Retinol(Vitamin A) (BioDeep_00000004174)
Secondary id: BioDeep_00000639361, BioDeep_00000864111, BioDeep_00001891851
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C20H30O (286.229653)
中文名称: 维生素A, 视黄醇
谱图信息:
最多检出来源 Homo sapiens(blood) 0.02%
Last reviewed on 2024-09-13.
Cite this Page
Retinol(Vitamin A). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/retinol(vitamin_a) (retrieved
2024-11-25) (BioDeep RN: BioDeep_00000004174). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(C=CC1=C(C)CCCC1(C)C)=CC=CC(C)=CCO
InChI: InChI=1/C20H30O/c1-16(8-6-9-17(2)13-15-21)11-12-19-18(3)10-7-14-20(19,4)5/h6,8-9,11-13,21H,7,10,14-15H2,1-5H3/b9-6+,12-11+,16-8+,17-13+
描述信息
Vitamin A (retinol) is a yellow fat-soluble, antioxidant vitamin important in vision and bone growth. It belongs to the family of chemical compounds known as retinoids. Retinol is ingested in a precursor form; animal sources (milk and eggs) contain retinyl esters, whereas plants (carrots, spinach) contain pro-vitamin A carotenoids. Hydrolysis of retinyl esters results in retinol while pro-vitamin A carotenoids can be cleaved to produce retinal. Retinal, also known as retinaldehyde, can be reversibly reduced to produce retinol or it can be irreversibly oxidized to produce retinoic acid. Retinol and derivatives of retinol that play an essential role in metabolic functioning of the retina, the growth of and differentiation of epithelial tissue, the growth of bone, reproduction, and the immune response. Dietary vitamin A is derived from a variety of carotenoids found in plants. It is enriched in the liver, egg yolks, and the fat component of dairy products.
Retinyl esters from animal-sourced foods (or synthesized for dietary supplements for humans and domesticated animals) are acted upon by retinyl ester hydrolases in the lumen of the small intestine to release free retinol. Retinol enters intestinal absorptive cells by passive diffusion. Absorption efficiency is in the range of 70 to 90\%. Humans are at risk for acute or chronic vitamin A toxicity because there are no mechanisms to suppress absorption or excrete the excess in urine.[5] Within the cell, retinol is there bound to retinol binding protein 2 (RBP2). It is then enzymatically re-esterified by the action of lecithin retinol acyltransferase and incorporated into chylomicrons that are secreted into the lymphatic system.
Unlike retinol, β-carotene is taken up by enterocytes by the membrane transporter protein scavenger receptor B1 (SCARB1). The protein is upregulated in times of vitamin A deficiency. If vitamin A status is in the normal range, SCARB1 is downregulated, reducing absorption.[6] Also downregulated is the enzyme beta-carotene 15,15'-dioxygenase (formerly known as beta-carotene 15,15'-monooxygenase) coded for by the BCMO1 gene, responsible for symmetrically cleaving β-carotene into retinal.[8] Absorbed β-carotene is either incorporated as such into chylomicrons or first converted to retinal and then retinol, bound to RBP2. After a meal, roughly two-thirds of the chylomicrons are taken up by the liver with the remainder delivered to peripheral tissues. Peripheral tissues also can convert chylomicron β-carotene to retinol.[6][15]
The capacity to store retinol in the liver means that well-nourished humans can go months on a vitamin A deficient diet without manifesting signs and symptoms of deficiency. Two liver cell types are responsible for storage and release: hepatocytes and hepatic stellate cells (HSCs). Hepatocytes take up the lipid-rich chylomicrons, bind retinol to retinol-binding protein 4 (RBP4), and transfer the retinol-RBP4 to HSCs for storage in lipid droplets as retinyl esters. Mobilization reverses the process: retinyl ester hydrolase releases free retinol which is transferred to hepatocytes, bound to RBP4, and put into blood circulation. Other than either after a meal or when consumption of large amounts exceeds liver storage capacity, more than 95\% of retinol in circulation is bound to RBP4.[15]
Vitamin A is a fat-soluble vitamin, hence an essential nutrient. The term "vitamin A" encompasses a group of chemically related organic compounds that includes retinol, retinal (also known as retinaldehyde), retinoic acid, and several provitamin (precursor) carotenoids, most notably beta-carotene.[3][4][5][6] Vitamin A has multiple functions: essential in embryo development for growth, maintaining the immune system, and healthy vision, where it combines with the protein opsin to form rhodopsin – the light-absorbing molecule necessary for both low-light (scotopic vision) and color vision.[7]
Vitamin A occurs as two principal forms in foods: A) retinol, found in animal-sourced foods, either as retinol or bound to a fatty acid to become a retinyl ester, and B) the carotenoids alpha-carotene, β-carotene, gamma-carotene, and the xanthophyll beta-cryptoxanthin (all of which contain β-ionone rings) that function as provitamin A in herbivore and omnivore animals which possess the enzymes that cleave and convert provitamin carotenoids to retinal and then to retinol.[8] Some carnivore species lack this enzyme. The other carotenoids have no vitamin activity.[6]
Dietary retinol is absorbed from the digestive tract via passive diffusion. Unlike retinol, β-carotene is taken up by enterocytes by the membrane transporter protein scavenger receptor B1 (SCARB1), which is upregulated in times of vitamin A deficiency.[6] Storage of retinol is in lipid droplets in the liver. A high capacity for long-term storage of retinol means that well-nourished humans can go months on a vitamin A- and β-carotene-deficient diet, while maintaining blood levels in the normal range.[4] Only when the liver stores are nearly depleted will signs and symptoms of deficiency show.[4] Retinol is reversibly converted to retinal, then irreversibly to retinoic acid, which activates hundreds of genes.[9]
Vitamin A deficiency is common in developing countries, especially in Sub-Saharan Africa and Southeast Asia. Deficiency can occur at any age but is most common in pre-school age children and pregnant women, the latter due to a need to transfer retinol to the fetus. Vitamin A deficiency is estimated to affect approximately one-third of children under the age of five around the world, resulting in hundreds of thousands of cases of blindness and deaths from childhood diseases because of immune system failure.[10] Reversible night blindness is an early indicator of low vitamin A status. Plasma retinol is used as a biomarker to confirm vitamin A deficiency. Breast milk retinol can indicate a deficiency in nursing mothers. Neither of these measures indicates the status of liver reserves.[6]
The European Union and various countries have set recommendations for dietary intake, and upper limits for safe intake. Vitamin A toxicity also referred to as hypervitaminosis A, occurs when there is too much vitamin A accumulating in the body. Symptoms may include nervous system effects, liver abnormalities, fatigue, muscle weakness, bone and skin changes, and others. The adverse effects of both acute and chronic toxicity are reversed after consumption of high dose supplements is stopped.[6]
同义名列表
22 个代谢物同义名
3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol, (all-e)-isomer; (2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-ol; (all-e)-3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol; 3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2E,4E,6E,8E-tetraen-1-ol; all-trans-Vitamin a alcohol; Retinol / Retinol skeleton; all-trans-Retinyl alcohol; all trans Retinol; all-trans-Retinol; 11-cis-Retinol; 9-cis retinol; trans-Retinol; beta-Retinol; Vitamin a1; b-Retinol; Vitamin A; Chocola a; Aquasol a; Alphalin; Retinol; α-sol; Retinol
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:17336
- ChEBI: CHEBI:50211
- KEGG: C00473
- KEGGdrug: D06543
- PubChem: 445354
- PubChem: 1071
- HMDB: HMDB0000305
- Metlin: METLIN215
- DrugBank: DB00162
- ChEMBL: CHEMBL986
- Wikipedia: Vitamin_A
- MeSH: Vitamin A
- KNApSAcK: C00031437
- foodb: FDB023841
- CAS: 68-26-8
- MoNA: PS124204
- MoNA: PS124201
- PMhub: MS000015968
- LipidMAPS: LMPR01090001
- PDB-CCD: RTL
- 3DMET: B01255
- NIKKAJI: J1.417F
- NIKKAJI: J203.784J
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-572
- PubChem: 3756
- KNApSAcK: 17336
分类词条
相关代谢途径
Reactome(14)
- Metabolism
- Metabolism of vitamins and cofactors
- Metabolism of fat-soluble vitamins
- Retinoid metabolism and transport
- Visual phototransduction
- Sensory Perception
- Disease
- Metabolism of lipids
- Signaling Pathways
- Digestion and absorption
- Digestion
- Signaling by Nuclear Receptors
- Signaling by Retinoic Acid
- RA biosynthesis pathway
BioCyc(0)
PlantCyc(0)
代谢反应
303 个相关的代谢反应过程信息。
Reactome(279)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The canonical retinoid cycle in rods (twilight vision):
DHA + H+ + Oxygen + TPNH ⟶ H2O + HDoHE + TPN
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The canonical retinoid cycle in rods (twilight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- Visual phototransduction:
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
Homologues of TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The canonical retinoid cycle in rods (twilight vision):
DHA + H+ + Oxygen + TPNH ⟶ H2O + HDoHE + TPN
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
11cROL + TPN ⟶ 11cRAL + H+ + TPNH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
DHA + H+ + Oxygen + TPNH ⟶ H2O + HDoHE + TPN
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
DHA + H+ + Oxygen + TPNH ⟶ H2O + HDoHE + TPN
- The retinoid cycle in cones (daylight vision):
F6T9Q4 + atROL ⟶ RLBP1:atROL
- The retinoid cycle in cones (daylight vision):
Q54YX3 + atROL ⟶ RLBP1:atROL
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
Q54YX3 + atROL ⟶ RLBP1:atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
GTP + odorant:Olfactory Receptor:GNAL:GDP:GNB1:GNG13 ⟶ GDP + odorant:Olfactory Receptor:GNAL:GTP:GNB1:GNG13
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Triglyceride metabolism:
ATP + Glycerol ⟶ ADP + G3P
- Triglyceride catabolism:
H2O + atR-PALM ⟶ PALM(-) + atROL
- Wax biosynthesis:
H+ + PalmCoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by Nuclear Receptors:
ATP + MYB gene:hypophosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFb ⟶ ADP + MYB gene:hyperphosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFb
- Signaling by Retinoic Acid:
ATP + lipo-PDH ⟶ ADP + p-lipo-PDH
- RA biosynthesis pathway:
9cRA + H+ + Oxygen + TPNH ⟶ 4OH-9cRA + H2O + TPN
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride catabolism:
H2O + atR-PALM ⟶ PALM(-) + atROL
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Digestion and absorption:
H2O ⟶ Mal + maltotriose
- Digestion:
H2O ⟶ Mal + maltotriose
- Digestion of dietary lipid:
H2O + RPALM ⟶ PALM + atROL
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
E2QW22 + E2RPT1 + ESR1:ER:PGR:P4 + F6UTY3 + J9P0C0 ⟶ ESR1:ESTG:PGR:P4:FOXA1:GATA3:TLE3:NRIP:EP300
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride catabolism:
H2O + atR-PALM ⟶ PALM(-) + atROL
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + F8W2D1 + HSP90:HSP90 + Pi + Q7SZQ8
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
E9QD41 + atRA ⟶ SUMO-CRABP1:atRA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Retinoic Acid:
H+ + TPNH + atRAL ⟶ TPN + atROL
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q9VH95 + Q9VL78
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
atRA + fabp ⟶ SUMO-CRABP1:atRA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride catabolism:
H2O + atR-PALM ⟶ PALM(-) + atROL
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
CRABP1 + atRA ⟶ SUMO-CRABP1:atRA
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary lipid:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary lipid:
CHEST + H2O ⟶ CHOL + LCFAs
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride catabolism:
CHEST + H2O ⟶ CHOL + LCFA(-)
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Immunophilin FKBP52 + Pi + cPGES
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary lipid:
CHEST + H2O ⟶ CHOL + LCFAs
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + Fkbp4 + HSP90:HSP90 + Pi + Q9R0Q7
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Triglyceride metabolism:
ATP + Glycerol ⟶ ADP + G3P
- Triglyceride catabolism:
H2O + atR-PALM ⟶ PALM(-) + atROL
- Wax biosynthesis:
H+ + PalmCoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by Nuclear Receptors:
ATP + MYB gene:hypophosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFb ⟶ ADP + MYB gene:hyperphosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFb
- Signaling by Retinoic Acid:
ATP + lipo-PDH ⟶ ADP + p-lipo-PDH
- RA biosynthesis pathway:
9cRA + H+ + Oxygen + TPNH ⟶ 4OH-9cRA + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Triglyceride metabolism:
ATP + Glycerol ⟶ ADP + G3P
- Triglyceride catabolism:
H2O + atR-PALM ⟶ PALM(-) + atROL
- Signaling Pathways:
H2O + cAMP ⟶ AMP
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride catabolism:
H2O + atR-PALM ⟶ PALM(-) + atROL
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary lipid:
CHEST + H2O ⟶ CHOL + LCFAs
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Ptges3 + Q9QVC8
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Visual phototransduction:
H+ + TPNH + atRAL ⟶ TPN + atROL
- The canonical retinoid cycle in rods (twilight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Retinoic Acid:
H2O + NAD + atRAL ⟶ H+ + NADH + atRA
- RA biosynthesis pathway:
H2O + NAD + atRAL ⟶ H+ + NADH + atRA
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Wax and plasmalogen biosynthesis:
HXOL + PALM-CoA ⟶ CoA-SH + PALM-PALM
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Wax and plasmalogen biosynthesis:
HXOL + PALM-CoA ⟶ CoA-SH + PALM-PALM
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Retinoic Acid:
H2O + NAD + atRAL ⟶ H+ + NADH + atRA
- RA biosynthesis pathway:
H2O + NAD + atRAL ⟶ H+ + NADH + atRA
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride catabolism:
H2O + atR-PALM ⟶ PALM(-) + atROL
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary lipid:
CHEST + H2O ⟶ CHOL + LCFAs
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
ESR1:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Digestion and absorption:
H2O ⟶ Mal + maltotriose
- Digestion:
H2O ⟶ Mal + maltotriose
- Digestion of dietary lipid:
H2O + RPALM ⟶ PALM + atROL
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride catabolism:
H2O + atR-PALM ⟶ PALM(-) + atROL
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride catabolism:
H2O + atR-PALM ⟶ PALM(-) + atROL
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ A0A310SUH5 + ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q5U4Z0
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Digestion of dietary lipid:
CHEST + H2O ⟶ CHOL + LCFAs
- Signaling by Retinoic Acid:
H+ + TPNH + atRAL ⟶ TPN + atROL
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
HXOL + PALM-CoA ⟶ CoA-SH + PALM-PALM
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
HXOL + PALM-CoA ⟶ CoA-SH + PALM-PALM
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Sensory Perception:
H+ + TPNH + atRAL ⟶ TPN + atROL
- The canonical retinoid cycle in rods (twilight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
BioCyc(10)
- retinol biosynthesis:
all-trans-retinol + NADP+ ⟶ all-trans-retinal + H+ + NADPH
- retinoate biosynthesis I:
all-trans-retinol + a cellular-retinol-binding protein ⟶ an all-trans retinol-[cellular-retinol-binding-protein]
- retinoate biosynthesis II:
all-trans-retinol + a cellular-retinol-binding protein ⟶ an all-trans retinol-[cellular-retinol-binding-protein]
- the visual cycle I (vertebrates):
all-trans-retinol + NADP+ ⟶ all-trans-retinal + H+ + NADPH
- retinoate biosynthesis II:
all-trans-retinol + a cellular-retinol-binding protein ⟶ an all-trans retinol-[cellular-retinol-binding-protein]
- retinol biosynthesis:
H2O + a dietary all-trans-retinyl ester ⟶ all-trans-retinol + H+ + a fatty acid
- retinoate biosynthesis I:
all-trans-retinol + a cellular-retinol-binding protein ⟶ an all-trans retinol-[cellular-retinol-binding-protein]
- the visual cycle I (vertebrates):
all-trans-retinol + NADP+ ⟶ all-trans-retinal + H+ + NADPH
- retinol biosynthesis:
all-trans-retinol + NADP+ ⟶ all-trans-retinal + H+ + NADPH
- retinoate biosynthesis I:
all-trans-retinol + a cellular-retinol-binding protein ⟶ an all-trans retinol-[cellular-retinol-binding-protein]
WikiPathways(4)
- Vitamins A and D - action mechanisms:
7-Dehydrocholesterol ⟶ Previtamin D3
- Vitamin A and carotenoid metabolism:
Betacarotene ⟶ all-trans Retinal
- Retinol metabolism:
beta-Carotene ⟶ all-trans-retinal
- Vitamin A1 and A5/X pathways:
ATROL ⟶ ATRA
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(9)
- Retinol Metabolism:
11-cis-Retinaldehyde + NADP ⟶ NADPH + Retinal
- Vitamin A Deficiency:
11-cis-Retinaldehyde + NADP ⟶ NADPH + Retinal
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Vitamin A Deficiency:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Vitamin A Deficiency:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
PharmGKB(0)
13 个相关的物种来源信息
- 165353 - Angelica sinensis:
- 85549 - Artemia salina: 10.1021/JF60200A008
- 3078 - Auxenochlorella pyrenoidosa: 10.1016/J.LFS.2004.10.055
- 3077 - Chlorella vulgaris: 10.1016/J.LFS.2004.10.055
- 193516 - Hippophae rhamnoides: 10.1248/CPB.53.1021
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 6703 - Pandalus borealis: 10.1111/J.1748-1716.1957.TB01509.X
- 4726 - Pandanus tectorius: 10.1079/PHN2005892
- 3469 - Papaver somniferum: 10.1042/BST019436S
- 260142 - Syzygium cumini: 10.1016/S2221-1691(12)60050-1
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sana Yakoubi. Enhancing plant-based cheese formulation through molecular docking and dynamic simulation of tocopherol and retinol complexes with zein, soy and almond proteins via SVM-machine learning integration.
Food chemistry.
2024 Sep; 452(?):139520. doi:
10.1016/j.foodchem.2024.139520
. [PMID: 38723573] - Liang Qi, Bo-Wen Duan, Hui Wang, Yan-Jun Liu, Han Han, Meng-Meng Han, Lei Xing, Hu-Lin Jiang, Stephen J Pandol, Ling Li. Reactive Oxygen Species-Responsive Nanoparticles Toward Extracellular Matrix Normalization for Pancreatic Fibrosis Regression.
Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2024 May; 11(19):e2401254. doi:
10.1002/advs.202401254
. [PMID: 38483920] - Weiwen Chai, Meng-Hua Tao. Overall and Sex-Specific Associations of Serum Lipid-Soluble Micronutrients with Metabolic Dysfunction-Associated Steatotic Liver Disease among Adults in the United States.
Nutrients.
2024 Apr; 16(8):. doi:
10.3390/nu16081242
. [PMID: 38674932] - Peng Shu, Jiaxin Mo, Zunjiang Li, Mingjie Li, Wei Zhu, Zhiyun Du. Ferulic acid in synergy with retinol alleviates oxidative injury of HaCaT cells during UVB-induced photoaging.
Aging.
2024 Apr; 16(8):7153-7173. doi:
10.18632/aging.205749
. [PMID: 38643459] - Xuefeng Ren, Mengsu Liu, Mingyu Yue, Weizhu Zeng, Shenghu Zhou, Jingwen Zhou, Sha Xu. Metabolic Pathway Coupled with Fermentation Process Optimization for High-Level Production of Retinol in Yarrowia lipolytica.
Journal of agricultural and food chemistry.
2024 Apr; 72(15):8664-8673. doi:
10.1021/acs.jafc.4c00377
. [PMID: 38564669] - Lindsay C Czuba, Nina Isoherranen. LX-2 Stellate Cells Are a Model System for Investigating the Regulation of Hepatic Vitamin A Metabolism and Respond to Tumor Necrosis Factor α and Interleukin 1β.
Drug metabolism and disposition: the biological fate of chemicals.
2024 Apr; 52(5):442-454. doi:
10.1124/dmd.124.001679
. [PMID: 38485281] - Vasiliki Adamopoulou, Argyro Bekatorou, Vasilios Brinias, Panagiota Michalopoulou, Charalampos Dimopoulos, John Zafeiropoulos, Theano Petsi, Athanasios A Koutinas. Optimization of bacterial cellulose production by Komagataeibacter sucrofermentans in synthetic media and agrifood side streams supplemented with organic acids and vitamins.
Bioresource technology.
2024 Apr; 398(?):130511. doi:
10.1016/j.biortech.2024.130511
. [PMID: 38437963] - Miao Zhou, Pei-Chen Duan, Dan-Lin Li, Jing-Hong Liang, Gang Liang, Hua Xu, Chen-Wei Pan. Efficacy comparison of 21 interventions to prevent retinopathy of prematurity: a Bayesian network meta-analysis of randomized controlled trials.
Eye (London, England).
2024 Apr; 38(5):877-884. doi:
10.1038/s41433-023-02796-2
. [PMID: 37853107] - Eline Van Wayenbergh, Niels A Langenaeken, Jolien Verheijen, Imogen Foubert, Christophe M Courtin. Mechanistic understanding of the stabilisation of vitamin A in oil by wheat bran: The interplay between vitamin A degradation, lipid oxidation, and lipase activity.
Food chemistry.
2024 Mar; 436(?):137785. doi:
10.1016/j.foodchem.2023.137785
. [PMID: 37866098] - Tanvi Patel, Kimberly McBennett, Senthilkumar Sankararaman, Teresa Schindler, Krithika Sundaram, Nori Mercuri Minich, Sindhoosha Malay, Katherine Kutney. Impact of elexacaftor/tezacaftor/ivacaftor on lipid and fat-soluble vitamin levels and association with body mass index.
Pediatric pulmonology.
2024 Mar; 59(3):734-742. doi:
10.1002/ppul.26823
. [PMID: 38179878] - Denny Pellowski, Paula Kusch, Thorsten Henning, Bastian Kochlik, Maria Maares, Amy Schmiedeskamp, Gabriele Pohl, Monika Schreiner, Susanne Baldermann, Hajo Haase, Tanja Schwerdtle, Tilman Grune, Daniela Weber. Postprandial Micronutrient Variability and Bioavailability: An Interventional Meal Study in Young vs. Old Participants.
Nutrients.
2024 Feb; 16(5):. doi:
10.3390/nu16050625
. [PMID: 38474753] - William R Reay, Dylan J Kiltschewskij, Maria A Di Biase, Zachary F Gerring, Kousik Kundu, Praveen Surendran, Laura A Greco, Erin D Clarke, Clare E Collins, Alison M Mondul, Demetrius Albanes, Murray J Cairns. Genetic influences on circulating retinol and its relationship to human health.
Nature communications.
2024 Feb; 15(1):1490. doi:
10.1038/s41467-024-45779-x
. [PMID: 38374065] - Shivani Kathi, Haydee Laza, Sukhbir Singh, Leslie Thompson, Wei Li, Catherine Simpson. A decade of improving nutritional quality of horticultural crops agronomically (2012-2022): A systematic literature review.
The Science of the total environment.
2024 Feb; 911(?):168665. doi:
10.1016/j.scitotenv.2023.168665
. [PMID: 37992822] - Ivan Pinos, Johana Coronel, Asma'a Albakri, Amparo Blanco, Patrick McQueen, Donald Molina, JaeYoung Sim, Edward A Fisher, Jaume Amengual. β-Carotene accelerates the resolution of atherosclerosis in mice.
eLife.
2024 Feb; 12(?):. doi:
10.7554/elife.87430
. [PMID: 38319073] - Joanna Banaś, Marian Banaś. Combined Application of Fluorescence Spectroscopy and Principal Component Analysis in Characterisation of Selected Herbhoneys.
Molecules (Basel, Switzerland).
2024 Feb; 29(4):. doi:
10.3390/molecules29040749
. [PMID: 38398501] - Li Sun, Meifang Zheng, Yanhang Gao, David R Brigstock, Runping Gao. Retinoic acid signaling pathway in pancreatic stellate cells: Insight into the anti-fibrotic effect and mechanism.
European journal of pharmacology.
2024 Feb; ?(?):176374. doi:
10.1016/j.ejphar.2024.176374
. [PMID: 38309676] - Morteza Haramshahi, Thoraya Mohamed Elhassan A-Elgadir, Hamid Mahmood Abdullah Daabo, Yahya Altinkaynak, Ahmed Hjazi, Archana Saxena, Mazin A A Najm, Abbas F Almulla, Ali Alsaalamy, Mohammad Amin Kashani. Nutrient patterns and risk of diabetes mellitus type 2: a case-control study.
BMC endocrine disorders.
2024 Jan; 24(1):10. doi:
10.1186/s12902-024-01540-5
. [PMID: 38229053] - Suting Xiao, Yizhen Yan, Mingyin Shao, Xuan Zhou, Zhenyu Niu, Yanli Wu, Yanwu Li, Yong Cui, Yu Long, Qun Du. Kuijieling decoction regulates the Treg/Th17 cell balance in ulcerative colitis through the RA/RARα signaling pathway.
Journal of ethnopharmacology.
2024 Jan; 318(Pt A):116909. doi:
10.1016/j.jep.2023.116909
. [PMID: 37451490] - Menglong Zou, Qiaoli Liang, Wei Zhang, Junyao Liang, Ying Zhu, Yin Xu. Diet-derived circulating antioxidants and risk of inflammatory bowel disease: a Mendelian randomization study and meta-analysis.
Frontiers in immunology.
2024; 15(?):1334395. doi:
10.3389/fimmu.2024.1334395
. [PMID: 38449867] - Roseani da Silva Andrade, Fabíola Isabel Suano de Souza, Carolina Sanchez Aranda, Marcia Carvalho Mallozi, Ariel Cordeiro Ferreira, Talita Lemos Neves Barreto, Fernando Luiz Affonso Fonseca, Roseli Oselka Saccardo Sarni, Dirceu Solé. Antioxidant defense of children and adolescents with atopic dermatitis: Association with disease severity.
Allergologia et immunopathologia.
2024; 52(1):65-70. doi:
10.15586/aei.v52i1.933
. [PMID: 38186195] - Peng Li, Guoyao Wu. Characteristics of Nutrition and Metabolism in Dogs and Cats.
Advances in experimental medicine and biology.
2024; 1446(?):55-98. doi:
10.1007/978-3-031-54192-6_4
. [PMID: 38625525] - Chen Li, Marie F Kiefer, Sarah Dittrich, Roberto E Flores, Yueming Meng, Na Yang, Sascha Wulff, Sabrina Gohlke, Manuela Sommerfeld, Sylvia J Wowro, Konstantin M Petricek, Dominic Dürbeck, Leonard Spranger, Knut Mai, Holger Scholz, Tim J Schulz, Michael Schupp. Adipose retinol saturase is regulated by β-adrenergic signaling and its deletion impairs lipolysis in adipocytes and acute cold tolerance in mice.
Molecular metabolism.
2024 Jan; 79(?):101855. doi:
10.1016/j.molmet.2023.101855
. [PMID: 38128827] - Qing Sun, Jie Guo. Associations between serum retinol and all-cause mortality among adults with prediabetes and diabetes: A cohort study.
PloS one.
2024; 19(2):e0297552. doi:
10.1371/journal.pone.0297552
. [PMID: 38306354] - Can Liu, Shi Hui Zhou, Hong Su, Wen Qin Yang, Jiao Lu. An Artificial Neural Network Model Combined with Dietary Retinol Intake from Different Sources to Predict the Risk of Nonalcoholic Fatty Liver Disease.
Biomedical and environmental sciences : BES.
2023 Dec; 36(12):1123-1135. doi:
10.3967/bes2023.120
. [PMID: 38199224] - Camelia Munteanu, Betty Schwartz. B Vitamins, Glucoronolactone and the Immune System: Bioavailability, Doses and Efficiency.
Nutrients.
2023 Dec; 16(1):. doi:
10.3390/nu16010024
. [PMID: 38201854] - Éva Szabó, Ildikó Csölle, Regina Felső, Daniela Kuellenberg de Gaudry, Patrick Nyamemba Nyakundi, Kazahyet Ibrahim, Maria-Inti Metzendorf, Tamás Ferenci, Szimonetta Lohner. Benefits and Harms of Edible Vegetable Oils and Fats Fortified with Vitamins A and D as a Public Health Intervention in the General Population: A Systematic Review of Interventions.
Nutrients.
2023 Dec; 15(24):. doi:
10.3390/nu15245135
. [PMID: 38140394] - Lucía Morote, Ángela Rubio-Moraga, Alberto José López Jiménez, Verónica Aragonés, Gianfranco Diretto, Olivia Costantina Demurtas, Sarah Frusciante, Oussama Ahrazem, José-Antonio Daròs, Lourdes Gómez-Gómez. Verbascum species as a new source of saffron apocarotenoids and molecular tools for the biotechnological production of crocins and picrocrocin.
The Plant journal : for cell and molecular biology.
2023 Dec; ?(?):. doi:
10.1111/tpj.16589
. [PMID: 38100533] - Antonio Catalano, Khalil Mitri, Paola Perugini, Giorgia Condrò, Caroline Sands. In vitro and in vivo efficacy of a cosmetic product formulated with new lipid particles for the treatment of aged skin.
Journal of cosmetic dermatology.
2023 Dec; 22(12):3329-3339. doi:
10.1111/jocd.16016
. [PMID: 37803998] - Jiameng Liu, Luqi Qin, Jiahuan Zheng, Litao Tong, Wei Lu, Cong Lu, Jing Sun, Bei Fan, Fengzhong Wang. Research Progress on the Relationship between Vitamins and Diabetes: Systematic Review.
International journal of molecular sciences.
2023 Nov; 24(22):. doi:
10.3390/ijms242216371
. [PMID: 38003557] - Karina A Pedroza-García, Gabriela Careaga-Cárdenas, Carmen Díaz-Galindo, J Luis Quintanar, Irma Hernández-Jasso, Ricardo E Ramírez-Orozco. Bioactive role of vitamins as a key modulator of oxidative stress, cellular damage and comorbidities associated with spinal cord injury (SCI).
Nutritional neuroscience.
2023 Nov; 26(11):1120-1137. doi:
10.1080/1028415x.2022.2133842
. [PMID: 36537581] - María Ciudad-Mulero, Laura Domínguez, Patricia Morales, Virginia Fernández-Ruiz, Montaña Cámara. A Review of Foods of Plant Origin as Sources of Vitamins with Proven Activity in Oxidative Stress Prevention according to EFSA Scientific Evidence.
Molecules (Basel, Switzerland).
2023 Oct; 28(21):. doi:
10.3390/molecules28217269
. [PMID: 37959689] - Paul Sondo, Bérenger Kaboré, Toussaint Rouamba, Eulalie Compaoré, Yssimini Nadège Guillène Tibiri, Hyacinthe Abd-El Latif Faïçal Kaboré, Karim Derra, Marc Christian Tahita, Hamidou Ilboudo, Gauthier Tougri, Ismaïla Bouda, Tikanou Dakyo, Hyacinthe Kafando, Florence Ouédraogo, Eli Rouamba, So-Vii Franck Hien, Adama Kazienga, Cheick Saïd Compaoré, Estelle Bambara, Macaire Nana, Prabin Dahal, Franck Garanet, William Kaboré, Thierry Léfèvre, Philippe Guerin, Halidou Tinto. Enhanced effect of seasonal malaria chemoprevention when coupled with nutrients supplementation for preventing malaria in children under 5 years old in Burkina Faso: a randomized open label trial.
Malaria journal.
2023 Oct; 22(1):315. doi:
10.1186/s12936-023-04745-6
. [PMID: 37853408] - Eline Van Wayenbergh, Lisa Coddens, Niels A Langenaeken, Imogen Foubert, Christophe M Courtin. Stabilization of Vitamin A by Cereal Bran: The Importance of the Balance between Antioxidants, Pro-oxidants, and Oxidation-Sensitive Components.
Journal of agricultural and food chemistry.
2023 Oct; 71(41):15296-15304. doi:
10.1021/acs.jafc.3c04585
. [PMID: 37787608] - Ying Wang, Siqi Li, Ze Zhou, Lifen Sun, Jing Sun, Chuanpu Shen, Ranran Gao, Jingyuan Song, Xiangdong Pu. The Functional Characteristics and Soluble Expression of Saffron CsCCD2.
International journal of molecular sciences.
2023 Oct; 24(20):. doi:
10.3390/ijms242015090
. [PMID: 37894770] - Yin Yixiao, Tang Hao, Fang Yi, Liu Wei, Wang Jun, H U Yiyang, Peng Jinghua. Hepatic transcriptome delineates the therapeutic effects of Sanren Tang on high-fat diet-induced non-alcoholic fatty liver disease.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2023 Oct; 43(6):1092-1102. doi:
10.19852/j.cnki.jtcm.2023.06.004
. [PMID: 37946471] - Jacqueline Plau, Christopher E Morgan, Yuriy Fedorov, Surajit Banerjee, Drew J Adams, William S Blaner, Edward W Yu, Marcin Golczak. Discovery of Nonretinoid Inhibitors of CRBP1: Structural and Dynamic Insights for Ligand-Binding Mechanisms.
ACS chemical biology.
2023 Sep; ?(?):. doi:
10.1021/acschembio.3c00402
. [PMID: 37713257] - Jakub Maciej Surmacki, Halina Abramczyk. Confocal Raman imaging reveals the impact of retinoids on human breast cancer via monitoring the redox status of cytochrome c.
Scientific reports.
2023 Sep; 13(1):15049. doi:
10.1038/s41598-023-42301-z
. [PMID: 37700001] - Nancy E Moran, Joshua Wade, Rachel Stroh, Barbara Stoll, Gregory Guthrie, Amy B Hair, Douglas G Burrin. Preterm Pigs Fed Donor Human Milk Have Greater Liver Beta-carotene Concentrations than Pigs Fed Infant Formula.
The Journal of nutrition.
2023 Sep; ?(?):. doi:
10.1016/j.tjnut.2023.08.026
. [PMID: 37666415] - Jiayun Li, Yuanqing Wei, Siying Huang, Shenghan Yan, Binyuan Zhao, Xinzhi Wang, Jipeng Sun, Tianbao Chen, Yueyang Lai, Rui Liu. Hyperglycemia effect of Pinctada martensii hydrolysate in diabetic db/db mice.
Journal of ethnopharmacology.
2023 Sep; 319(Pt 1):117104. doi:
10.1016/j.jep.2023.117104
. [PMID: 37659759] - Junliang Chen, Ming Zeng, Xu-Fang Liang, Di Peng, Ruipeng Xie, Dongliang Wu. Dietary supplementation of VA enhances growth, feed utilization, glucose and lipid metabolism, appetite, and antioxidant capacity of Chinese perch (Siniperca chuatsi).
Fish physiology and biochemistry.
2023 Aug; ?(?):. doi:
10.1007/s10695-023-01221-5
. [PMID: 37594622] - Alexandru Vasile Rusu, Monica Trif, João Miguel Rocha. Microbial Secondary Metabolites via Fermentation Approaches for Dietary Supplementation Formulations.
Molecules (Basel, Switzerland).
2023 Aug; 28(16):. doi:
10.3390/molecules28166020
. [PMID: 37630272] - Marta Melis, Steven E Trasino, Xiao-Han Tang, Andrew Rappa, Tuo Zhang, Lihui Qin, Lorraine J Gudas. Retinoic Acid Receptor β Loss in Hepatocytes Increases Steatosis and Elevates the Integrated Stress Response in Alcohol-Associated Liver Disease.
International journal of molecular sciences.
2023 Jul; 24(15):. doi:
10.3390/ijms241512035
. [PMID: 37569418] - Ashley van der Spek, Isobel D Stewart, Brigitte Kühnel, Maik Pietzner, Tahani Alshehri, Friederike Gauß, Pirro G Hysi, Siamak MahmoudianDehkordi, Almut Heinken, Annemarie I Luik, Karl-Heinz Ladwig, Gabi Kastenmüller, Cristina Menni, Johannes Hertel, M Arfan Ikram, Renée de Mutsert, Karsten Suhre, Christian Gieger, Konstantin Strauch, Henry Völzke, Thomas Meitinger, Massimo Mangino, Antonia Flaquer, Melanie Waldenberger, Annette Peters, Ines Thiele, Rima Kaddurah-Daouk, Boadie W Dunlop, Frits R Rosendaal, Nicholas J Wareham, Tim D Spector, Sonja Kunze, Hans Jörgen Grabe, Dennis O Mook-Kanamori, Claudia Langenberg, Cornelia M van Duijn, Najaf Amin. Circulating metabolites modulated by diet are associated with depression.
Molecular psychiatry.
2023 Jul; ?(?):. doi:
10.1038/s41380-023-02180-2
. [PMID: 37495887] - Si Qin, Xuening Du, Kaili Wang, Da Wang, Jiani Zheng, Haiyan Xu, Xiuyan Wei, Yue Yuan. Vitamin A-modified ZIF-8 lipid nanoparticles for the therapy of liver fibrosis.
International journal of pharmaceutics.
2023 Jul; 642(?):123167. doi:
10.1016/j.ijpharm.2023.123167
. [PMID: 37356511] - Eline Van Wayenbergh, Niels A Langenaeken, Nore Struyf, Peter Goos, Imogen Foubert, Christophe M Courtin. Stabilisation of vitamin A by wheat bran is affected by wheat bran antioxidants, bound lipids and endogenous lipase activity.
Food research international (Ottawa, Ont.).
2023 07; 169(?):112911. doi:
10.1016/j.foodres.2023.112911
. [PMID: 37254347] - Zhaofang Li, Yajing Li, Yijing Hou, Yahui Fan, Hong Jiang, Baoyu Li, Hailu Zhu, Yaning Liu, Lei Zhang, Jie Zhang, Min Wu, Tianyou Ma, Tong Zhao, Le Ma. Association of Plasma Vitamins and Carotenoids, DNA Methylation of LCAT, and Risk of Age-Related Macular Degeneration.
Nutrients.
2023 Jun; 15(13):. doi:
10.3390/nu15132985
. [PMID: 37447314] - Jingjing Tian, Yihui Du, Binbin Wang, Mengmeng Ji, Hongyan Li, Yun Xia, Kai Zhang, Zhifei Li, Wenping Xie, Wangbao Gong, Ermeng Yu, Guangjun Wang, Jun Xie. Hif1α/Dhrs3a Pathway Participates in Lipid Droplet Accumulation via Retinol and Ppar-γ in Fish Hepatocytes.
International journal of molecular sciences.
2023 Jun; 24(12):. doi:
10.3390/ijms241210236
. [PMID: 37373386] - Aleksha Panwar, Rinki Kumar, Renu Goel, Suruchi Aggarwal, Shweta Saraswat, Priyanka Bansal, Zaozianlungliu Gonmei, Gurudyal Toteja, Amit Yadav, Rakesh Lodha, Nirpendra Singh, Guruprasad Medigeshi. Severe dengue in children associates with dysregulation of lipid homeostasis, complement cascade and retinol transport.
Clinical and translational medicine.
2023 06; 13(6):e1271. doi:
10.1002/ctm2.1271
. [PMID: 37254651] - Md Jakaria, Abdel A Belaidi, Ashley I Bush, Scott Ayton. Vitamin A metabolites inhibit ferroptosis.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 May; 164(?):114930. doi:
10.1016/j.biopha.2023.114930
. [PMID: 37236031] - Clement G Yedjou, Jameka Grigsby, Ariane Mbemi, Daryllynn Nelson, Bryan Mildort, Lekan Latinwo, Paul B Tchounwou. The Management of Diabetes Mellitus Using Medicinal Plants and Vitamins.
International journal of molecular sciences.
2023 May; 24(10):. doi:
10.3390/ijms24109085
. [PMID: 37240430] - Guoshu Bi, Jiaqi Liang, Guangyao Shan, Yunyi Bian, Zhencong Chen, Yiwei Huang, Tao Lu, Ming Li, Valeria Besskaya, Mengnan Zhao, Hong Fan, Qun Wang, Boyi Gan, Cheng Zhan. Retinol saturase mediates retinoid metabolism to impair a ferroptosis defense system in cancer cells.
Cancer research.
2023 May; ?(?):. doi:
10.1158/0008-5472.can-22-3977
. [PMID: 37184371] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Khushnuma Saleem, Tariq Aziz, Ayaz Ali Khan, Ali Muhammad, Shafiq Ur Rahman, Metab Alharbi, Abdulrahman Alshammari, Abdullah F Alasmari. Evaluating the in-vivo effects of olive oil, soya bean oil, and vitamins against oxidized ghee toxicity.
Acta biochimica Polonica.
2023 May; 70(2):305-312. doi:
10.18388/abp.2020_6549
. [PMID: 37163731] - Clara Cruet-Burgos, Davina H Rhodes. Unraveling transcriptomics of sorghum grain carotenoids: a step forward for biofortification.
BMC genomics.
2023 May; 24(1):233. doi:
10.1186/s12864-023-09323-3
. [PMID: 37138226] - Theano Karakosta, Yuchao Wan, Dorothy Truong. Establishing preanalytical stability of vitamin A and vitamin E.
Clinical biochemistry.
2023 May; 115(?):144-148. doi:
10.1016/j.clinbiochem.2022.12.013
. [PMID: 36574897] - Priscilla Olayide, Erik Alexandersson, Oren Tzfadia, Marit Lenman, Andreas Gisel, Livia Stavolone. Transcriptome and metabolome profiling identify factors potentially involved in pro-vitamin A accumulation in cassava landraces.
Plant physiology and biochemistry : PPB.
2023 Apr; 199(?):107713. doi:
10.1016/j.plaphy.2023.107713
. [PMID: 37126903] - Nicolas M Doll. Stop vitamins: Low levels of ascorbic acid regulate the transition from cell proliferation to differentiation in Arabidopsis tapetum.
The Plant cell.
2023 04; 35(5):1300-1301. doi:
10.1093/plcell/koad047
. [PMID: 36797218] - Clara Cruet-Burgos, Geoffrey P Morris, Davina H Rhodes. Characterization of grain carotenoids in global sorghum germplasm to guide genomics-assisted breeding strategies.
BMC plant biology.
2023 Mar; 23(1):165. doi:
10.1186/s12870-023-04176-0
. [PMID: 36977987] - Oladapo F Fagbohun, Caroline R Gillies, Kieran P J Murphy, H P Vasantha Rupasinghe. Role of Antioxidant Vitamins and Other Micronutrients on Regulations of Specific Genes and Signaling Pathways in the Prevention and Treatment of Cancer.
International journal of molecular sciences.
2023 Mar; 24(7):. doi:
10.3390/ijms24076092
. [PMID: 37047063] - Cheng-Yu Tsai, Toshie Saito, Mayur Sarangdhar, Maisam Abu-El-Haija, Li Wen, Bomi Lee, Mang Yu, Den A Lipata, Murli Manohar, Monique T Barakat, Kévin Contrepois, Thai Hoa Tran, Yves Theoret, Na Bo, Ying Ding, Kristen Stevenson, Elena J Ladas, Lewis B Silverman, Loredana Quadro, Tracy G Anthony, Anil G Jegga, Sohail Z Husain. A systems approach points to a therapeutic role for retinoids in asparaginase-associated pancreatitis.
Science translational medicine.
2023 Mar; 15(687):eabn2110. doi:
10.1126/scitranslmed.abn2110
. [PMID: 36921036] - Caroline Bertoncini-Silva, Jean-Marc Zingg, Priscila Giacomo Fassini, Vivian Marques Miguel Suen. Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation.
BioFactors (Oxford, England).
2023 Mar; 49(2):297-321. doi:
10.1002/biof.1921
. [PMID: 36468445] - Alireza Ekhlasian, Ebrahim Eftekhar, Sajedeh Daei, Roghayeh Abbasalipourkabir, Alireza Nourian, Nasrin Ziamajidi. The antioxidant and anti-apoptotic properties of vitamins A, C and E in heart tissue of rats exposed to zinc oxide nanoparticles.
Molecular biology reports.
2023 Mar; 50(3):2357-2365. doi:
10.1007/s11033-022-08103-8
. [PMID: 36580195] - M A Darenskaya, L V Belenkaya, A V Atalyan, I N Danusevich, L M Lazareva, Ya G Nadelyaeva, L I Kolesnikova. Oxidative Stress Reactions in Women of Reproductive Age with Metabolic Syndrome.
Bulletin of experimental biology and medicine.
2023 Mar; 174(5):601-604. doi:
10.1007/s10517-023-05754-w
. [PMID: 37040040] - Ulrich Hammerling, Youn-Kyung Kim, Loredana Quadro. Quantum chemistry rules retinoid biology.
Communications biology.
2023 02; 6(1):227. doi:
10.1038/s42003-023-04602-x
. [PMID: 36854887] - Miwa Hara, Wenjing Wu, Volha V Malechka, Yusuke Takahashi, Jian-Xing Ma, Gennadiy Moiseyev. PNPLA2 mobilizes retinyl esters from retinosomes and promotes the generation of 11-cis-retinal in the visual cycle.
Cell reports.
2023 02; 42(2):112091. doi:
10.1016/j.celrep.2023.112091
. [PMID: 36763501] - Saša Đurović, Darko Micić, Saša Šorgić, Saša Popov, Uroš Gašić, Tomislav Tosti, Marija Kostić, Yulia A Smyatskaya, Stevan Blagojević, Zoran Zeković. Recovery of Polyphenolic Compounds and Vitamins from the Stinging Nettle Leaves: Thermal and Behavior and Biological Activity of Obtained Extracts.
Molecules (Basel, Switzerland).
2023 Feb; 28(5):. doi:
10.3390/molecules28052278
. [PMID: 36903524] - Eshani Karmakar, Nabanita Das, Bidisha Mukherjee, Prosenjit Das, Satinath Mukhopadhyay, Sib Sankar Roy. Lipid induced alteration in retinoic acid signaling leads to mitochondrial dysfunction in HepG2 and Huh7 cells.
Biochemistry and cell biology = Biochimie et biologie cellulaire.
2023 Feb; ?(?):. doi:
10.1139/bcb-2022-0266
. [PMID: 36787544] - Cristiane Hermes Sales, Mariane de Mello Fontanelli, Marcelo Macedo Rogero, Flávia Mori Sarti, Regina Mara Fisberg. Dietary inadequacies overestimate the blood deficiencies of magnesium, zinc, and vitamins A, C, E, and D among residents of Sao Paulo.
Clinical nutrition ESPEN.
2023 02; 53(?):196-205. doi:
10.1016/j.clnesp.2022.12.015
. [PMID: 36657914] - Mohammad Irfan, Pankaj Kumar, Mohammad Feza Ahmad, Mohammed Wasim Siddiqui. Biotechnological interventions in reducing losses of tropical fruits and vegetables.
Current opinion in biotechnology.
2023 02; 79(?):102850. doi:
10.1016/j.copbio.2022.102850
. [PMID: 36481342] - Sachin Kumar, Ron M DePauw, Sudhir Kumar, Jitendra Kumar, Sourabh Kumar, Madhav P Pandey. Breeding and adoption of biofortified crops and their nutritional impact on human health.
Annals of the New York Academy of Sciences.
2023 02; 1520(1):5-19. doi:
10.1111/nyas.14936
. [PMID: 36479674] - Torsten Bohn, Angel R de Lera, Jean-Francois Landrier, Harald Carlsen, Daniel Merk, Tilman Todt, Jenny Renaut, Ralph Rühl. State-of-the-art methodological investigation of carotenoid activity and metabolism - from organic synthesis via metabolism to biological activity - exemplified by a novel retinoid signalling pathway.
Food & function.
2023 Jan; 14(2):621-638. doi:
10.1039/d2fo02816f
. [PMID: 36562448] - Luca Morelli, Manuel Rodriguez-Concepcion. Open avenues for carotenoid biofortification of plant tissues.
Plant communications.
2023 01; 4(1):100466. doi:
10.1016/j.xplc.2022.100466
. [PMID: 36303429] - Dan Huang, Xia Qian, Jinqing Chen, Yating Peng, Yunxia Zhu. Factors and Molecular Mechanisms of Vitamin A and Childhood Obesity Relationship: A Review.
Journal of nutritional science and vitaminology.
2023; 69(3):157-163. doi:
10.3177/jnsv.69.157
. [PMID: 37394420] - María Sánchez-Campillo, Antonio Gázquez, Ana Serrano-Munuera, Marino B Arnao, Francisco Avilés-Plaza, Azahara M Garcia-Serna, José A Noguera-Velasco, Ana Martínez-López de Castro, Carmen Martínez-Graciá, Clara Suárez-Martínez, Marina Santaella-Pascual, Jesús Vioque, Carmen Montoya-Hernández, Carmen Ballesteros-Meseguer, Marisa Sánchez-Ferrer, Virginia Perez-Fernandez, Eva Morales, Luis García-Marcos, Elvira Larqué. Serum Vitamins A and E at Mid-Pregnancy and Their Relationships with Both Maternal and Cord Blood Antioxidant Status and Perinatal Conditions: The NELA Cohort.
Annals of nutrition & metabolism.
2023; 79(3):313-325. doi:
10.1159/000531239
. [PMID: 37271133] - Wei-Li Kong, Xin-Rong Lu, Lin-Lin Hou, Xiu-Fa Sun, Gui-Qin Sun, Li Chen. [Vitamins and Immune System Health].
Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition.
2023 Jan; 54(1):7-13. doi:
10.12182/20230160107
. [PMID: 36647636] - Guicun Yang, Nianrong Wang, Hao Liu, Lina Si, Yan Zhao. The association between umbilical cord blood fat-soluble vitamin concentrations and infant birth weight.
Frontiers in endocrinology.
2023; 14(?):1048615. doi:
10.3389/fendo.2023.1048615
. [PMID: 37810886] - Chunli Fan, Tingting Feng, Xingwei Wang, Shuqin Xia, Caleb John Swing. Liposomes for encapsulation of liposoluble vitamins (A, D, E and K): Comparation of loading ability, storage stability and bilayer dynamics.
Food research international (Ottawa, Ont.).
2023 01; 163(?):112264. doi:
10.1016/j.foodres.2022.112264
. [PMID: 36596175] - Kamila S Batista, Hassler Clementino Cavalcante, Jéssyca A DE Sousa Gomes, Laiane A DA Silva, Natália S DE Holanda Cavalcanti, Estefânia F Garcia, Francisca Nayara D D Menezes, Tamires A S DE Lima, Evandro L DE Souza, Marciane Magnani, Jailane DE Souza Aquino. Effects of supplementation of tropical fruit processing by-products on lipid profile, retinol levels and intestinal function in Wistar rats.
Anais da Academia Brasileira de Ciencias.
2023; 95(2):e20201684. doi:
10.1590/0001-3765202320201684
. [PMID: 37075372] - Muhammad Zahoor Khan, Bingjian Huang, Xiyan Kou, Yinghui Chen, Huili Liang, Qudrat Ullah, Ibrar Muhammad Khan, Adnan Khan, Wenqiong Chai, Changfa Wang. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis.
Frontiers in immunology.
2023; 14(?):1290044. doi:
10.3389/fimmu.2023.1290044
. [PMID: 38259482] - Solomon Akinyemi Makinde, Baffour Badu-Apraku, Omolayo Johnson Ariyo, Justina Boloebi Porbeni. Combining ability of extra-early maturing pro-vitamin A maize (Zea mays L.) inbred lines and performance of derived hybrids under Striga hermonthica infestation and low soil nitrogen.
PloS one.
2023; 18(2):e0280814. doi:
10.1371/journal.pone.0280814
. [PMID: 36827415] - Sergio Moreno-Nombela, Javier Romero-Parra, Francisco Javier Ruiz-Ojeda, Patricio Solis-Urra, Aiman Tariq Baig, Julio Plaza-Diaz. Genome Editing and Protein Energy Malnutrition.
Advances in experimental medicine and biology.
2023; 1396(?):215-232. doi:
10.1007/978-981-19-5642-3_15
. [PMID: 36454470] - Emmanuelle Reboul. Proteins involved in fat-soluble vitamin and carotenoid transport across the intestinal cells: New insights from the past decade.
Progress in lipid research.
2023 01; 89(?):101208. doi:
10.1016/j.plipres.2022.101208
. [PMID: 36493998] - C Laurent, H Caillat, C L Girard, A Ferlay, S Laverroux, J Jost, B Graulet. Impacts of production conditions on goat milk vitamin, carotenoid contents and colour indices.
Animal : an international journal of animal bioscience.
2023 Jan; 17(1):100683. doi:
10.1016/j.animal.2022.100683
. [PMID: 36610084] - Anna Steg, Maria Oczkowicz, Grzegorz Smołucha. Omics as a Tool to Help Determine the Effectiveness of Supplements.
Nutrients.
2022 Dec; 14(24):. doi:
10.3390/nu14245305
. [PMID: 36558464] - Huaying Song, Zhufeng Cong, Changlin Wang, Mengyuan He, Congying Liu, Peng Gao. Research progress on Walnut oil: Bioactive compounds, health benefits, extraction methods, and medicinal uses.
Journal of food biochemistry.
2022 12; 46(12):e14504. doi:
10.1111/jfbc.14504
. [PMID: 36369998] - Carolina Puyana, Neha Chandan, Maria Tsoukas. Applications of bakuchiol in dermatology: Systematic review of the literature.
Journal of cosmetic dermatology.
2022 Dec; 21(12):6636-6643. doi:
10.1111/jocd.15420
. [PMID: 36176207] - Nan Fang, Changpeng Zhang, Haoze Hu, Yanjie Li, Xiangyun Wang, Xueping Zhao, Jinhua Jiang. Histology and metabonomics reveal the toxic effects of kresoxim-methyl on adult zebrafish.
Chemosphere.
2022 Dec; 309(Pt 2):136739. doi:
10.1016/j.chemosphere.2022.136739
. [PMID: 36223820] - Birgitta Ryback, Miriam Bortfeld-Miller, Julia A Vorholt. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria.
The ISME journal.
2022 12; 16(12):2712-2724. doi:
10.1038/s41396-022-01303-x
. [PMID: 35987782] - Jiongyi Yan, Yinyi Feng, Xuewan Fang, Xiaojuan Cui, Xing Xia, Fang Li, Weisheng Luo, Jianqin Liang, Jianfang Feng, Kai Yu. Anti-liver fibrosis effects of the total flavonoids of litchi semen on CCl4-induced liver fibrosis in rats associated with the upregulation of retinol metabolism.
Pharmaceutical biology.
2022 Dec; 60(1):1264-1277. doi:
10.1080/13880209.2022.2086584
. [PMID: 35787093] - Johana Coronel, Jianshi Yu, Nageswara Pilli, Maureen A Kane, Jaume Amengual. The conversion of β-carotene to vitamin A in adipocytes drives the anti-obesogenic effects of β-carotene in mice.
Molecular metabolism.
2022 12; 66(?):101640. doi:
10.1016/j.molmet.2022.101640
. [PMID: 36400405] - Tommaso Cai, Luca Gallelli, Erika Cione, Paolo Verze, Alessandro Palmieri, Vincenzo Mirone, Gernot Bonkat, Florian M Wagenlehner, Truls E Bjerklund Johansen. The efficacy and tolerability of pollen extract in combination with hyaluronic acid and vitamins in the management of patients affected by chronic prostatitis/chronic pelvic pain syndrome: a 26 weeks, randomized, controlled, single-blinded, phase III study.
Minerva urology and nephrology.
2022 Dec; 74(6):780-788. doi:
10.23736/s2724-6051.21.04141-2
. [PMID: 33781014] - Xuanrui Zhang, Jiapeng Huang, Yingyu Zhou, Zhen Hong, Xiaoping Lin, Shanshan Chen, Yongnong Ye, Zheqing Zhang. Vitamin A Nutritional Status Is a Key Determinant of Bone Mass in Children.
Nutrients.
2022 Nov; 14(21):. doi:
10.3390/nu14214694
. [PMID: 36364956] - Ruoxi Li, Wenli Zhao, Hongwu Wang, Maeda Toshiyoshi, Ye Zhao, Huaien Bu. Vitamin A in children's pneumonia for a COVID-19 perspective: A systematic review and meta-analysis of 15 trials.
Medicine.
2022 Oct; 101(42):e31289. doi:
10.1097/md.0000000000031289
. [PMID: 36281101] - Tatum Lopes, Annalise E Zemlin, Jillian Hill, Zandile J Mchiza, Nasheeta Peer, Rajiv T Erasmus, Andre P Kengne. Consumption of Plant Foods and Its Association with Cardiovascular Disease Risk Profile in South Africans at High-Risk of Type 2 Diabetes Mellitus.
International journal of environmental research and public health.
2022 10; 19(20):. doi:
10.3390/ijerph192013264
. [PMID: 36293842] - Kui Fan, Chuan-Long Zhang, Bo-Hui Zhang, Meng-Qi Gao, Yun-Chuan Sun. Analysis of the correlation between Zeste enhancer homolog 2 (EZH2) mRNA expression and the prognosis of mesothelioma patients and immune infiltration.
Scientific reports.
2022 10; 12(1):16583. doi:
10.1038/s41598-022-21005-w
. [PMID: 36195655] - Xinyang Li, Yingyi Mao, Shuang Liu, Jin Wang, Xiang Li, Yanrong Zhao, David R Hill, Shuo Wang. Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China.
Nutrients.
2022 Oct; 14(19):. doi:
10.3390/nu14194131
. [PMID: 36235783] - Julia S Steinhoff, Carina Wagner, Ulrike Taschler, Sascha Wulff, Marie F Kiefer, Konstantin M Petricek, Sylvia J Wowro, Moritz Oster, Roberto E Flores, Na Yang, Chen Li, Yueming Meng, Manuela Sommerfeld, Stefan Weger, Andrea Henze, Jens Raila, Achim Lass, Michael Schupp. Acute retinol mobilization by retinol-binding protein 4 in mouse liver induces fibroblast growth factor 21 expression.
Journal of lipid research.
2022 10; 63(10):100268. doi:
10.1016/j.jlr.2022.100268
. [PMID: 36030930] - Wenwen Gu, Yuanyuan Zhao, Luze Yang, Meijin Du, Qing Li, Zhixing Ren, Xixi Li. A new perspective to improve the treatment of Lianhuaqingwen on COVID-19 and prevent the environmental health risk of medication.
Environmental science and pollution research international.
2022 Oct; 29(49):74208-74224. doi:
10.1007/s11356-022-21125-w
. [PMID: 35635661] - Zeineb Nhouchi, Romdhane Karoui. Texture staling of pound cakes assessed by front face fluorescence spectroscopy in tandem with chemometric analysis.
Journal of texture studies.
2022 10; 53(6):883-894. doi:
10.1111/jtxs.12699
. [PMID: 35611677]