Acetoacetate (BioDeep_00000004137)
Secondary id: BioDeep_00000405193, BioDeep_00000628932
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C4H6O3 (102.0317)
中文名称: 3-氧丁酸, 乙酰醋酸, 乙酰乙酸锂
谱图信息:
最多检出来源 Homo sapiens(blood) 22.35%
Last reviewed on 2024-09-14.
Cite this Page
Acetoacetate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/acetoacetate (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000004137). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(=O)CC(=O)O
InChI: InChI=1S/C4H6O3/c1-3(5)2-4(6)7/h2H2,1H3,(H,6,7)
描述信息
Acetoacetic acid (AcAc) is a weak organic acid that can be produced in the human liver under certain conditions of poor metabolism leading to excessive fatty acid breakdown (diabetes mellitus leading to diabetic ketoacidosis). It is then partially converted into acetone by decarboxylation and excreted either in urine or through respiration. Persistent mild hyperketonemia is a common finding in newborns. Ketone bodies serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing rats. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate and beta-hydroxybutyrate are preferred over glucose as substrates for synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first two weeks of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies are utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmityl phosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life (PMID: 3884391). The acid is also present in the metabolism of those undergoing starvation or prolonged physical exertion as part of gluconeogenesis. When ketone bodies are measured by way of urine concentration, acetoacetic acid, along with beta-hydroxybutyric acid or acetone, is what is detected.
同义名列表
28 个代谢物同义名
Acetoacetic acid, calcium salt; Acetoacetic acid, lithium salt; Acetoacetic acid, sodium salt; beta-ketobutyric acid; Lithum Acetoacetate; Sodium acetoacetate; 3-Ketobutanoic acid; 3-oxo-butanoic acid; b-Ketobutyric acid; 3-Oxobutanoic acid; 3-Ketobutyric acid; Β-ketobutyric acid; 3-Oxobutyric acid; beta-Ketobutyrate; acetoacetic acid; 3-oxo-Butanoate; 3-Ketobutanoate; 3-Ketobutyrate; b-Ketobutyrate; Β-ketobutyrate; 3-Oxobutanoate; Diacetic acid; 3-Oxobutyrate; Acetoacetate; Oxobutyrate; Diacetate; Acetoacetic acid; Acetoacetate
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:15344
- KEGG: C00164
- PubChem: 96
- HMDB: HMDB0000060
- Metlin: METLIN276
- DrugBank: DB01762
- ChEMBL: CHEMBL1230762
- Wikipedia: Acetoacetic_acid
- MetaCyc: 3-KETOBUTYRATE
- KNApSAcK: C00007458
- foodb: FDB112157
- chemspider: 94
- CAS: 541-50-4
- MoNA: PS008201
- PMhub: MS000015891
- ChEBI: CHEBI:13705
- PubChem: 3464
- LipidMAPS: LMFA01060003
- PDB-CCD: AAE
- 3DMET: B00047
- NIKKAJI: J4.508J
- RefMet: Acetoacetic acid
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-530
- KNApSAcK: 13705
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
507 个相关的代谢反应过程信息。
Reactome(78)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Ketone body metabolism:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Synthesis of Ketone Bodies:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Ketone body metabolism:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Synthesis of Ketone Bodies:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
HMG CoA ⟶ ACA + Ac-CoA
- Synthesis of Ketone Bodies:
HMG CoA ⟶ ACA + Ac-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Ketone body metabolism:
HMG CoA ⟶ ACA + Ac-CoA
- Synthesis of Ketone Bodies:
HMG CoA ⟶ ACA + Ac-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Ketone body catabolism:
ACA + SUCC-CoA ⟶ ACA-CoA + SUCCA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Ketone body catabolism:
ACA + SUCC-CoA ⟶ ACA-CoA + SUCCA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
BioCyc(0)
Plant Reactome(308)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
INOH(6)
- Butanoate metabolism ( Butanoate metabolism ):
Acetoacetic acid + NADH ⟶ (R)-3-Hydroxy-butanoic acid + NAD+
- Succinyl-CoA + Acetoacetic acid = Succinic acid + Acetoacetyl-CoA ( Valine,Leucine and Isoleucine degradation ):
Acetoacetic acid + Succinyl-CoA ⟶ Acetoacetyl-CoA + Succinic acid
- Valine,Leucine and Isoleucine degradation ( Valine,Leucine and Isoleucine degradation ):
2-Methyl-3-acetoacetyl-CoA + CoA ⟶ Acetyl-CoA + Propanoyl-CoA
- (S)-3-Hydroxy-3-methyl-glutaryl-CoA = Acetyl-CoA + Acetoacetic acid ( Valine,Leucine and Isoleucine degradation ):
(S)-3-Hydroxy-3-methyl-glutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- NAD+ + (R)-3-Hydroxy-butanoic acid = NADH + Acetoacetic acid ( Butanoate metabolism ):
Acetoacetic acid + NADH ⟶ (R)-3-Hydroxy-butanoic acid + NAD+
- Tyrosine metabolism ( Tyrosine metabolism ):
4-Hydroxy-phenyl-acetaldehyde + H2O + NAD+ ⟶ 4-Hydroxy-phenyl-acetic acid + NADH
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(113)
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Valine, Leucine, and Isoleucine Degradation:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- beta-Ketothiolase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Propionic Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Maple Syrup Urine Disease:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type III:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonic Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type IV:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isobutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Ketone Body Metabolism:
Acetoacetic acid + Succinyl-CoA ⟶ Acetoacetyl-CoA + Succinic acid
- Acetate Metabolism:
Acetylphosphate + Adenosine diphosphate ⟶ Acetic acid + Adenosine triphosphate
- Leucine Degradation:
3-Hydroxy-3-methylglutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Butanoate Metabolism:
3-Hydroxy-3-methylglutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Acetate Metabolism:
Acetylphosphate + Adenosine diphosphate ⟶ Acetic acid + Adenosine triphosphate
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylketonuria:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Disulfiram Action Pathway:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
4-Fumarylacetoacetic acid + Water ⟶ Acetoacetic acid + Fumaric acid + Hydrogen Ion
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylketonuria:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylketonuria:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
PharmGKB(0)
3 个相关的物种来源信息
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 418402 - Pseudostellaria heterophylla: 10.3390/MOLECULES21111538
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xiangyu Liu, Bo Zhang, Junsheng Tian, Yumei Han. Plasma metabolomics reveals the intervention mechanism of different types of exercise on chronic unpredictable mild stress-induced depression rat model.
Metabolic brain disease.
2024 Jan; 39(1):1-13. doi:
10.1007/s11011-023-01310-7
. [PMID: 37999885] - Yan Gao, Xinlei Sheng, Doudou Tan, SunJoo Kim, Soyoung Choi, Sanjita Paudel, Taeho Lee, Cong Yan, Minjia Tan, Kyu Min Kim, Sam Seok Cho, Sung Hwan Ki, He Huang, Yingming Zhao, Sangkyu Lee. Identification of Histone Lysine Acetoacetylation as a Dynamic Post-Translational Modification Regulated by HBO1.
Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2023 Jun; ?(?):e2300032. doi:
10.1002/advs.202300032
. [PMID: 37382194] - Angeliki M Angelidi, Alexander Kokkinos, Despina Sanoudou, Margery A Connelly, Andreas Alexandrou, Geltrude Mingrone, Christos S Mantzoros. Early metabolomic, lipid and lipoprotein changes in response to medical and surgical therapeutic approaches to obesity.
Metabolism: clinical and experimental.
2023 01; 138(?):155346. doi:
10.1016/j.metabol.2022.155346
. [PMID: 36375643] - Xiao-Jun Wu, Qin-Qin Shu, Bin Wang, Lan Dong, Bin Hao. Acetoacetate Improves Memory in Alzheimer's Mice via Promoting Brain-Derived Neurotrophic Factor and Inhibiting Inflammation.
American journal of Alzheimer's disease and other dementias.
2022 Jan; 37(?):15333175221124949. doi:
10.1177/15333175221124949
. [PMID: 36113018] - Valentina Spigoni, Gloria Cinquegrani, Nicolas Thomas Iannozzi, Giulia Frigeri, Giulia Maggiolo, Marta Maggi, Vanessa Parello, Alessandra Dei Cas. Activation of G protein-coupled receptors by ketone bodies: Clinical implication of the ketogenic diet in metabolic disorders.
Frontiers in endocrinology.
2022; 13(?):972890. doi:
10.3389/fendo.2022.972890
. [PMID: 36339405] - Valeryia Mikalayeva, Monika Pankevičiūtė, Vaidotas Žvikas, V Arvydas Skeberdis, Sergio Bordel. Contribution of branched chain amino acids to energy production and mevalonate synthesis in cancer cells.
Biochemical and biophysical research communications.
2021 12; 585(?):61-67. doi:
10.1016/j.bbrc.2021.11.034
. [PMID: 34794035] - Ran Zhong, Renling Miao, Jiao Meng, Rimao Wu, Yong Zhang, Dahai Zhu. Acetoacetate promotes muscle cell proliferation via the miR-133b/SRF axis through the Mek-Erk-MEF2 pathway.
Acta biochimica et biophysica Sinica.
2021 Jul; 53(8):1009-1016. doi:
10.1093/abbs/gmab079
. [PMID: 34184741] - M Petras, D Kalenska, M Samos, T Bolek, M Sarlinova, P Racay, E Halasova, O Strbak, J Stasko, L Musak, M Skorvanova, E Baranovicova. NMR plasma metabolomics study of patients overcoming acute myocardial infarction: in the first 12 h after onset of chest pain with statistical discrimination towards metabolomic biomarkers.
Physiological research.
2020 11; 69(5):823-834. doi:
10.33549/physiolres.934417
. [PMID: 32901496] - Trudi Denoon, Siddharth Sunilkumar, Sue M Ford. Acetoacetate enhances oxidative metabolism and response to toxicants of cultured kidney cells.
Toxicology letters.
2020 May; 323(?):19-24. doi:
10.1016/j.toxlet.2020.01.015
. [PMID: 31962156] - Nicole S Schmid, Marcus Clauss, Udo Hetzel, Barbara Riond, Monika Bochmann, Jean-Michel Hatt. Development, diagnosis and therapy of ketosis in non-gravid and non-lactating Guinea pigs.
BMC veterinary research.
2020 Feb; 16(1):41. doi:
10.1186/s12917-020-2257-2
. [PMID: 32013972] - Franziska Hajek, Rolf Mansfeld. [Overview on the relationship between changes in activity and ketosis in dairy cows].
Tierarztliche Praxis. Ausgabe G, Grosstiere/Nutztiere.
2019 Dec; 47(6):380-389. doi:
10.1055/a-1037-9173
. [PMID: 31810085] - Stine M Ulven, Jacob J Christensen, Ottar Nygård, Asbjørn Svardal, Lena Leder, Inger Ottestad, Vegard Lysne, Johnny Laupsa-Borge, Per Magne Ueland, Øivind Midttun, Klaus Meyer, Adrian McCann, Lene F Andersen, Kirsten B Holven. Using metabolic profiling and gene expression analyses to explore molecular effects of replacing saturated fat with polyunsaturated fat-a randomized controlled dietary intervention study.
The American journal of clinical nutrition.
2019 05; 109(5):1239-1250. doi:
10.1093/ajcn/nqy356
. [PMID: 31051508] - Desiree Abdurrachim, Xing Qi Teo, Chern Chiuh Woo, Sing Yee Ong, Nurul Farhana Salleh, Janise Lalic, Ru-San Tan, Philip Teck Hock Lee. Cardiac metabolic modulation upon low-carbohydrate low-protein ketogenic diet in diabetic rats studied in vivo using hyperpolarized 13 C pyruvate, butyrate and acetoacetate probes.
Diabetes, obesity & metabolism.
2019 04; 21(4):949-960. doi:
10.1111/dom.13608
. [PMID: 30536560] - Satoko Tsuchiya, Shojiro Sawada, Kana Takeda, Kenji Takahashi, Takeko Nakajima, Masato Kohata, Satoko Kurosawa, Chihiro Satake, Junta Imai, Katsuko Kikuchi, Setsuya Aiba, Hideki Katagiri. Eruptive xanthomas in a patient with soft-drink diabetic ketosis and apolipoprotein E4/2.
Endocrine journal.
2019 Jan; 66(1):107-114. doi:
10.1507/endocrj.ej18-0356
. [PMID: 30393272] - David Polidori, Hiroaki Iijima, Maki Goda, Nobuko Maruyama, Nobuya Inagaki, Peter A Crawford. Intra- and inter-subject variability for increases in serum ketone bodies in patients with type 2 diabetes treated with the sodium glucose co-transporter 2 inhibitor canagliflozin.
Diabetes, obesity & metabolism.
2018 05; 20(5):1321-1326. doi:
10.1111/dom.13224
. [PMID: 29341404] - Cornelius von Morze, Michael A Ohliger, Irene Marco-Rius, David M Wilson, Robert R Flavell, David Pearce, Daniel B Vigneron, John Kurhanewicz, Zhen J Wang. Direct assessment of renal mitochondrial redox state using hyperpolarized 13 C-acetoacetate.
Magnetic resonance in medicine.
2018 04; 79(4):1862-1869. doi:
10.1002/mrm.27054
. [PMID: 29314217] - Jun-Ichiro Hattan, Kazutoshi Shindo, Tetsuya Sasaki, Norihiko Misawa. Isolation and Functional Characterization of New Terpene Synthase Genes from Traditional Edible Plants.
Journal of oleo science.
2018; 67(10):1235-1246. doi:
10.5650/jos.ess18163
. [PMID: 30305556] - Ángel Sánchez-Illana, Antonio Núñez-Ramiro, María Cernada, Anna Parra-Llorca, Eva Valverde, Dorotea Blanco, Maria Teresa Moral-Pumarega, Fernando Cabañas, Hector Boix, Antonio Pavon, Mercedes Chaffanel, Isabel Benavente-Fernández, Inés Tofe, Begoña Loureiro, José R Fernández-Lorenzo, Belén Fernández-Colomer, Ana García-Robles, Julia Kuligowski, Máximo Vento. Evolution of Energy Related Metabolites in Plasma from Newborns with Hypoxic-Ischemic Encephalopathy during Hypothermia Treatment.
Scientific reports.
2017 12; 7(1):17039. doi:
10.1038/s41598-017-17202-7
. [PMID: 29213095] - Trine Salomón, Christian Sibbersen, Jakob Hansen, Dieter Britz, Mads Vandsted Svart, Thomas Schmidt Voss, Niels Møller, Niels Gregersen, Karl Anker Jørgensen, Johan Palmfeldt, Thomas Bjørnskov Poulsen, Mogens Johannsen. Ketone Body Acetoacetate Buffers Methylglyoxal via a Non-enzymatic Conversion during Diabetic and Dietary Ketosis.
Cell chemical biology.
2017 Aug; 24(8):935-943.e7. doi:
10.1016/j.chembiol.2017.07.012
. [PMID: 28820963] - Chong Zhou, Andrea J Yool, Roger W Byard. The Etiology of Basal Vacuolizations in Renal Tubular Epithelial Cells Evaluated in an Isolated Perfused Kidney Model.
Journal of forensic sciences.
2017 Jul; 62(4):915-920. doi:
10.1111/1556-4029.13354
. [PMID: 27982428] - Emil F Holmquist, Ulrik B Keiding, Rasmus Kold-Christensen, Trine Salomón, Karl Anker Jørgensen, Peter Kristensen, Thomas B Poulsen, Mogens Johannsen. ReactELISA: Monitoring a Carbon Nucleophilic Metabolite by ELISA-a Study of Lipid Metabolism.
Analytical chemistry.
2017 05; 89(9):5066-5071. doi:
10.1021/acs.analchem.7b00507
. [PMID: 28376300] - Siyuan Xia, Ruiting Lin, Lingtao Jin, Liang Zhao, Hee-Bum Kang, Yaozhu Pan, Shuangping Liu, Guoqing Qian, Zhiyu Qian, Evmorfia Konstantakou, Baotong Zhang, Jin-Tang Dong, Young Rock Chung, Omar Abdel-Wahab, Taha Merghoub, Lu Zhou, Ragini R Kudchadkar, David H Lawson, Hanna J Khoury, Fadlo R Khuri, Lawrence H Boise, Sagar Lonial, Benjamin H Lee, Brian P Pollack, Jack L Arbiser, Jun Fan, Qun-Ying Lei, Jing Chen. Prevention of Dietary-Fat-Fueled Ketogenesis Attenuates BRAF V600E Tumor Growth.
Cell metabolism.
2017 02; 25(2):358-373. doi:
10.1016/j.cmet.2016.12.010
. [PMID: 28089569] - Jing Zhang, Huanchun Song, Shuying Jiang, Zhibin Chen, Shuhua Tong, Feiyan Lin, Congcong Wen, Xiuhua Zhang, Lufeng Hu. Fisher Discrimination of Metabolic Changes in Rats Treated with Aspirin and Ibuprofen.
Pharmacology.
2017; 100(3-4):194-200. doi:
10.1159/000477971
. [PMID: 28728150] - Hayden White, Balasubramanian Venkatesh, Mark Jones, Hesly Fuentes. Serial changes in plasma ketone concentrations in patients with acute brain injury.
Neurological research.
2017 Jan; 39(1):1-6. doi:
10.1080/01616412.2016.1251695
. [PMID: 27788628] - F B Aksungar, M Sarıkaya, A Coskun, M Serteser, I Unsal. Comparison of Intermittent Fasting Versus Caloric Restriction in Obese Subjects: A Two Year Follow-Up.
The journal of nutrition, health & aging.
2017; 21(6):681-685. doi:
10.1007/s12603-016-0786-y
. [PMID: 28537332] - Christian-Alexandre Castellano, Nancy Paquet, Isabelle J Dionne, Hélène Imbeault, Francis Langlois, Etienne Croteau, Sébastien Tremblay, Mélanie Fortier, J Jacques Matte, Guy Lacombe, Tamás Fülöp, Christian Bocti, Stephen C Cunnane. A 3-Month Aerobic Training Program Improves Brain Energy Metabolism in Mild Alzheimer's Disease: Preliminary Results from a Neuroimaging Study.
Journal of Alzheimer's disease : JAD.
2017; 56(4):1459-1468. doi:
10.3233/jad-161163
. [PMID: 28157102] - Minzhi Peng, Yanna Cai, Xiefan Fang, Li Liu. Rapid quantification of metabolic intermediates in blood by liquid chromatography-tandem mass spectrometry to investigate congenital lactic acidosis.
Analytica chimica acta.
2016 Oct; 942(?):50-57. doi:
10.1016/j.aca.2016.08.025
. [PMID: 27720121] - Joanne Brooke, Marlon Stiell, Omorogieva Ojo. Evaluation of the Accuracy of Capillary Hydroxybutyrate Measurement Compared with Other Measurements in the Diagnosis of Diabetic Ketoacidosis: A Systematic Review.
International journal of environmental research and public health.
2016 08; 13(9):. doi:
10.3390/ijerph13090837
. [PMID: 27563914] - Preeti Kanikarla-Marie, Sushil K Jain. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes.
Free radical biology & medicine.
2016 06; 95(?):268-77. doi:
10.1016/j.freeradbiomed.2016.03.020
. [PMID: 27036365] - Albert R Jones, Tova Meshulam, Marcus F Oliveira, Nathan Burritt, Barbara E Corkey. Extracellular Redox Regulation of Intracellular Reactive Oxygen Generation, Mitochondrial Function and Lipid Turnover in Cultured Human Adipocytes.
PloS one.
2016; 11(10):e0164011. doi:
10.1371/journal.pone.0164011
. [PMID: 27741233] - Magdalena Orczyk-Pawilowicz, Ewa Jawien, Stanislaw Deja, Lidia Hirnle, Adam Zabek, Piotr Mlynarz. Metabolomics of Human Amniotic Fluid and Maternal Plasma during Normal Pregnancy.
PloS one.
2016; 11(4):e0152740. doi:
10.1371/journal.pone.0152740
. [PMID: 27070784] - Lixin Na, Qiao Zhang, Shuo Jiang, Shanshan Du, Wei Zhang, Ying Li, Changhao Sun, Yucun Niu. Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial.
Scientific reports.
2015 May; 5(?):10344. doi:
10.1038/srep10344
. [PMID: 25989216] - Michael A Puskarich, Michael A Finkel, Alla Karnovsky, Alan E Jones, Julie Trexel, Brooke N Harris, Kathleen A Stringer. Pharmacometabolomics of l-carnitine treatment response phenotypes in patients with septic shock.
Annals of the American Thoracic Society.
2015 Jan; 12(1):46-56. doi:
10.1513/annalsats.201409-415oc
. [PMID: 25496487] - Naoko Tanda, Yoshinori Hinokio, Jumpei Washio, Nobuhiro Takahashi, Takeyoshi Koseki. Analysis of ketone bodies in exhaled breath and blood of ten healthy Japanese at OGTT using a portable gas chromatograph.
Journal of breath research.
2014 Nov; 8(4):046008. doi:
10.1088/1752-7155/8/4/046008
. [PMID: 25417653] - Catriona A McNeil, Camilla Pramfalk, Sandy M Humphreys, Leanne Hodson. The storage stability and concentration of acetoacetate differs between blood fractions.
Clinica chimica acta; international journal of clinical chemistry.
2014 Jun; 433(?):278-83. doi:
10.1016/j.cca.2014.03.033
. [PMID: 24721643] - Sachiko Chikahisa, Noriyuki Shimizu, Tetsuya Shiuchi, Hiroyoshi Séi. Ketone body metabolism and sleep homeostasis in mice.
Neuropharmacology.
2014 Apr; 79(?):399-404. doi:
10.1016/j.neuropharm.2013.12.009
. [PMID: 24361452] - L W Sun, H Y Zhang, L Wu, S Shu, C Xia, C Xu, J S Zheng. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis.
Journal of dairy science.
2014 Mar; 97(3):1552-62. doi:
10.3168/jds.2013-6757
. [PMID: 24440255] - Yuvaraj Mahendran, Jagadish Vangipurapu, Henna Cederberg, Alena Stancáková, Jussi Pihlajamäki, Pasi Soininen, Antti J Kangas, Jussi Paananen, Mete Civelek, Niyas K Saleem, Päivi Pajukanta, Aldons J Lusis, Lori L Bonnycastle, Mario A Morken, Francis S Collins, Karen L Mohlke, Michael Boehnke, Mika Ala-Korpela, Johanna Kuusisto, Markku Laakso. Association of ketone body levels with hyperglycemia and type 2 diabetes in 9,398 Finnish men.
Diabetes.
2013 Oct; 62(10):3618-26. doi:
10.2337/db12-1363
. [PMID: 23557707] - A A Klocker, H Phelan, S M Twigg, M E Craig. Blood β-hydroxybutyrate vs. urine acetoacetate testing for the prevention and management of ketoacidosis in Type 1 diabetes: a systematic review.
Diabetic medicine : a journal of the British Diabetic Association.
2013 Jul; 30(7):818-24. doi:
10.1111/dme.12136
. [PMID: 23330615] - Alexandre Courchesne-Loyer, Mélanie Fortier, Jennifer Tremblay-Mercier, Raphaël Chouinard-Watkins, Maggie Roy, Scott Nugent, Christian-Alexandre Castellano, Stephen C Cunnane. Stimulation of mild, sustained ketonemia by medium-chain triacylglycerols in healthy humans: estimated potential contribution to brain energy metabolism.
Nutrition (Burbank, Los Angeles County, Calif.).
2013 Apr; 29(4):635-40. doi:
10.1016/j.nut.2012.09.009
. [PMID: 23274095] - Takashi Kawamura, Takeshi Okubo, Koji Sato, Satoshi Fujita, Kazushige Goto, Takafumi Hamaoka, Motoyuki Iemitsu. Glycerophosphocholine enhances growth hormone secretion and fat oxidation in young adults.
Nutrition (Burbank, Los Angeles County, Calif.).
2012 Nov; 28(11-12):1122-6. doi:
10.1016/j.nut.2012.02.011
. [PMID: 22673596] - Salvatore Fasulo, Francesco Iacono, Tiziana Cappello, Carmelo Corsaro, Maria Maisano, Alessia D'Agata, Alessia Giannetto, Elena De Domenico, Vincenzo Parrino, Giuseppe Lo Paro, Angela Mauceri. Metabolomic investigation of Mytilus galloprovincialis (Lamarck 1819) caged in aquatic environments.
Ecotoxicology and environmental safety.
2012 Oct; 84(?):139-46. doi:
10.1016/j.ecoenv.2012.07.001
. [PMID: 22818846] - Kieran Clarke, Kirill Tchabanenko, Robert Pawlosky, Emma Carter, M Todd King, Kathy Musa-Veloso, Manki Ho, Ashley Roberts, Jeremy Robertson, Theodore B Vanitallie, Richard L Veech. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects.
Regulatory toxicology and pharmacology : RTP.
2012 Aug; 63(3):401-8. doi:
10.1016/j.yrtph.2012.04.008
. [PMID: 22561291] - Suwen Qi, Zhiguang Tu, Xin Ouyang, Linxian Wang, Wujian Peng, Anji Cai, Yong Dai. Comparison of the metabolic profiling of hepatitis B virus-infected cirrhosis and alcoholic cirrhosis patients by using (1) H NMR-based metabonomics.
Hepatology research : the official journal of the Japan Society of Hepatology.
2012 Jul; 42(7):677-85. doi:
10.1111/j.1872-034x.2011.00964.x
. [PMID: 22404306] - Christopher Sauvage, Marie Vagner, Nicolas Derôme, Céline Audet, Louis Bernatchez. Coding Gene SNP Mapping Reveals QTL Linked to Growth and Stress Response in Brook Charr (Salvelinus fontinalis).
G3 (Bethesda, Md.).
2012 Jun; 2(6):707-20. doi:
10.1534/g3.112.001990
. [PMID: 22690380] - Mao-rong Wang, Xin Zhang, Yan-qing Liu. [Acetoacetate extract from Celastrus orbiculatus Thunb inhibits growth of RFP-xenografted human liver carcinoma].
Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology.
2012 May; 20(5):377-80. doi:
10.3760/cma.j.issn.1007-3418.2012.05.015
. [PMID: 22971285] - Cristian Palmiere, Frank Sporkert, Paul Vaucher, Dominique Werner, Daniel Bardy, François Rey, Christelle Lardi, Christophe Brunel, Marc Augsburger, Patrice Mangin. Is the formula of Traub still up to date in antemortem blood glucose level estimation?.
International journal of legal medicine.
2012 May; 126(3):407-13. doi:
10.1007/s00414-011-0659-1
. [PMID: 22327538] - Anisha Wijeyesekera, Colin Selman, Richard H Barton, Elaine Holmes, Jeremy K Nicholson, Dominic J Withers. Metabotyping of long-lived mice using 1H NMR spectroscopy.
Journal of proteome research.
2012 Apr; 11(4):2224-35. doi:
10.1021/pr2010154
. [PMID: 22225495] - Francesco Emma, Enrico Bertini, Leonardo Salviati, Giovanni Montini. Renal involvement in mitochondrial cytopathies.
Pediatric nephrology (Berlin, Germany).
2012 Apr; 27(4):539-50. doi:
10.1007/s00467-011-1926-6
. [PMID: 21656172] - Atsushi Sawada, Yusuke Yoshikawa, Masanori Yamauchi, Akihiko Watanabe, Michiaki Yamakage. [Breakdown of fat tissue and muscle protein under remifentanil anesthesia].
Masui. The Japanese journal of anesthesiology.
2012 Apr; 61(4):358-63. doi:
NULL
. [PMID: 22590935] - Mamtimin Batur, Upur Halmurat, Fu-Hua Hao, Rena Aiziz, Matsidik Aynur. Correlative analysis of neoplasm patients with phlegm-stasis or abnormal Savda syndrome, based on metabonomics.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2012 Mar; 32(1):119-24. doi:
10.1016/s0254-6272(12)60044-2
. [PMID: 22594115] - Christiane Weingart, Fabian Lotz, Barbara Kohn. Measurement of β-hydroxybutyrate in cats with nonketotic diabetes mellitus, diabetic ketosis, and diabetic ketoacidosis.
Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.
2012 Mar; 24(2):295-300. doi:
10.1177/1040638711428332
. [PMID: 22362525] - Hyeon-Jeong Kim, Nam-Seok Joo, Kwang-Min Kim, Duck-Joo Lee, Sang-Man Kim. Different response of body weight change according to ketonuria after fasting in the healthy obese.
Journal of Korean medical science.
2012 Mar; 27(3):250-4. doi:
10.3346/jkms.2012.27.3.250
. [PMID: 22379334] - Yuriko Higashino-Matsui, Ken Shirato, Yuko Suzuki, Yu Kawashima, Yui Someya, Shogo Sato, Akira Shiraishi, Manabu Jinde, Akiko Matsumoto, Hisashi Ideno, Kaoru Tachiyashiki, Kazuhiko Imaizumi. Age-related effects of fasting on ketone body production during lipolysis in rats.
Environmental health and preventive medicine.
2012 Mar; 17(2):157-63. doi:
10.1007/s12199-011-0231-0
. [PMID: 21850422] - Neil Greenberg, William L Roberts, Lorin M Bachmann, Elizabeth C Wright, R Neil Dalton, Jack J Zakowski, W Greg Miller. Specificity characteristics of 7 commercial creatinine measurement procedures by enzymatic and Jaffe method principles.
Clinical chemistry.
2012 Feb; 58(2):391-401. doi:
10.1373/clinchem.2011.172288
. [PMID: 22166253] - Merideth Prevost, Yijuan Sun, Karen S Servilla, Larry Massie, Robert H Glew, Antonios H Tzamaloukas. Repeated intoxication presenting with azotemia, elevated serum osmolal gap, and metabolic acidosis with high anion gap: differential diagnosis, management, and prognosis.
International urology and nephrology.
2012 Feb; 44(1):309-14. doi:
10.1007/s11255-010-9796-6
. [PMID: 20602169] - Özgül İnceoğlu, Joana Falcão Salles, Jan Dirk van Elsas. Soil and cultivar type shape the bacterial community in the potato rhizosphere.
Microbial ecology.
2012 Feb; 63(2):460-70. doi:
10.1007/s00248-011-9930-8
. [PMID: 21898103] - Haiyan Zhang, Jianmin Jia, Jinguo Cheng, Faqing Ye, Xiaokun Li, Hongchang Gao. 1H NMR-based metabonomics study on serum of renal interstitial fibrosis rats induced by unilateral ureteral obstruction.
Molecular bioSystems.
2012 Feb; 8(2):595-601. doi:
10.1039/c1mb05311f
. [PMID: 22027911] - Illa Tea, Gwénaëlle Le Gall, Alice Küster, Nadia Guignard, Marie-Cécile Alexandre-Gouabau, Dominique Darmaun, Richard J Robins. 1H-NMR-based metabolic profiling of maternal and umbilical cord blood indicates altered materno-foetal nutrient exchange in preterm infants.
PloS one.
2012; 7(1):e29947. doi:
10.1371/journal.pone.0029947
. [PMID: 22291897] - Rong Fan, Xi Huang, Yang Wang, Xiao Chen, Ping Ren, Hui Ji, Ying Xie, Yingjin Zhang, Wei Huang, Xinjian Qiu, Zhaoqian Liu, Honghao Zhou, Lan Fan, Lichen Gao. Ethnopharmacokinetic- and activity-guided isolation of a new antidepressive compound from fructus aurantii found in the traditional chinese medicine chaihu-shugan-san: a new approach and its application.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):607584. doi:
10.1155/2012/607584
. [PMID: 22454671] - Saskia B Wortmann, Leo A Kluijtmans, Udo F H Engelke, Ron A Wevers, Eva Morava. The 3-methylglutaconic acidurias: what's new?.
Journal of inherited metabolic disease.
2012 Jan; 35(1):13-22. doi:
10.1007/s10545-010-9210-7
. [PMID: 20882351] - Cristian Palmiere, Frank Sporkert, Dominique Werner, Daniel Bardy, Marc Augsburger, Patrice Mangin. Blood, urine and vitreous isopropyl alcohol as biochemical markers in forensic investigations.
Legal medicine (Tokyo, Japan).
2012 Jan; 14(1):17-20. doi:
10.1016/j.legalmed.2011.10.005
. [PMID: 22177827] - Shao-Gang Ma, Yao Jin, Wen Hu, Feng Bai, Wen Xu, Wei-Nan Yu. Evaluation of ischemia-modified albumin and C-reactive protein in type 2 diabetics with and without ketosis.
Biomarker insights.
2012; 7(?):19-26. doi:
10.4137/bmi.s9060
. [PMID: 22442627] - Lukas Y Beis, Thelma Polyviou, Dalia Malkova, Yannis P Pitsiladis. The effects of creatine and glycerol hyperhydration on running economy in well trained endurance runners.
Journal of the International Society of Sports Nutrition.
2011 Dec; 8(1):24. doi:
10.1186/1550-2783-8-24
. [PMID: 22176668] - Guo-Ping Zhong, Jiang-Ying Chen, Hui-Chang Bi, Xiao-Ling Qin, Chang-Liang Dai, Jing Liu, Xiao Chen, Gui-Xiong Zeng, Zhi-Ying Huang, Min Huang. Determination of HS270, a new histone deacetylase inhibitor, in rat plasma by LC-MS/MS--application to a preclinical pharmacokinetic study.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2011 Nov; 879(30):3452-8. doi:
10.1016/j.jchromb.2011.09.023
. [PMID: 21983196] - Yi-yang Liu, Shi-jun Wang, Bing-bing Han. [Effects of acetoacetate extract of Radix Aconite on hepatic contents of LA, LDH, PA, Gn and ATPase activities in deficient cold model rats].
Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine.
2011 Nov; 31(11):1523-6. doi:
. [PMID: 22303718]
- Hoi-Ying Elsie Yu, Michael Agus, Mark D Kellogg. Clinical utility of Abbott Precision Xceed Pro® ketone meter in diabetic patients.
Pediatric diabetes.
2011 Nov; 12(7):649-55. doi:
10.1111/j.1399-5448.2011.00768.x
. [PMID: 22034832] - Vinoy K Ramachandran, Alison K East, Ramakrishnan Karunakaran, J Allan Downie, Philip S Poole. Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics.
Genome biology.
2011 Oct; 12(10):R106. doi:
10.1186/gb-2011-12-10-r106
. [PMID: 22018401] - Haymo Pircher, Grit D Straganz, Daniela Ehehalt, Geneviève Morrow, Robert M Tanguay, Pidder Jansen-Dürr. Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase.
The Journal of biological chemistry.
2011 Oct; 286(42):36500-8. doi:
10.1074/jbc.m111.264770
. [PMID: 21878618] - Ailing Yin, Zhifeng Han, Jie Shen, Liwei Guo, Guiping Cao. [Comparison of essential oil enriched with ultrafiltration method and extraction method respectively from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by GC-MS].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2011 Oct; 36(19):2653-5. doi:
"
. [PMID: 22242423] - George Nicholson, Mattias Rantalainen, Anthony D Maher, Jia V Li, Daniel Malmodin, Kourosh R Ahmadi, Johan H Faber, Ingileif B Hallgrímsdóttir, Amy Barrett, Henrik Toft, Maria Krestyaninova, Juris Viksna, Sudeshna Guha Neogi, Marc-Emmanuel Dumas, Ugis Sarkans, The Molpage Consortium, Bernard W Silverman, Peter Donnelly, Jeremy K Nicholson, Maxine Allen, Krina T Zondervan, John C Lindon, Tim D Spector, Mark I McCarthy, Elaine Holmes, Dorrit Baunsgaard, Chris C Holmes. Human metabolic profiles are stably controlled by genetic and environmental variation.
Molecular systems biology.
2011 Aug; 7(?):525. doi:
10.1038/msb.2011.57
. [PMID: 21878913] - Lee D Roberts, Andrew J Murray, David Menassa, Tom Ashmore, Andrew W Nicholls, Julian L Griffin. The contrasting roles of PPARδ and PPARγ in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue.
Genome biology.
2011 Aug; 12(8):R75. doi:
10.1186/gb-2011-12-8-r75
. [PMID: 21843327] - Haytham Eloqayli, Torun M Melø, Anne Haukvik, Ursula Sonnewald. [2,4-(13)C]β-hydroxybutyrate metabolism in astrocytes and C6 glioblastoma cells.
Neurochemical research.
2011 Aug; 36(8):1566-73. doi:
10.1007/s11064-011-0485-3
. [PMID: 21538079] - Melanie Schmidt, Nadja Pfetzer, Micheal Schwab, Ingrid Strauss, Ulrike Kämmerer. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial.
Nutrition & metabolism.
2011 Jul; 8(1):54. doi:
10.1186/1743-7075-8-54
. [PMID: 21794124] - Takahito Hayashi, Kazutoshi Ago, Mihoko Ago, Mamoru Ogata. Positional asphyxia or diabetic ketoacidosis? A case report.
Legal medicine (Tokyo, Japan).
2011 Jul; 13(4):196-200. doi:
10.1016/j.legalmed.2011.01.006
. [PMID: 21377395] - Jianxin Yang, Margit L MacDougall, Michael T McDowell, Li Xi, Ru Wei, William J Zavadoski, Mark P Molloy, John D Baker, Max Kuhn, Over Cabrera, Judith L Treadway. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: implications on anti-glucagon therapies for diabetes.
BMC genomics.
2011 Jun; 12(?):281. doi:
10.1186/1471-2164-12-281
. [PMID: 21631939] - David B Sacks, Mark Arnold, George L Bakris, David E Bruns, Andrea Rita Horvath, M Sue Kirkman, Ake Lernmark, Boyd E Metzger, David M Nathan. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus.
Diabetes care.
2011 Jun; 34(6):e61-99. doi:
10.2337/dc11-9998
. [PMID: 21617108] - Guangmang Liu, Yi Wang, Zhisheng Wang, Jingyi Cai, Xingzuo Lv, Anguo Zhou. Nuclear magnetic resonance (NMR)-based metabolomic studies on urine and serum biochemical profiles after chronic cysteamine supplementation in rats.
Journal of agricultural and food chemistry.
2011 May; 59(10):5572-8. doi:
10.1021/jf104129k
. [PMID: 21476594] - M A Krogh, N Toft, C Enevoldsen. Latent class evaluation of a milk test, a urine test, and the fat-to-protein percentage ratio in milk to diagnose ketosis in dairy cows.
Journal of dairy science.
2011 May; 94(5):2360-7. doi:
10.3168/jds.2010-3816
. [PMID: 21524525] - Claire L Gavaghan, Jia V Li, Stephen T Hadfield, Stephen Hole, Jeremy K Nicholson, Ian D Wilson, Peter W A Howe, Paul D Stanley, Elaine Holmes. Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays).
Phytochemical analysis : PCA.
2011 May; 22(3):214-24. doi:
10.1002/pca.1268
. [PMID: 21204151] - Erika Osada, Naoki Hiroi, Mariko Sue, Natsumi Masai, Ryo Iga, Rika Shigemitsu, Reiko Oka, Masahiko Miyagi, Kaoru Iso, Koji Kuboki, Gen Yoshino. Thyroid storm associated with Graves' disease covered by diabetic ketoacidosis: A case report.
Thyroid research.
2011 Apr; 4(1):8. doi:
10.1186/1756-6614-4-8
. [PMID: 21492449] - Batur Mamtimin, Halmurat Upur. [Plasma metabonomics analysis of tumor patients of phlegm-stasis syndrome].
Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine.
2011 Apr; 31(4):492-5. doi:
. [PMID: 21608220]
- Sanjay Arora, Sean O Henderson, Theodore Long, Michael Menchine. Diagnostic accuracy of point-of-care testing for diabetic ketoacidosis at emergency-department triage: {beta}-hydroxybutyrate versus the urine dipstick.
Diabetes care.
2011 Apr; 34(4):852-4. doi:
10.2337/dc10-1844
. [PMID: 21307381] - David G Cotter, D André d'Avignon, Anna E Wentz, Mary L Weber, Peter A Crawford. Obligate role for ketone body oxidation in neonatal metabolic homeostasis.
The Journal of biological chemistry.
2011 Mar; 286(9):6902-10. doi:
10.1074/jbc.m110.192369
. [PMID: 21209089] - Batur Mamtimin, Halmurat Upur, Fu-Hua Hao, Aynur Matsidik, Rena Rahim. Plasma metabonomic analysis with ¹H nuclear magnetic resonance revealing the relationship of different tumors and the disease homology theory of traditional Uyghur medicine.
Chinese journal of integrative medicine.
2011 Feb; 17(2):111-5. doi:
10.1007/s11655-011-0638-x
. [PMID: 21390577] - Solomon O Rotimi, Omolola E Omotosho, Oluwakemi A Rotimi. Persistence of acidosis in alloxan-induced diabetic rats treated with the juice of Asystasia gangetica leaves.
Pharmacognosy magazine.
2011 Jan; 7(25):25-30. doi:
10.4103/0973-1296.75887
. [PMID: 21472075] - Kathryn Bauerly, Calliandra Harris, Winyoo Chowanadisai, James Graham, Peter J Havel, Eskouhie Tchaparian, Mike Satre, Joel S Karliner, Robert B Rucker. Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats.
PloS one.
2011; 6(7):e21779. doi:
10.1371/journal.pone.0021779
. [PMID: 21814553] - Alain Perret, Christophe Lechaplais, Sabine Tricot, Nadia Perchat, Carine Vergne, Christine Pellé, Karine Bastard, Annett Kreimeyer, David Vallenet, Anne Zaparucha, Jean Weissenbach, Marcel Salanoubat. A novel acyl-CoA beta-transaminase characterized from a metagenome.
PloS one.
2011; 6(8):e22918. doi:
10.1371/journal.pone.0022918
. [PMID: 21826218] - Joel Kullberg, Magnus Sundbom, Arvo Haenni, Susanne Freden, Lars Johansson, Peter Börnert, Anders Ahlström, Håkan Ahlström, Anders Karlsson. Gastric bypass promotes more lipid mobilization than a similar weight loss induced by low-calorie diet.
Journal of obesity.
2011; 2011(?):959601. doi:
10.1155/2011/959601
. [PMID: 21197152] - Jia Yao, Shuhua Chen, Zisu Mao, Enrique Cadenas, Roberta Diaz Brinton. 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer's disease.
PloS one.
2011; 6(7):e21788. doi:
10.1371/journal.pone.0021788
. [PMID: 21747957] - Chao Huo, Zengchun Ma, Mu Wang, Juan Liu, Xianzhong Yan, Yue Gao. [NMR-spectroscopy-based metabonomic study on mouse model of blood deficiency syndrome induced by compound method of bleeding, starved feeding and exhausting and effect of siwutang].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 Dec; 35(23):3194-8. doi:
10.4268/cjcmm20102324
. [PMID: 21355248] - Karsten Suhre, Christa Meisinger, Angela Döring, Elisabeth Altmaier, Petra Belcredi, Christian Gieger, David Chang, Michael V Milburn, Walter E Gall, Klaus M Weinberger, Hans-Werner Mewes, Martin Hrabé de Angelis, H-Erich Wichmann, Florian Kronenberg, Jerzy Adamski, Thomas Illig. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting.
PloS one.
2010 Nov; 5(11):e13953. doi:
10.1371/journal.pone.0013953
. [PMID: 21085649] - Vijai Bhadauria, Li-Xia Wang, You-Liang Peng. Proteomic changes associated with deletion of the Magnaporthe oryzae conidial morphology-regulating gene COM1.
Biology direct.
2010 Nov; 5(?):61. doi:
10.1186/1745-6150-5-61
. [PMID: 21040590] - Jianghua Feng, Huili Liu, Limin Zhang, Kishore Bhakoo, Lehui Lu. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids.
Nanotechnology.
2010 Oct; 21(39):395101. doi:
10.1088/0957-4484/21/39/395101
. [PMID: 20820093] - Cassandra E Forsythe, Stephen D Phinney, Richard D Feinman, Brittanie M Volk, Daniel Freidenreich, Erin Quann, Kevin Ballard, Michael J Puglisi, Carl M Maresh, William J Kraemer, Douglas M Bibus, Maria Luz Fernandez, Jeff S Volek. Limited effect of dietary saturated fat on plasma saturated fat in the context of a low carbohydrate diet.
Lipids.
2010 Oct; 45(10):947-62. doi:
10.1007/s11745-010-3467-3
. [PMID: 20820932] - Beatriz Jiménez, Carmina Montoliu, David A MacIntyre, Miguel A Serra, Abdallah Wassel, María Jover, Manuel Romero-Gomez, Jose M Rodrigo, Antonio Pineda-Lucena, Vicente Felipo. Serum metabolic signature of minimal hepatic encephalopathy by (1)H-nuclear magnetic resonance.
Journal of proteome research.
2010 Oct; 9(10):5180-7. doi:
10.1021/pr100486e
. [PMID: 20690770] - Carolina Gustavsson, Kamal Yassin, Erik Wahlström, Louisa Cheung, Johan Lindberg, Kerstin Brismar, Claes-Göran Ostenson, Gunnar Norstedt, Petra Tollet-Egnell. Sex-different hepaticglycogen content and glucose output in rats.
BMC biochemistry.
2010 Sep; 11(?):38. doi:
10.1186/1471-2091-11-38
. [PMID: 20863371] - James Cartwright, Richard M Green. Tyrosine-derived 4-hydroxyphenylpyruvate reacts with ketone test fields of 3 commercially available urine dipsticks.
Veterinary clinical pathology.
2010 Sep; 39(3):354-7. doi:
10.1111/j.1939-165x.2010.00231.x
. [PMID: 20487432] - Junfang Wu, Wenxin Xu, Zhenping Ming, Huifen Dong, Huiru Tang, Yulan Wang. Metabolic changes reveal the development of schistosomiasis in mice.
PLoS neglected tropical diseases.
2010 Aug; 4(8):. doi:
10.1371/journal.pntd.0000807
. [PMID: 20824219]