7-Methylguanosine (BioDeep_00000003092)

Main id: BioDeep_00000018446

Secondary id: BioDeep_00000405739

PANOMIX_OTCML-2023


代谢物信息卡片


7-Methylguanosine

化学式: [C11H16N5O5]+ (298.1151)
中文名称: 7-甲基鸟苷
谱图信息: 最多检出来源 Mus musculus(plant) 9.8%

分子结构信息

SMILES: CN1C=[N+](C2=C1C(=O)NC(=N2)N)C3C(C(C(O3)CO)O)O
InChI: InChI=1S/C11H15N5O5/c1-15-3-16(8-5(15)9(20)14-11(12)13-8)10-7(19)6(18)4(2-17)21-10/h3-4,6-7,10,17-19H,2H2,1H3,(H2-,12,13,14,20)/p+1/t4-,6-,7-,10-/m1/s1

描述信息

CONFIDENCE standard compound; INTERNAL_ID 316

同义名列表

1 个代谢物同义名

7-Methylguanosine



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(1)

BioCyc(0)

PlantCyc(0)

代谢反应

64 个相关的代谢反应过程信息。

Reactome(64)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 CYFIP1, EIF3D, EIF4A1, EIF4E, MTOR, NCBP1, NCBP2, NUDT1, NUDT10, NUDT11, PNP, PPP5C
Peripheral membrane protein 1 MTOR
Endoplasmic reticulum membrane 1 MTOR
Nucleus 12 CD274, EIF4E, HMGA2, METTL1, MTOR, NCBP1, NCBP2, NUDT1, NUDT10, NUDT11, PPP5C, WDR4
cytosol 15 CYFIP1, EIF3D, EIF4A1, EIF4E, EIF4E3, METTL1, MTOR, NCBP1, NCBP2, NUDT1, NUDT10, NUDT11, PNP, PPP5C, WDR4
dendrite 1 MTOR
nuclear body 2 EIF4E, NUDT10
phagocytic vesicle 1 MTOR
nucleoplasm 8 CD274, HMGA2, METTL1, MTOR, NCBP1, NCBP2, PPP5C, WDR4
Cell membrane 6 CD274, CD8A, CTLA4, EIF4A1, PDCD1, PPP5C
Cytoplasmic side 1 MTOR
lamellipodium 1 CYFIP1
Early endosome membrane 1 CD274
Golgi apparatus membrane 1 MTOR
Synapse 2 CYFIP1, EIF3D
cell junction 1 NUDT10
glutamatergic synapse 1 EIF4E
Golgi apparatus 1 CTLA4
Golgi membrane 1 MTOR
lysosomal membrane 1 MTOR
neuronal cell body 1 CYFIP1
postsynapse 1 EIF4E
Lysosome 1 MTOR
acrosomal vesicle 1 NUDT1
plasma membrane 6 CD274, CD8A, CTLA4, EIF4A1, PDCD1, PPP5C
terminal bouton 1 CYFIP1
Membrane 4 EIF3D, EIF4A1, MTOR, PDCD1
extracellular exosome 6 CD274, CYFIP1, EIF4A1, EIF4E, NUDT10, PNP
Lysosome membrane 1 MTOR
extracellular space 2 NUDT1, PNP
perinuclear region of cytoplasm 4 CTLA4, CYFIP1, EIF4A1, EIF4E
mitochondrion 3 NCBP1, NUDT1, NUDT10
protein-containing complex 1 PPP5C
intracellular membrane-bounded organelle 1 PPP5C
Microsome membrane 1 MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 3 CD274, CD8A, CTLA4
Secreted 1 PNP
extracellular region 3 CD8A, CYFIP1, PNP
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
central region of growth cone 1 CYFIP1
excitatory synapse 1 CYFIP1
[Isoform 2]: Secreted 1 CD8A
Mitochondrion matrix 1 NUDT1
mitochondrial matrix 2 NUDT1, NUDT10
nuclear membrane 2 NUDT1, NUDT10
external side of plasma membrane 4 CD274, CD8A, CTLA4, PDCD1
actin cytoskeleton 1 CD274
dendritic spine 1 CYFIP1
nucleolus 1 METTL1
Cytoplasm, P-body 1 EIF4E
P-body 1 EIF4E
Cell projection, lamellipodium 1 CYFIP1
Cytoplasm, perinuclear region 2 CYFIP1, EIF4A1
filopodium tip 1 CYFIP1
focal adhesion 1 CYFIP1
Nucleus, PML body 1 MTOR
PML body 1 MTOR
nuclear speck 1 EIF4E
Cell projection, ruffle 1 CYFIP1
ruffle 1 CYFIP1
receptor complex 1 CD8A
neuron projection 1 CYFIP1
chromatin 1 HMGA2
axonal growth cone 1 CYFIP1
Chromosome 1 WDR4
cytoplasmic ribonucleoprotein granule 1 EIF4E
nuclear chromosome 1 HMGA2
nuclear envelope 1 MTOR
Recycling endosome membrane 1 CD274
Endomembrane system 1 MTOR
Cytoplasm, Stress granule 2 EIF4A1, EIF4E
cytoplasmic stress granule 1 EIF4E
Nucleus speckle 1 EIF4E
dendritic growth cone 1 CYFIP1
plasma membrane raft 1 CD8A
ficolin-1-rich granule lumen 1 PNP
secretory granule lumen 2 CYFIP1, PNP
eukaryotic 43S preinitiation complex 1 EIF3D
eukaryotic 48S preinitiation complex 1 EIF3D
eukaryotic translation initiation factor 3 complex 1 EIF3D
eukaryotic translation initiation factor 3 complex, eIF3m 1 EIF3D
chromatoid body 1 EIF4E
specific granule lumen 1 CYFIP1
tertiary granule lumen 1 CYFIP1
clathrin-coated endocytic vesicle 1 CTLA4
ribonucleoprotein complex 1 NCBP1
Synapse, synaptosome 1 CYFIP1
SMAD protein complex 1 HMGA2
protein folding chaperone complex 1 PPP5C
protein-DNA complex 1 HMGA2
[Isoform 1]: Cell membrane 2 CD274, CD8A
[Isoform 4]: Secreted 1 CD274
eukaryotic translation initiation factor 4F complex 3 EIF4A1, EIF4E, EIF4E3
Cytoplasmic vesicle, phagosome 1 MTOR
RISC complex 1 EIF4E
T cell receptor complex 1 CD8A
Nucleus, nuclear body 1 EIF4E
protein complex involved in cell adhesion 1 CTLA4
senescence-associated heterochromatin focus 1 HMGA2
nuclear stress granule 1 EIF4A1
[Isoform p18]: Cytoplasm, cytosol 1 NUDT1
[Isoform p26]: Mitochondrion matrix 1 NUDT1
nuclear cap binding complex 2 NCBP1, NCBP2
RNA cap binding complex 2 NCBP1, NCBP2
SCAR complex 1 CYFIP1
tRNA (m7G46) methyltransferase complex 2 METTL1, WDR4
tRNA methyltransferase complex 2 METTL1, WDR4
peripheral region of growth cone 1 CYFIP1
[Isoform 2]: Endomembrane system 1 CD274


文献列表

  • Alexander P Walker, Haitian Fan, Jeremy R Keown, Michael L Knight, Jonathan M Grimes, Ervin Fodor. The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme. Nucleic acids research. 2021 12; 49(22):13019-13030. doi: 10.1093/nar/gkab1160. [PMID: 34850141]
  • Yuan Wang, Shaofang Li, Yonghui Zhao, Chenjiang You, Brandon Le, Zhizhong Gong, Beixin Mo, Yiji Xia, Xuemei Chen. NAD+-capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proceedings of the National Academy of Sciences of the United States of America. 2019 06; 116(24):12094-12102. doi: 10.1073/pnas.1903682116. [PMID: 31142655]
  • Barbara Bobrowska-Korczak, Paulina Gątarek, Angelina Rosiak, Joanna Giebułtowicz, Joanna Kałużna-Czaplińska. Reduced levels of modified nucleosides in the urine of autistic children. Preliminary studies. Analytical biochemistry. 2019 04; 571(?):62-67. doi: 10.1016/j.ab.2019.02.009. [PMID: 30771338]
  • Encarnación Rodríguez-Gonzalo, Leticia Herrero-Herrero, Diego García-Gómez. Development, validation and application of a fast analytical methodology for the simultaneous determination of DNA- and RNA-derived urinary nucleosides by liquid chromatography coupled to tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2016 Apr; 1019(?):132-9. doi: 10.1016/j.jchromb.2015.10.044. [PMID: 26565068]
  • Aleksandra Krstulja, Coralie De Schutter, Patrick Favetta, Panagiotis Manesiotis, Luigi A Agrofoglio. Artificial receptors for the extraction of nucleoside metabolite 7-methylguanosine from aqueous media made by molecular imprinting. Journal of chromatography. A. 2014 Oct; 1365(?):12-8. doi: 10.1016/j.chroma.2014.08.086. [PMID: 25218630]
  • Ryan M Patrick, Laura K Mayberry, Grace Choy, Lauren E Woodard, Joceline S Liu, Allyson White, Rebecca A Mullen, Toug M Tanavin, Christopher A Latz, Karen S Browning. Two Arabidopsis loci encode novel eukaryotic initiation factor 4E isoforms that are functionally distinct from the conserved plant eukaryotic initiation factor 4E. Plant physiology. 2014 Apr; 164(4):1820-30. doi: 10.1104/pp.113.227785. [PMID: 24501003]
  • Ryan M Patrick, Karen S Browning. The eIF4F and eIFiso4F Complexes of Plants: An Evolutionary Perspective. Comparative and functional genomics. 2012; 2012(?):287814. doi: 10.1155/2012/287814. [PMID: 22611336]
  • Dariusz J Smoliński, Bogdan Wróbel, Anna Noble, Agnieszka Zienkiewicz, Alicja Górska-Brylass. Periodic expression of Sm proteins parallels formation of nuclear Cajal bodies and cytoplasmic snRNP-rich bodies. Histochemistry and cell biology. 2011 Nov; 136(5):527-41. doi: 10.1007/s00418-011-0861-8. [PMID: 21904826]
  • Wiktoria Struck, Małgorzata Waszczuk-Jankowska, Roman Kaliszan, Michał J Markuszewski. The state-of-the-art determination of urinary nucleosides using chromatographic techniques 'hyphenated' with advanced bioinformatic methods. Analytical and bioanalytical chemistry. 2011 Oct; 401(7):2039-50. doi: 10.1007/s00216-011-4789-6. [PMID: 21359827]
  • Michael Christie, Christopher A Brosnan, Joseph A Rothnagel, Bernard J Carroll. RNA decay and RNA silencing in plants: competition or collaboration?. Frontiers in plant science. 2011; 2(?):99. doi: 10.3389/fpls.2011.00099. [PMID: 22639621]
  • Balam Muñoz, Arnulfo Albores. The role of molecular biology in the biomonitoring of human exposure to chemicals. International journal of molecular sciences. 2010 Nov; 11(11):4511-25. doi: 10.3390/ijms11114511. [PMID: 21151453]
  • Peng Chen, Gunilla Jäger, Bo Zheng. Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana. BMC plant biology. 2010 Sep; 10(?):201. doi: 10.1186/1471-2229-10-201. [PMID: 20836892]
  • Carsten Henneges, Dino Bullinger, Richard Fux, Natascha Friese, Harald Seeger, Hans Neubauer, Stefan Laufer, Christoph H Gleiter, Matthias Schwab, Andreas Zell, Bernd Kammerer. Prediction of breast cancer by profiling of urinary RNA metabolites using Support Vector Machine-based feature selection. BMC cancer. 2009 Apr; 9(?):104. doi: 10.1186/1471-2407-9-104. [PMID: 19344524]
  • Cristina Nieto, Florence Piron, Marion Dalmais, Cristina F Marco, Enrique Moriones, Ma Luisa Gómez-Guillamón, Verónica Truniger, Pedro Gómez, Jordi Garcia-Mas, Miguel A Aranda, Abdelhafid Bendahmane. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC plant biology. 2007 Jun; 7(?):34. doi: 10.1186/1471-2229-7-34. [PMID: 17584936]
  • Philippe P Roux, David Shahbazian, Hieu Vu, Marina K Holz, Michael S Cohen, Jack Taunton, Nahum Sonenberg, John Blenis. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. The Journal of biological chemistry. 2007 May; 282(19):14056-64. doi: 10.1074/jbc.m700906200. [PMID: 17360704]
  • Maciej Szuwart, Elzbieta Starzyńska, Małgorzata Pietrowska-Borek, Andrzej Guranowski. Calcium-stimulated guanosine--inosine nucleosidase from yellow lupin (Lupinus luteus). Phytochemistry. 2006 Jul; 67(14):1476-85. doi: 10.1016/j.phytochem.2006.05.021. [PMID: 16820181]
  • A Seidel, S Brunner, P Seidel, G I Fritz, O Herbarth. Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. British journal of cancer. 2006 Jun; 94(11):1726-33. doi: 10.1038/sj.bjc.6603164. [PMID: 16685264]
  • Yoshitaka Takano, Naoyuki Takayanagi, Hiroyuki Hori, Yoshiho Ikeuchi, Tsutomu Suzuki, Akiko Kimura, Tetsuro Okuno. A gene involved in modifying transfer RNA is required for fungal pathogenicity and stress tolerance of Colletotrichum lagenarium. Molecular microbiology. 2006 Apr; 60(1):81-92. doi: 10.1111/j.1365-2958.2006.05080.x. [PMID: 16556222]
  • Robert E Rhoads, Tzvetanka D Dinkova, Nadejda L Korneeva. Mechanism and regulation of translation in C. elegans. WormBook : the online review of C. elegans biology. 2006 Jan; ?(?):1-18. doi: 10.1895/wormbook.1.63.1. [PMID: 18050488]
  • Mateen A Khan, Dixie J Goss. Translation initiation factor (eIF) 4B affects the rates of binding of the mRNA m7G cap analogue to wheat germ eIFiso4F and eIFiso4F.PABP. Biochemistry. 2005 Mar; 44(11):4510-6. doi: 10.1021/bi047298g. [PMID: 15766281]
  • Lan Zhang, Yu He, Yiting Chen, Ping Tong, Guonan Chen. [Simultaneous determination of 7-methylguanosine and mitomycin C by capillary electrophoresis with amperometric detection]. Se pu = Chinese journal of chromatography. 2005 Mar; 23(2):138-41. doi: NULL. [PMID: 16013555]
  • Vanessa Niot-Mansart, Arbana Muhamedi, Jean-Pierre Arnould. A competitive ELISA detecting 7-methylguanosine adduct induced by N-nitrosodimethylamine exposure. Human & experimental toxicology. 2005 Feb; 24(2):89-94. doi: 10.1191/0960327105ht501oa. [PMID: 15850283]
  • M R Jacobson, T Pederson. A 7-methylguanosine cap commits U3 and U8 small nuclear RNAs to the nucleolar localization pathway. Nucleic acids research. 1998 Feb; 26(3):756-60. doi: 10.1093/nar/26.3.756. [PMID: 9443967]
  • J G Tebib, C Reynaud, J P Cedoz, M C Letroublon, A Niveleau. Relationship between urinary excretion of modified nucleosides and rheumatoid arthritis process. British journal of rheumatology. 1997 Sep; 36(9):990-5. doi: 10.1093/rheumatology/36.9.990. [PMID: 9376997]
  • K Tang, S L Allman, R B Jones, C H Chen, S Araghi. Laser mass spectrometry of oligonucleotides with isomer matrices. Rapid communications in mass spectrometry : RCM. 1993 Jun; 7(6):435-9. doi: 10.1002/rcm.1290070606. [PMID: 8329766]
  • G D Foster, P R Mills. Cell-free translation of American hop latent virus RNA. Virus genes. 1991 Oct; 5(4):327-34. doi: 10.1007/bf00271531. [PMID: 1796552]
  • D D Dunigan, M Zaitlin. Capping of tobacco mosaic virus RNA. Analysis of viral-coded guanylyltransferase-like activity. The Journal of biological chemistry. 1990 May; 265(14):7779-86. doi: 10.1016/s0021-9258(19)38996-3. [PMID: 2159456]
  • E Schlimme, K S Boos, M Weise. [Selective characterisation of N1-methyladenosine and N7-methylguanosine in urine (author's transl)]. Journal of clinical chemistry and clinical biochemistry. Zeitschrift fur klinische Chemie und klinische Biochemie. 1981 Feb; 19(2):55-60. doi: . [PMID: 7217895]
  • A M Krstulovic, R A Hartwick, P R Brown. High performance liquid chromatographic determination of serum UV profiles of normal subjects and patients with breast cancer and benign fibrocystic changes. Clinica chimica acta; international journal of clinical chemistry. 1979 Oct; 97(2-3):159-70. doi: 10.1016/0009-8981(79)90412-1. [PMID: 487602]