8,9-Epoxyeicosatrienoic acid (BioDeep_00000004025)

 

Secondary id: BioDeep_00001871943

human metabolite Endogenous blood metabolite natural product


代谢物信息卡片


(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoic acid

化学式: C20H32O3 (320.2351)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 37.15%

分子结构信息

SMILES: C(C1OC1C/C=C\CCCC(=O)O)/C=C\C/C=C\CCCCC
InChI: InChI=1S/C20H32O3/c1-2-3-4-5-6-7-8-9-12-15-18-19(23-18)16-13-10-11-14-17-20(21)22/h6-7,9-10,12-13,18-19H,2-5,8,11,14-17H2,1H3,(H,21,22)

描述信息

8,9-Epoxyeicosatrienoic acid is an epoxyeicosatrienoic acid eicosanoid, a metabolite of arachidonic acid. The P450 epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. Four regioisomeric cis-EET are primary products of arachidonic acid metabolism by cytochrome P450 epoxygenases. Upon hydration by soluble epoxide hydrolase (sEH), EET are metabolized to dihydroxyeicosatrienoic acids (DHET). These hydration products are more stable and less biologically active than EETs. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597) [HMDB]
8,9-Epoxyeicosatrienoic acid is an epoxyeicosatrienoic acid eicosanoid, a metabolite of arachidonic acid. The P450 epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. Four regioisomeric cis-EET are primary products of arachidonic acid metabolism by cytochrome P450 epoxygenases. Upon hydration by soluble epoxide hydrolase (sEH), EET are metabolized to dihydroxyeicosatrienoic acids (DHET). These hydration products are more stable and less biologically active than EETs. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597).
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

同义名列表

21 个代谢物同义名

(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoic acid; 8,9-Epoxyeicosatrienoic acid, (2alpha(Z),3alpha(2Z,5Z))-isomer; (±)8(9)-epoxy-5Z,11Z,14Z-eicosatrienoic acid; (5Z,11Z,14Z)-8,9-Epoxyeicosa-5,11,14-trienoic acid; (5Z,11Z,14Z)-8,9-Epoxyicosa-5,11,14-trienoic acid; (5Z,11Z,14Z)-8,9-Epoxyeicosa-5,11,14-trienoate; (5Z,11Z,14Z)-8,9-Epoxyicosa-5,11,14-trienoate; 8,9-epoxy-5Z,11Z,14Z-eicosatrienoic acid-(d8); 8,9-epoxy-5Z,11Z,14Z-eicosatrienoic acid; 8,9-Epoxy-5Z,11Z,14Z-icosatrienoic acid; 8,9-Epoxy-5Z,11Z,14Z-eicosatrienoate; 8,9-Epoxy-5Z,11Z,14Z-icosatrienoate; 8,9-epoxyeicosatrienoic acid; 8,9-Epoxyicosatrienoic acid; (±)8,9-EpETrE-(d8); 8,9-Epoxyeicosatrienoate; 8,9-Epoxyicosatrienoate; (±)8(9)-EET; (+/-)8,9-EpETrE; FA 20:4;O; 8,9-EET



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

47 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(46)

PharmGKB(0)

10 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ALB, ANG, BCL2, CASP3, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2J2, MAPK14, PIK3CA, PTGS2
Peripheral membrane protein 3 CYP1B1, CYP2B6, PTGS2
Endoplasmic reticulum membrane 9 BCL2, CYP1B1, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2J2, HMOX1, PTGS2
Nucleus 7 ALB, ANG, BCL2, CASP3, FOS, HMOX1, MAPK14
cytosol 10 ALB, ANG, BCL2, CASP3, EPHX2, FOS, HMOX1, MAPK14, PIK3CA, PRKCQ
centrosome 1 ALB
nucleoplasm 4 CASP3, FOS, HMOX1, MAPK14
RNA polymerase II transcription regulator complex 1 FOS
Cell membrane 2 TRPA1, TRPV4
Cytoplasmic side 1 HMOX1
lamellipodium 2 PIK3CA, TRPV4
ruffle membrane 1 TRPV4
Multi-pass membrane protein 2 TRPA1, TRPV4
cell surface 1 TRPV4
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 1 ALB
growth cone 2 ANG, TRPV4
neuronal cell body 2 ANG, CASP3
plasma membrane 8 CYP2C19, CYP2C8, CYP2C9, KNG1, PIK3CA, PRKCQ, TRPA1, TRPV4
Membrane 6 BCL2, CYP1B1, CYP2J2, HMOX1, TRPA1, TRPV4
apical plasma membrane 1 TRPV4
caveola 1 PTGS2
extracellular exosome 4 ALB, CYP2J2, EPHX2, KNG1
endoplasmic reticulum 6 ALB, BCL2, FOS, HMOX1, PTGS2, TRPV4
extracellular space 4 ALB, ANG, HMOX1, KNG1
perinuclear region of cytoplasm 2 HMOX1, PIK3CA
adherens junction 1 TRPV4
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, CYP1B1, MAPK14
protein-containing complex 3 ALB, BCL2, PTGS2
intracellular membrane-bounded organelle 6 CYP1B1, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2J2
Microsome membrane 5 CYP1B1, CYP2B6, CYP2C9, CYP2J2, PTGS2
filopodium 1 TRPV4
postsynaptic density 1 CASP3
Secreted 2 ALB, ANG
extracellular region 4 ALB, ANG, KNG1, MAPK14
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
anchoring junction 1 ALB
Cell projection, cilium 1 TRPV4
centriolar satellite 1 PRKCQ
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
actin cytoskeleton 1 ANG
nucleolus 1 ANG
Apical cell membrane 1 TRPV4
pore complex 1 BCL2
focal adhesion 1 TRPV4
Cell junction, adherens junction 1 TRPV4
Peroxisome 1 EPHX2
basement membrane 1 ANG
peroxisomal matrix 1 EPHX2
collagen-containing extracellular matrix 1 KNG1
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 1 ALB
cilium 1 TRPV4
chromatin 1 FOS
stereocilium bundle 1 TRPA1
Chromosome 1 ANG
centriole 1 ALB
Secreted, extracellular space 1 KNG1
Nucleus, nucleolus 1 ANG
spindle pole 2 ALB, MAPK14
blood microparticle 2 ALB, KNG1
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 3 ALB, KNG1, PTGS2
nuclear matrix 1 FOS
cortical actin cytoskeleton 1 TRPV4
platelet alpha granule lumen 2 ALB, KNG1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
Single-pass type IV membrane protein 1 HMOX1
cytoplasmic microtubule 1 TRPV4
protein-DNA complex 1 FOS
death-inducing signaling complex 1 CASP3
[Isoform 1]: Cell membrane 1 TRPV4
[Isoform 2]: Endoplasmic reticulum 1 TRPV4
transcription factor AP-1 complex 1 FOS
angiogenin-PRI complex 1 ANG
BAD-BCL-2 complex 1 BCL2
[Isoform 5]: Cell membrane 1 TRPV4
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
ciliary transition fiber 1 ALB
[Isoform 4]: Endoplasmic reticulum 1 TRPV4
[Isoform 6]: Endoplasmic reticulum 1 TRPV4


文献列表

  • John D Imig, Wojciech K Jankiewicz, Abdul H Khan. Epoxy Fatty Acids: From Salt Regulation to Kidney and Cardiovascular Therapeutics: 2019 Lewis K. Dahl Memorial Lecture. Hypertension (Dallas, Tex. : 1979). 2020 07; 76(1):3-15. doi: 10.1161/hypertensionaha.120.13898. [PMID: 32475311]
  • Theresa Aliwarga, Brianne S Raccor, Rozenn N Lemaitre, Nona Sotoodehnia, Sina A Gharib, Libin Xu, Rheem A Totah. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo. Free radical biology & medicine. 2017 11; 112(?):131-140. doi: 10.1016/j.freeradbiomed.2017.07.015. [PMID: 28734877]
  • Anne Marowsky, Imke Meyer, Kira Erismann-Ebner, Giovanni Pellegrini, Nandkishor Mule, Michael Arand. Beyond detoxification: a role for mouse mEH in the hepatic metabolism of endogenous lipids. Archives of toxicology. 2017 Nov; 91(11):3571-3585. doi: 10.1007/s00204-017-2060-4. [PMID: 28975360]
  • Bogdan Barnych, Amy A Rand, Tomas Cajka, Kin Sing Stephen Lee, Bruce D Hammock. Synthesis of cyclooxygenase metabolites of 8,9-epoxyeicosatrienoic acid (EET): 11- and 15-hydroxy 8,9-EETs. Organic & biomolecular chemistry. 2017 May; 15(20):4308-4313. doi: 10.1039/c7ob00789b. [PMID: 28470279]
  • Amy A Rand, Bogdan Barnych, Christophe Morisseau, Tomas Cajka, Kin Sing Stephen Lee, Dipak Panigrahy, Bruce D Hammock. Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids. Proceedings of the National Academy of Sciences of the United States of America. 2017 04; 114(17):4370-4375. doi: 10.1073/pnas.1616893114. [PMID: 28396419]
  • Dorothee J Funk, Bernd L Sorg, Klaus Kopka, Heinz H Schmeiser. Epoxyeicosatrienoic acids (EETs) form adducts with DNA in vitro. Prostaglandins & other lipid mediators. 2016 03; 123(?):63-7. doi: 10.1016/j.prostaglandins.2016.04.006. [PMID: 27166927]
  • Quan-Fei Zhu, Yan-Hong Hao, Ming-Zhou Liu, Jiang Yue, Jian Ni, Bi-Feng Yuan, Yu-Qi Feng. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry. Journal of chromatography. A. 2015 Sep; 1410(?):154-63. doi: 10.1016/j.chroma.2015.07.100. [PMID: 26253834]
  • Kenneth I Strauss, Artiom Gruzdev, Darryl C Zeldin. Altered behavioral phenotypes in soluble epoxide hydrolase knockout mice: effects of traumatic brain injury. Prostaglandins & other lipid mediators. 2013 Jul; 104-105(?):18-24. doi: 10.1016/j.prostaglandins.2012.07.005. [PMID: 22922090]
  • Yanxiang Gao, Juan Feng, Kongyang Ma, Zhou Zhou, Yi Zhu, Qingbo Xu, Xian Wang. 8,9-Epoxyeicosatrienoic acid inhibits antibody production of B lymphocytes in mice. PloS one. 2012; 7(7):e40258. doi: 10.1371/journal.pone.0040258. [PMID: 22802958]
  • Tengis S Pavlov, Daria V Ilatovskaya, Vladislav Levchenko, David L Mattson, Richard J Roman, Alexander Staruschenko. Effects of cytochrome P-450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). American journal of physiology. Renal physiology. 2011 Sep; 301(3):F672-81. doi: 10.1152/ajprenal.00597.2010. [PMID: 21697242]
  • Houli Jiang, John Quilley, Anabel B Doumad, Angela G Zhu, John R Falck, Bruce D Hammock, Charles T Stier, Mairead A Carroll. Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats. American journal of physiology. Heart and circulatory physiology. 2011 Jun; 300(6):H1990-6. doi: 10.1152/ajpheart.01267.2010. [PMID: 21398593]
  • Jun Ma, Lei Zhang, Shanshan Li, Shulin Liu, Cui Ma, Weiyang Li, J R Falck, Vijay L Manthati, D Sudarshan Reddy, Meetha Medhora, Elizabeth R Jacobs, Daling Zhu. 8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway. Experimental cell research. 2010 Aug; 316(14):2340-53. doi: 10.1016/j.yexcr.2010.05.013. [PMID: 20493836]
  • Mukut Sharma, Ellen T McCarthy, D Sudarshan Reddy, Paresh K Patel, Virginia J Savin, Meetha Medhora, John R Falck. 8,9-Epoxyeicosatrienoic acid protects the glomerular filtration barrier. Prostaglandins & other lipid mediators. 2009 Jun; 89(1-2):43-51. doi: 10.1016/j.prostaglandins.2009.04.004. [PMID: 19480064]
  • Joris Vriens, Grzegorz Owsianik, Annelies Janssens, Thomas Voets, Bernd Nilius. Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. The Journal of biological chemistry. 2007 Apr; 282(17):12796-803. doi: 10.1074/jbc.m610485200. [PMID: 17341586]
  • Jian Gang Jiang, Rui Juan Chen, Bin Xiao, Shilin Yang, Jia Ning Wang, Yong Wang, L Ashley Cowart, Xiao Xiao, Dao Wen Wang, Yong Xia. Regulation of endothelial nitric-oxide synthase activity through phosphorylation in response to epoxyeicosatrienoic acids. Prostaglandins & other lipid mediators. 2007 Jan; 82(1-4):162-74. doi: 10.1016/j.prostaglandins.2006.08.005. [PMID: 17164144]
  • J Vriens, G Owsianik, B Fisslthaler, M Suzuki, A Janssens, T Voets, C Morisseau, B D Hammock, I Fleming, R Busse, B Nilius. Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circulation research. 2005 Oct; 97(9):908-15. doi: 10.1161/01.res.0000187474.47805.30. [PMID: 16179585]
  • Ambra Pozzi, Ines Macias-Perez, Tristin Abair, Shouzuo Wei, Yan Su, Roy Zent, John R Falck, Jorge H Capdevila. Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. The Journal of biological chemistry. 2005 Jul; 280(29):27138-46. doi: 10.1074/jbc.m501730200. [PMID: 15917237]
  • Kathryn M Gauthier, Christina Deeter, U Murali Krishna, Y Krishna Reddy, Muralidhar Bondlela, J R Falck, William B Campbell. 14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circulation research. 2002 May; 90(9):1028-36. doi: 10.1161/01.res.0000018162.87285.f8. [PMID: 12016270]
  • Dany Salvail, Martin Cloutier, Eric Rousseau. Functional reconstitution of an eicosanoid-modulated Cl- channel from bovine tracheal smooth muscle. American journal of physiology. Cell physiology. 2002 Mar; 282(3):C567-77. doi: 10.1152/ajpcell.00029.2001. [PMID: 11832342]
  • J D Imig, X Zhao, J R Falck, S Wei, J H Capdevila. Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12-epoxyeicosatrienoic acid. Journal of hypertension. 2001 May; 19(5):983-92. doi: 10.1097/00004872-200105000-00020. [PMID: 11393683]
  • M Medhora, J Narayanan, D Harder. Dual regulation of the cerebral microvasculature by epoxyeicosatrienoic acids. Trends in cardiovascular medicine. 2001 Jan; 11(1):38-42. doi: 10.1016/s1050-1738(01)00082-2. [PMID: 11413051]
  • Z Yu, F Xu, L M Huse, C Morisseau, A J Draper, J W Newman, C Parker, L Graham, M M Engler, B D Hammock, D C Zeldin, D L Kroetz. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circulation research. 2000 Nov; 87(11):992-8. doi: 10.1161/01.res.87.11.992. [PMID: 11090543]
  • C L Oltman, N L Weintraub, M VanRollins, K C Dellsperger. Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circulation research. 1998 Nov; 83(9):932-9. doi: 10.1161/01.res.83.9.932. [PMID: 9797342]
  • M VanRollins, P M Kochanek, R W Evans, J K Schiding, E M Nemoto. Optimization of epoxyeicosatrienoic acid syntheses to test their effects on cerebral blood flow in vivo. Biochimica et biophysica acta. 1995 Jun; 1256(3):263-74. doi: 10.1016/0005-2760(95)00029-c. [PMID: 7786887]
  • X Fang, M VanRollins, T L Kaduce, A A Spector. Epoxyeicosatrienoic acid metabolism in arterial smooth muscle cells. Journal of lipid research. 1995 Jun; 36(6):1236-46. doi: 10.1016/s0022-2275(20)41131-9. [PMID: 7666001]
  • B A Escalante, R Staudinger, M Schwartzman, N Abraham. Amiloride-sensitive ion transport inhibition by epoxyeicosatrienoic acids in renal epithelial cells. Advances in prostaglandin, thromboxane, and leukotriene research. 1995; 23(?):207-9. doi: NULL. [PMID: 7732836]
  • B E Daikh, J M Lasker, J L Raucy, D R Koop. Regio- and stereoselective epoxidation of arachidonic acid by human cytochromes P450 2C8 and 2C9. The Journal of pharmacology and experimental therapeutics. 1994 Dec; 271(3):1427-33. doi: . [PMID: 7996455]
  • A Karara, S Wei, D Spady, L Swift, J H Capdevila, J R Falck. Arachidonic acid epoxygenase: structural characterization and quantification of epoxyeicosatrienoates in plasma. Biochemical and biophysical research communications. 1992 Feb; 182(3):1320-5. doi: 10.1016/0006-291x(92)91877-s. [PMID: 1540175]
  • M A Carroll, M P Garcia, J R Falck, J C McGiff. Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites. The Journal of pharmacology and experimental therapeutics. 1992 Jan; 260(1):104-9. doi: . [PMID: 1731035]
  • M L Heizer, J S McKinney, E F Ellis. 14,15-Epoxyeicosatrienoic acid inhibits platelet aggregation in mouse cerebral arterioles. Stroke. 1991 Nov; 22(11):1389-93. doi: 10.1161/01.str.22.11.1389. [PMID: 1750047]
  • T Katoh, K Takahashi, J Capdevila, A Karara, J R Falck, H R Jacobson, K F Badr. Glomerular stereospecific synthesis and hemodynamic actions of 8,9-epoxyeicosatrienoic acid in rat kidney. The American journal of physiology. 1991 Oct; 261(4 Pt 2):F578-86. doi: 10.1152/ajprenal.1991.261.4.f578. [PMID: 1928373]
  • F Catella, J Lawson, G Braden, D J Fitzgerald, E Shipp, G A FitzGerald. Biosynthesis of P450 products of arachidonic acid in humans: increased formation in cardiovascular disease. Advances in prostaglandin, thromboxane, and leukotriene research. 1991; 21A(?):193-6. doi: NULL. [PMID: 1705382]
  • F Catella, J A Lawson, D J Fitzgerald, G A FitzGerald. Endogenous biosynthesis of arachidonic acid epoxides in humans: increased formation in pregnancy-induced hypertension. Proceedings of the National Academy of Sciences of the United States of America. 1990 Aug; 87(15):5893-7. doi: 10.1073/pnas.87.15.5893. [PMID: 2198572]
  • A Karara, E Dishman, H Jacobson, J R Falck, J H Capdevila. Arachidonic acid epoxygenase. Stereochemical analysis of the endogenous epoxyeicosatrienoic acids of human kidney cortex. FEBS letters. 1990 Jul; 268(1):227-30. doi: 10.1016/0014-5793(90)81014-f. [PMID: 2384159]
  • G A Ulsaker, G Teien. Gas chromatographic-mass spectrometric identification of four triene monoepoxides of arachidonic acid in human plasma. The Analyst. 1990 Mar; 115(3):259-62. doi: 10.1039/an9901500259. [PMID: 2327589]
  • M Wiener, K A Pittman, V Stein. Mirex kinetics in the rhesus monkey. I. Disposition and excretion. Drug metabolism and disposition: the biological fate of chemicals. 1976 May; 4(3):281-7. doi: NULL. [PMID: 6234]