Citramalate (BioDeep_00000003219)

 

Secondary id: BioDeep_00000229689, BioDeep_00000405268

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


2-Hydroxy-2-methyl-(b)-butanedioic acid

化学式: C5H8O5 (148.0372)
中文名称: (S)-(+)-柠苹酸, 柠苹酸, (±)-柠苹酸钾 一水合物
谱图信息: 最多检出来源 Homo sapiens(lipidsearch) 27.59%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

Citramalate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/citramalate (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000003219). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(=O)(C[C@@](C(=O)O)(O)C)O
InChI: InChI=1S/C5H8O5/c1-5(10,4(8)9)2-3(6)7/h10H,2H2,1H3,(H,6,7)(H,8,9)

描述信息

Citramalic acid, also known as 2-Methylmalic acid, is an analog of malic acid. The structure of citramalic acid is similar to the structure of malic acid except it has an extra CH3 group on position 2. It is also classified as a 2-hydroxydicarboxylic acid. Citramalic acid exists in two isomers, L-citramalic acid and D-citramalic acid. The L-isomer is more biologically relevant isomer. Citramalic acid is found in almost all living organisms from microbes to plants to humans although citramalate is primarily produced from bacteria. L-citramalic acid was first isolated from the peel of apples in 1954 (PMID: 13160011). It has also been isolated in wine and other ripening fruit (PMID: 13807713). Citramalic acid can inhibit the production of malic acid. Citramalic acid is also an important microbial metabolite and has been found to be a byproduct of Saccharomyces yeast species, as well as Propionibacterium acnes and Aspergillus niger (PMID: 31827810) (http://drweyrich.weyrich.com/labs/oat.html) (PMID: 7628083). Citramalic acid is a component of the C5-branched dibasic acid metabolism pathway. It can be broken down by the enzyme citramalate lyase, which converts citramalate to acetate and pyruvate. Citramalate synthase is an enzyme found in bacteria that synthesizes citramalic acid from acetyl-CoA, pyruvate and water. Citramalic acid may have a useful role in medical diagnoses. It has been found in the urine of two brothers with autistic features (PMID: 7628083). Citramalic acid can also be used as a urinary marker for gut dysbiosis (PMID: 31669633). Dysbiosis is a disorder of the bacterial flora of the human digestive tract. It is usually diagnosed clinically by direct detection of an abnormal pattern of the intestinal microbiota.
Constituent of apple peel. (R)-2-Hydroxy-2-methylbutanedioic acid is found in pomes.

同义名列表

47 个代谢物同义名

2-Hydroxy-2-methyl-(b)-butanedioic acid; (R)-2-Hydroxy-2-methylbutanedioic acid; (+-)-2-Hydroxy-2-methylsuccinic acid; 2-Hydroxy-2-methyl-butanedioic acid; (S)-2-HYDROXY-2-METHYLSUCCINIC ACID; 2-Hydroxy-2-methyl-(b)-butanedioate; 2-Hydroxy-2-methylbutanedioic acid; (R)-2-Hydroxy-2-methylbutanedioate; (+-)-2-Hydroxy-2-methylsuccinate; 2-Hydroxy-2-methylsuccinic acid; 2-Hydroxy-2-methyl-butanedioate; 2-Deoxy-3-C-methyltetraric acid; 2-Hydroxy-2-methylbutanedioate; alpha-Hydroxypyrotartaric acid; (R,S)-beta-Methylmalic acid; 2-Hydroxy-2-methylsuccinate; 2-Deoxy-3-C-methyltetrarate; alpha-Hydroxypyrotartarate; a-Hydroxypyrotartaric acid; Α-hydroxypyrotartaric acid; (R,S)-(b)-Citramalic acid; (R,S)-b-Methylmalic acid; Citramalate, (+-)-isomer; (R)-(-)-citramalic acid; Citramalate, (S)-isomer; (R,S)-beta-Methylmalate; Citramalate, (R)-isomer; 2-Methyl-(b)-malic acid; (b)-2-Methylmalic acid; Α-hydroxypyrotartarate; a-Hydroxypyrotartarate; (R,S)-(b)-Citramalate; (R,S)-b-Methylmalate; 2-Methyl-(b)-malate; (b)-Citramalic acid; DL-Citramalic acid; citramalate, (+-)-; (b)-2-Methylmalate; alpha-Methylmalate; 2-Methylmalic acid; Citramalic acids; Citramalic acid; (b)-Citramalate; 2-Methylmalate; DL-Citramalate; Citramalate; Citramalic acid



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 BDNF, G6PD, LDHA, MTOR, MYD88
Peripheral membrane protein 3 CYP1B1, G6PD, MTOR
Endosome membrane 1 MYD88
Endoplasmic reticulum membrane 2 CYP1B1, MTOR
Nucleus 7 CS, GLRX2, LDHA, MTOR, MYD88, THRA, THRB
cytosol 8 ACO2, G6PD, GPT, LDHA, LEP, MTOR, MYD88, THRA
dendrite 3 BDNF, GLRX2, MTOR
mitochondrial membrane 1 SLC25A28
nuclear body 1 THRB
phagocytic vesicle 1 MTOR
nucleoplasm 4 GLRX2, MTOR, THRA, THRB
RNA polymerase II transcription regulator complex 2 THRA, THRB
Cytoplasmic side 1 MTOR
Multi-pass membrane protein 1 SLC25A28
Golgi apparatus membrane 1 MTOR
cell surface 1 MYD88
Golgi membrane 2 INS, MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 2 ATP5ME, SLC25A28
neuronal cell body 1 GLRX2
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 1 G6PD
Lysosome 1 MTOR
plasma membrane 1 MYD88
Membrane 6 BDNF, CS, CYP1B1, G6PD, LDHA, MTOR
axon 1 BDNF
extracellular exosome 5 CS, G6PD, GPT, LDHA, SOD3
Lysosome membrane 1 MTOR
extracellular space 6 BDNF, CXCL8, IL10, INS, LEP, SOD3
perinuclear region of cytoplasm 1 BDNF
mitochondrion 8 ACO2, ATP5ME, CS, CYP1B1, GCDH, GLRX2, LDHA, SLC25A28
protein-containing complex 1 MYD88
intracellular membrane-bounded organelle 3 CYP1B1, G6PD, GLRX2
Microsome membrane 2 CYP1B1, MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 5 BDNF, CXCL8, IL10, INS, LEP
extracellular region 6 BDNF, CXCL8, IL10, INS, LEP, SOD3
cytoplasmic side of plasma membrane 1 G6PD
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
Mitochondrion matrix 2 CS, GCDH
mitochondrial matrix 4 ACO2, CS, GCDH, GLRX2
centriolar satellite 1 G6PD
Mitochondrion inner membrane 1 SLC25A28
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 SOD3
chromatin 2 THRA, THRB
Golgi apparatus, trans-Golgi network 1 SOD3
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 INS
secretory granule lumen 1 INS
Golgi lumen 2 INS, SOD3
endoplasmic reticulum lumen 2 BDNF, INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
extrinsic component of cytoplasmic side of plasma membrane 1 MYD88
Cytoplasmic vesicle, phagosome 1 MTOR
extrinsic component of plasma membrane 1 MYD88
proton-transporting ATP synthase complex 1 ATP5ME
oxidoreductase complex 1 LDHA
proton-transporting ATP synthase complex, coupling factor F(o) 1 ATP5ME
[Isoform Alpha-2]: Cytoplasm 1 THRA
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
[Isoform 2]: Mitochondrion inner membrane 1 SLC25A28
[Isoform 1]: Mitochondrion inner membrane 1 SLC25A28


文献列表

  • Nobuko Sugimoto, Philip Engelgau, A Daniel Jones, Jun Song, Randolph Beaudry. Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit. Proceedings of the National Academy of Sciences of the United States of America. 2021 01; 118(3):. doi: 10.1073/pnas.2009988118. [PMID: 33431667]
  • Asfaw Degu, Bayissa Hatew, Adriano Nunes-Nesi, Ludmila Shlizerman, Naftali Zur, Ehud Katz, Alisdair R Fernie, Eduardo Blumwald, Avi Sadka. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. Planta. 2011 Sep; 234(3):501-13. doi: 10.1007/s00425-011-1411-2. [PMID: 21528417]
  • Reza Khorassani, Ursula Hettwer, Astrid Ratzinger, Bernd Steingrobe, Petr Karlovsky, Norbert Claassen. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC plant biology. 2011 Aug; 11(?):121. doi: 10.1186/1471-2229-11-121. [PMID: 21871058]
  • Melvin J Oliver, Lining Guo, Danny C Alexander, John A Ryals, Bernard W M Wone, John C Cushman. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. The Plant cell. 2011 Apr; 23(4):1231-48. doi: 10.1105/tpc.110.082800. [PMID: 21467579]
  • Javier Terol, Guillermo Soler, Manuel Talon, Manuel Cercos. The aconitate hydratase family from Citrus. BMC plant biology. 2010 Oct; 10(?):222. doi: 10.1186/1471-2229-10-222. [PMID: 20958971]
  • Ronan Sulpice, Agata Sienkiewicz-Porzucek, Sonia Osorio, Ina Krahnert, Mark Stitt, Alisdair R Fernie, Adriano Nunes-Nesi. Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth. Amino acids. 2010 Oct; 39(4):1055-66. doi: 10.1007/s00726-010-0617-0. [PMID: 20473773]
  • Bing Wu, Baichen Zhang, Xueyang Feng, Jacob R Rubens, Rick Huang, Leslie M Hicks, Himadri B Pakrasi, Yinjie J Tang. Alternative isoleucine synthesis pathway in cyanobacterial species. Microbiology (Reading, England). 2010 Feb; 156(Pt 2):596-602. doi: 10.1099/mic.0.031799-0. [PMID: 19875435]
  • Toshiyuki Akachi, Yasuyuki Shiina, Takumi Kawaguchi, Hirokazu Kawagishi, Tatsuya Morita, Kimio Sugiyama. 1-methylmalate from camu-camu (Myrciaria dubia) suppressed D-galactosamine-induced liver injury in rats. Bioscience, biotechnology, and biochemistry. 2010; 74(3):573-8. doi: 10.1271/bbb.90775. [PMID: 20208347]
  • Agata Sienkiewicz-Porzucek, Ronan Sulpice, Sonia Osorio, Ina Krahnert, Andrea Leisse, Ewa Urbanczyk-Wochniak, Michael Hodges, Alisdair R Fernie, Adriano Nunes-Nesi. Mild reductions in mitochondrial NAD-dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but do not impact growth. Molecular plant. 2010 Jan; 3(1):156-73. doi: 10.1093/mp/ssp101. [PMID: 20035036]
  • Zul Ilham, Shiro Saka. Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method. Bioresource technology. 2009 Mar; 100(5):1793-6. doi: 10.1016/j.biortech.2008.09.050. [PMID: 18990561]
  • Widodo, John H Patterson, Ed Newbigin, Mark Tester, Antony Bacic, Ute Roessner. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of experimental botany. 2009; 60(14):4089-103. doi: 10.1093/jxb/erp243. [PMID: 19666960]
  • Jun Ma, Peng Zhang, Zilong Zhang, Manwu Zha, Hai Xu, Guoping Zhao, Jianping Ding. Molecular basis of the substrate specificity and the catalytic mechanism of citramalate synthase from Leptospira interrogans. The Biochemical journal. 2008 Oct; 415(1):45-56. doi: 10.1042/bj20080242. [PMID: 18498255]
  • Ying Zou, Xiaokui Guo, Mathieu Picardeau, Hai Xu, Guoping Zhao. A comprehensive survey on isoleucine biosynthesis pathways in seven epidemic Leptospira interrogans reference strains of China. FEMS microbiology letters. 2007 Apr; 269(1):90-6. doi: 10.1111/j.1574-6968.2006.00608.x. [PMID: 17227461]
  • W Shaw, E Kassen, E Chaves. Increased urinary excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features. Clinical chemistry. 1995 Aug; 41(8 Pt 1):1094-104. doi: 10.1093/clinchem/41.8.1094. [PMID: 7628083]
  • J Greter, S Lindstedt, H Seeman, G Steen. 2-hydroxy-2-methylsuccinic acid--a urinary metabolite in propionyl-CoA carboxylase deficiency. Clinica chimica acta; international journal of clinical chemistry. 1980 Sep; 106(1):103-6. doi: 10.1016/0009-8981(80)90380-0. [PMID: 7408203]
  • A C HULME. The oxidation of citramalic acid and beta-hydroxyglutaric acid to acetoacetic acid and the possible significance of citramalic acid in plant metabolism. Biochimica et biophysica acta. 1954 May; 14(1):44-51. doi: 10.1016/0006-3002(54)90128-6. [PMID: 13160012]
  • . . . . doi: . [PMID: 17369439]
  • . . . . doi: . [PMID: 19346240]