 COASY
Mitochondrion matrix 6 COASY, CS, DLD, DLST, MMUT, PC
mitochondrial matrix 15 ALAS2, ALDH5A1, COASY, CS, DLD, DLST, FH, MCEE, MMAA, MMUT, OXCT1, PC, SIRT5, SUCLA2, SUCLG2
motile cilium 1 DLD
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 KAT2A
Extracellular vesicle 1 PKM
vesicle 1 PKM
Mitochondrion inner membrane 1 ALAS2
mitochondrial intermembrane space 1 SIRT5
collagen-containing extracellular matrix 1 PKM
cilium 1 PKM
mitotic spindle 1 KAT2A
Chromosome 2 FH, KAT2A
[Isoform 2]: Mitochondrion 1 SIRT5
Cytoplasmic vesicle, secretory vesicle, acrosome 1 DLD
Cell projection, cilium, flagellum 1 DLD
site of double-strand break 1 FH
endosome lumen 1 INS
[Isoform 1]: Cytoplasm 1 SIRT5
ficolin-1-rich granule lumen 1 PKM
secretory granule lumen 2 INS, PKM
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
transcription factor TFTC complex 1 KAT2A
pyruvate dehydrogenase complex 1 DLD
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
oxoglutarate dehydrogenase complex 2 DLD, DLST
SAGA complex 1 KAT2A
histone acetyltransferase complex 1 KAT2A
ATAC complex 1 KAT2A
Rough endoplasmic reticulum 1 PKM
oxidoreductase complex 1 DLST
[Isoform Mitochondrial]: Mitochondrion 1 FH
[Isoform Cytoplasmic]: Cytoplasm, cytosol 1 FH
acetyltransferase complex 1 DLD
acrosomal matrix 1 DLD
branched-chain alpha-ketoacid dehydrogenase complex 1 DLD
oxoadipate dehydrogenase complex 2 DLD, DLST
[Isoform M2]: Cytoplasm 1 PKM
[Isoform M1]: Cytoplasm 1 PKM
[Isoform 4]: Mitochondrion inner membrane 1 ALAS2
succinate-CoA ligase complex (ADP-forming) 1 SUCLA2
succinate-CoA ligase complex (GDP-forming) 1 SUCLG2
succinate-CoA ligase complex 2 SUCLA2, SUCLG2


文献列表

  • Lin Tan, Sara A Martinez, Philip L Lorenzi, Anja Karlstaedt. Quantitative Analysis of Acetyl-CoA, Malonyl-CoA, and Succinyl-CoA in Myocytes. Journal of the American Society for Mass Spectrometry. 2023 Oct; ?(?):. doi: 10.1021/jasms.3c00278. [PMID: 37812744]
  • Ioannis Skalidis, Fotis L Kyrilis, Christian Tüting, Farzad Hamdi, Toni K Träger, Jaydeep Belapure, Gerd Hause, Marta Fratini, Francis J O'Reilly, Ingo Heilmann, Juri Rappsilber, Panagiotis L Kastritis. Structural analysis of an endogenous 4-megadalton succinyl-CoA-generating metabolon. Communications biology. 2023 May; 6(1):552. doi: 10.1038/s42003-023-04885-0. [PMID: 37217784]
  • Yuanyuan Hu, John E Cronan. α-proteobacteria synthesize biotin precursor pimeloyl-ACP using BioZ 3-ketoacyl-ACP synthase and lysine catabolism. Nature communications. 2020 11; 11(1):5598. doi: 10.1038/s41467-020-19251-5. [PMID: 33154364]
  • Xiaoxi Meng, Hana Mujahid, Yadong Zhang, Xiaojun Peng, Edilberto D Redoña, Cailin Wang, Zhaohua Peng. Comprehensive Analysis of the Lysine Succinylome and Protein Co-modifications in Developing Rice Seeds. Molecular & cellular proteomics : MCP. 2019 12; 18(12):2359-2372. doi: 10.1074/mcp.ra119.001426. [PMID: 31492684]
  • Yunhe Zhao, Kaidi Cui, Chunmei Xu, Qiuhong Wang, Yao Wang, Zhengqun Zhang, Feng Liu, Wei Mu. Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole. Scientific reports. 2016 11; 6(?):37730. doi: 10.1038/srep37730. [PMID: 27883048]
  • Bosko M Stojanovski, Gregory A Hunter, Martina Jahn, Dieter Jahn, Gloria C Ferreira. Unstable reaction intermediates and hysteresis during the catalytic cycle of 5-aminolevulinate synthase: implications from using pseudo and alternate substrates and a promiscuous enzyme variant. The Journal of biological chemistry. 2014 Aug; 289(33):22915-22925. doi: 10.1074/jbc.m114.574731. [PMID: 24920668]
  • Sankha S Basu, Eric C Deutsch, Alec A Schmaier, David R Lynch, Ian A Blair. Human platelets as a platform to monitor metabolic biomarkers using stable isotopes and LC-MS. Bioanalysis. 2013 Dec; 5(24):3009-21. doi: 10.4155/bio.13.269. [PMID: 24320127]
  • Teresa A Garrett, Christian R H Raetz, Jennifer D Son, Travis D Richardson, Craig Bartling, Ziqiang Guan. Non-enzymatically derived minor lipids found in Escherichia coli lipid extracts. Biochimica et biophysica acta. 2011 Nov; 1811(11):827-37. doi: 10.1016/j.bbalip.2011.08.012. [PMID: 21925285]
  • Ludek Koreny, Roman Sobotka, Jan Janouskovec, Patrick J Keeling, Miroslav Oborník. Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. The Plant cell. 2011 Sep; 23(9):3454-62. doi: 10.1105/tpc.111.089102. [PMID: 21963666]
  • Chloe Zubieta, Kiani A J Arkus, Rebecca E Cahoon, Joseph M Jez. A single amino acid change is responsible for evolution of acyltransferase specificity in bacterial methionine biosynthesis. The Journal of biological chemistry. 2008 Mar; 283(12):7561-7. doi: 10.1074/jbc.m709283200. [PMID: 18216013]
  • Lan Gao, William Chiou, Hua Tang, Xueheng Cheng, Heidi S Camp, David J Burns. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2007 Jun; 853(1-2):303-13. doi: 10.1016/j.jchromb.2007.03.029. [PMID: 17442642]
  • Maria A K Westin, Mary C Hunt, Stefan E H Alexson. The identification of a succinyl-CoA thioesterase suggests a novel pathway for succinate production in peroxisomes. The Journal of biological chemistry. 2005 Nov; 280(46):38125-32. doi: 10.1074/jbc.m508479200. [PMID: 16141203]
  • Isabel Astner, Jörg O Schulze, Joop van den Heuvel, Dieter Jahn, Wolf-Dieter Schubert, Dirk W Heinz. Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. The EMBO journal. 2005 Sep; 24(18):3166-77. doi: 10.1038/sj.emboj.7600792. [PMID: 16121195]
  • J D Johnson, W W Muhonen, D O Lambeth. Characterization of the ATP- and GTP-specific succinyl-CoA synthetases in pigeon. The enzymes incorporate the same alpha-subunit. The Journal of biological chemistry. 1998 Oct; 273(42):27573-9. doi: 10.1074/jbc.273.42.27573. [PMID: 9765290]
  • D G Kennedy, S Kennedy, P B Young. Effects of low concentrations of dietary cobalt on rumen succinate concentration in sheep. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 1996; 66(1):86-92. doi: NULL. [PMID: 8698552]
  • L Boquist, S Boquist, U Alehagen. Mitochondrial changes and associated alterations induced in mice by streptozotocin administered in vivo and in vitro. Diabetes research and clinical practice. 1987 Jul; 3(4):179-90. doi: 10.1016/s0168-8227(87)80037-2. [PMID: 2887408]
  • J A Sharp, M R Edwards. Initial-velocity kinetics of succinoyl-coenzyme A-3-oxo acid coenzyme A-transferase from sheep kidney. The Biochemical journal. 1983 Jul; 213(1):179-85. doi: 10.1042/bj2130179. [PMID: 6577858]
  • S Similä, A Ruokonen, A Palotie, J Ruostesuo, M Puukka. [Methylmalonic aciduria]. Duodecim; laaketieteellinen aikakauskirja. 1982; 98(18):1332-7. doi: NULL. [PMID: 7140596]