N2-acetyllysine (BioDeep_00000003004)

 

Secondary id: BioDeep_00000399942

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


6-Amino-2-[(1-hydroxyethylidene)amino]hexanoate

化学式: C8H16N2O3 (188.1161)
中文名称: Nα-乙酰-L, N-乙酰-L-赖氨酸, Nα-乙酰基-L-赖氨酸, N-乙酰赖氨酸
谱图信息: 最多检出来源 Homo sapiens(plant) 7.38%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

N2-acetyllysine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/n2-acetyllysine (retrieved 2025-01-07) (BioDeep RN: BioDeep_00000003004). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(=O)NC(CCCCN)C(=O)O
InChI: InChI=1S/C8H16N2O3/c1-6(11)10-7(8(12)13)4-2-3-5-9/h7H,2-5,9H2,1H3,(H,10,11)(H,12,13)

描述信息

N-alpha-Acetyl-L-lysine also known as Nalpha-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-alpha-Acetyl-L-lysine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-alpha-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-alpha-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-alpha-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free lysine can also occur. In particular, N-alpha-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Individuals with hyperlysinaemia due to L-lysine alpha-ketoglutarate reductase deficiency will excrete high levels of N-alpha-Acetyl-L-lysine in their urine (PMID: 116084). L-lysine alpha-ketoglutarate reductase deficiency, if untreated, can lead to neurological and behavioral deficits (PMID: 116084). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557).
Acetyl-L-lysine is an endogenous metabolite.

同义名列表

35 个代谢物同义名

6-Amino-2-[(1-hydroxyethylidene)amino]hexanoate; (2S)-2-(Acetylamino)-6-aminohexanoic acid; (2S)-2-(Acetylamino)-6-aminohexanoate; (2S)-6-amino-2-acetamidohexanoic acid; 6-Amino-L-2-acetamidohexanoic acid; N(alpha)-Acetyllysine, (DL)-isomer; 6-amino-2-acetamidohexanoic acid; 6-Amino-L-2-acetamidohexanoate; N(alpha)-Acetyl-L-lysine; N-alpha-Acetyl-L-lysine; Nalpha-acetyl-L-lysine; N-Acetyl poly-L-lysine; N(alpha)-Acetyllysine; N(Α)-acetyl-L-lysine; N(a)-Acetyl-L-lysine; N-Alpha-acetyllysine; N-Acetyl polylysine; N-Α-acetyl-L-lysine; Nalpha-acetyllysine; N-a-Acetyl-L-lysine; N2-Acetyl-L-lysine; Nα-acetyl-L-lysine; N(2)-Acetyllysine; N(a)-Acetyllysine; N-Acetyl-L-lysine; N(Α)-acetyllysine; N-a-Acetyllysine; N-Α-acetyllysine; Nα-acetyllysine; N2-Acetyllysine; Acetyllysine; AC-Lys-OH; N-Alpha-acetyllysine; Acetyl-L-lysine; N2-Acetyl-L-lysine



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 BRD2, CREBBP, CYP3A4, EP300, HDAC8, HDAC9, KAT2B, MYC, SIRT1, SIRT2
Peripheral membrane protein 1 CYP1B1
Endoplasmic reticulum membrane 2 CYP1B1, CYP3A4
Nucleus 16 BRD2, BRD3, BRD4, BRD9, BRDT, CREBBP, EP300, HDAC8, HDAC9, KAT2B, MYC, PBRM1, SIRT1, SIRT2, SIRT3, SMARCA4
cytosol 5 CREBBP, EP300, KAT2B, SIRT1, SIRT2
nuclear body 1 CREBBP
centrosome 2 KAT2B, SIRT2
nucleoplasm 13 BRD2, BRD4, BRD9, CREBBP, EP300, HDAC8, HDAC9, KAT2B, MYC, PBRM1, SIRT1, SIRT3, SMARCA4
Cell projection, growth cone 1 SIRT2
Golgi membrane 1 INS
growth cone 1 SIRT2
plasma membrane 1 SIRT2
Membrane 5 CYP1B1, CYP3A4, DEFB1, MYC, SMARCA4
extracellular exosome 1 DEFB1
extracellular space 3 DEFB1, INS, SMARCA4
perinuclear region of cytoplasm 1 SIRT2
mitochondrion 4 CYP1B1, SIRT1, SIRT2, SIRT3
protein-containing complex 4 KAT2B, MYC, SIRT3, SMARCA4
intracellular membrane-bounded organelle 2 CYP1B1, CYP3A4
Microsome membrane 2 CYP1B1, CYP3A4
chromatin silencing complex 2 SIRT1, SIRT2
Secreted 2 DEFB1, INS
extracellular region 2 DEFB1, INS
Mitochondrion matrix 1 SIRT3
mitochondrial matrix 1 SIRT3
transcription regulator complex 3 CREBBP, EP300, HDAC9
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 KAT2B, SIRT2
perikaryon 1 SIRT2
nucleolus 4 MYC, SIRT1, SIRT2, SMARCA4
microvesicle 1 DEFB1
midbody 1 SIRT2
Cytoplasm, perinuclear region 1 SIRT2
heterochromatin 2 SIRT1, SIRT2
Cytoplasm, cytoskeleton 1 SIRT2
Cytoplasm, cytoskeleton, spindle 1 SIRT2
microtubule 1 SIRT2
spindle 1 SIRT2
Nucleus, PML body 1 SIRT1
PML body 1 SIRT1
nuclear speck 1 BRD2
actomyosin 1 KAT2B
nuclear inner membrane 1 SIRT1
chromatin 9 BRD2, BRD3, BRD9, CREBBP, EP300, MYC, PBRM1, SIRT1, SMARCA4
cell projection 1 SIRT2
mitotic spindle 2 KAT2B, SIRT2
Chromosome 7 BRD2, BRD3, BRD4, EP300, HDAC8, SIRT2, SMARCA4
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome, centriole 1 SIRT2
centriole 1 SIRT2
[Isoform 5]: Cytoplasm 1 SIRT2
Nucleus, nucleolus 1 MYC
chromosome, telomeric region 1 SIRT2
nuclear chromosome 2 HDAC8, PBRM1
sperm midpiece 1 DEFB1
fibrillar center 2 SIRT1, SMARCA4
nuclear envelope 2 MYC, SIRT1
endosome lumen 1 INS
I band 1 KAT2B
Nucleus, nucleoplasm 1 MYC
euchromatin 1 SIRT1
myelin sheath 1 SIRT2
[Isoform 1]: Cytoplasm 1 SIRT2
secretory granule lumen 1 INS
Golgi lumen 2 DEFB1, INS
endoplasmic reticulum lumen 1 INS
histone methyltransferase complex 1 HDAC9
nuclear matrix 2 PBRM1, SMARCA4
kinetochore 3 KAT2B, PBRM1, SMARCA4
histone deacetylase complex 2 HDAC8, HDAC9
transport vesicle 1 INS
RNA polymerase II transcription repressor complex 1 MYC
paranode region of axon 1 SIRT2
Schmidt-Lanterman incisure 1 SIRT2
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
bBAF complex 1 SMARCA4
nBAF complex 1 SMARCA4
npBAF complex 1 SMARCA4
SWI/SNF complex 3 BRD9, PBRM1, SMARCA4
condensed nuclear chromosome 1 BRD4
[Isoform 2]: Cytoplasm 1 SIRT2
meiotic spindle 1 SIRT2
A band 1 KAT2B
paranodal junction 1 SIRT2
SAGA complex 1 KAT2B
histone acetyltransferase complex 2 CREBBP, EP300
protein-DNA complex 1 EP300
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
ATAC complex 1 KAT2B
Rough endoplasmic reticulum 1 MYC
[Isoform B]: Chromosome 1 BRD4
GBAF complex 2 BRD9, SMARCA4
RSC-type complex 2 PBRM1, SMARCA4
glial cell projection 1 SIRT2
Myc-Max complex 1 MYC
juxtaparanode region of axon 1 SIRT2
Myelin membrane 1 SIRT2
lateral loop 1 SIRT2
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1
nucleoplasmic reticulum 1 MYC


文献列表

  • Durgesh Dubey, Smriti Chaurasia, Anupam Guleria, Sandeep Kumar, Dinesh Raj Modi, Ramnath Misra, Dinesh Kumar. Metabolite assignment of ultrafiltered synovial fluid extracted from knee joints of reactive arthritis patients using high resolution NMR spectroscopy. Magnetic resonance in chemistry : MRC. 2019 01; 57(1):30-43. doi: 10.1002/mrc.4763. [PMID: 29907975]
  • Shengjie Lu, Liqun Xu, En Tang Kang, Ratha Mahendran, Edmund Chiong, Koon Gee Neoh. Co-delivery of peptide-modified cisplatin and doxorubicin via mucoadhesive nanocapsules for potential synergistic intravesical chemotherapy of non-muscle-invasive bladder cancer. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2016 Mar; 84(?):103-15. doi: 10.1016/j.ejps.2016.01.013. [PMID: 26780592]
  • Audrey Bergouignan, Wendolyn S Gozansky, Daniel W Barry, Wayne Leitner, Paul S MacLean, James O Hill, Boris Draznin, Edward L Melanson. Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans. PloS one. 2012; 7(1):e30164. doi: 10.1371/journal.pone.0030164. [PMID: 22253914]
  • Ana Marta Silva, Anabela Cordeiro-da-Silva, Graham H Coombs. Metabolic variation during development in culture of Leishmania donovani promastigotes. PLoS neglected tropical diseases. 2011 Dec; 5(12):e1451. doi: 10.1371/journal.pntd.0001451. [PMID: 22206037]
  • Peter Y Chuang, Yan Dai, Ruijie Liu, Helen He, Matthias Kretzler, Belinda Jim, Clemens D Cohen, John C He. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PloS one. 2011; 6(8):e23566. doi: 10.1371/journal.pone.0023566. [PMID: 21858169]
  • Daniel Vaiman, Géraldine Gascoin-Lachambre, Farid Boubred, Françoise Mondon, Jean-Marc Feuerstein, Isabelle Ligi, Isabelle Grandvuillemin, Sandrine Barbaux, Eric Ghigo, Vincent Achard, Umberto Simeoni, Christophe Buffat. The intensity of IUGR-induced transcriptome deregulations is inversely correlated with the onset of organ function in a rat model. PloS one. 2011; 6(6):e21222. doi: 10.1371/journal.pone.0021222. [PMID: 21731679]
  • Ling Li, Ruping Pan, Rong Li, Bernd Niemann, Anne-Cathleen Aurich, Ying Chen, Susanne Rohrbach. Mitochondrial biogenesis and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity: intact adipocytokine signaling is required. Diabetes. 2011 Jan; 60(1):157-67. doi: 10.2337/db10-0331. [PMID: 20929977]
  • Céline Tasset, Maud Bernoux, Alain Jauneau, Cécile Pouzet, Christian Brière, Sylvie Kieffer-Jacquinod, Susana Rivas, Yves Marco, Laurent Deslandes. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS pathogens. 2010 Nov; 6(11):e1001202. doi: 10.1371/journal.ppat.1001202. [PMID: 21124938]
  • Lei Zeng, Qiang Zhang, Side Li, Alexander N Plotnikov, Martin J Walsh, Ming-Ming Zhou. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature. 2010 Jul; 466(7303):258-62. doi: 10.1038/nature09139. [PMID: 20613843]
  • Jennifer N Rees, Virginia R Florang, Laurie L Eckert, Jonathan A Doorn. Protein reactivity of 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is dependent on both the aldehyde and the catechol. Chemical research in toxicology. 2009 Jul; 22(7):1256-63. doi: 10.1021/tx9000557. [PMID: 19537779]
  • Richard M Lopachin, Brian C Geohagen, Terrence Gavin. Synaptosomal toxicity and nucleophilic targets of 4-hydroxy-2-nonenal. Toxicological sciences : an official journal of the Society of Toxicology. 2009 Jan; 107(1):171-81. doi: 10.1093/toxsci/kfn226. [PMID: 18996889]
  • Ida Autiero, Susan Costantini, Giovanni Colonna. Human sirt-1: molecular modeling and structure-function relationships of an unordered protein. PloS one. 2008 Oct; 4(10):e7350. doi: 10.1371/journal.pone.0007350. [PMID: 19806227]
  • Fiona A Summers, Philip E Morgan, Michael J Davies, Clare L Hawkins. Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines. Chemical research in toxicology. 2008 Sep; 21(9):1832-40. doi: 10.1021/tx8001719. [PMID: 18698849]
  • Rea Biacsi, Daman Kumari, Karen Usdin. SIRT1 inhibition alleviates gene silencing in Fragile X mental retardation syndrome. PLoS genetics. 2008 Mar; 4(3):e1000017. doi: 10.1371/journal.pgen.1000017. [PMID: 18369442]
  • Marco Kellert, Silvia Wagner, Ursula Lutz, Werner K Lutz. Biomarkers of furan exposure by metabolic profiling of rat urine with liquid chromatography-tandem mass spectrometry and principal component analysis. Chemical research in toxicology. 2008 Mar; 21(3):761-8. doi: 10.1021/tx7004212. [PMID: 18269250]
  • Xiaomin Zhang, Gohar Azhar, Scott Helms, Ying Zhong, Jeanne Y Wei. Identification of a subunit of NADH-dehydrogenase as a p49/STRAP-binding protein. BMC cell biology. 2008 Jan; 9(?):8. doi: 10.1186/1471-2121-9-8. [PMID: 18230186]
  • Nella Barshteyn, Adnan A Elfarra. Formation of three N-acetyl-L-cysteine monoadducts and one diadduct by the reaction of S-(1,2-dichlorovinyl)-L-cysteine sulfoxide with N-acetyl-L-cysteine at physiological conditions: chemical mechanisms and toxicological implications. Chemical research in toxicology. 2007 Oct; 20(10):1563-9. doi: 10.1021/tx700263w. [PMID: 17892265]
  • Jason Perry. The Epc-N domain: a predicted protein-protein interaction domain found in select chromatin associated proteins. BMC genomics. 2006 Jan; 7(?):6. doi: 10.1186/1471-2164-7-6. [PMID: 16412250]
  • Magdalena M Staniszewska, Ram H Nagaraj. 3-hydroxykynurenine-mediated modification of human lens proteins: structure determination of a major modification using a monoclonal antibody. The Journal of biological chemistry. 2005 Jun; 280(23):22154-64. doi: 10.1074/jbc.m501419200. [PMID: 15817458]
  • Helmut Bannert, Walter Muranyi, Vasily V Ogryzko, Yoshihiro Nakatani, Rolf M Flügel. Coactivators p300 and PCAF physically and functionally interact with the foamy viral trans-activator. BMC molecular biology. 2004 Sep; 5(?):16. doi: 10.1186/1471-2199-5-16. [PMID: 15350211]
  • Anetta Undas, Joanna Perła, Mariusz Lacinski, Wiesław Trzeciak, Radosław Kaźmierski, Hieronim Jakubowski. Autoantibodies against N-homocysteinylated proteins in humans: implications for atherosclerosis. Stroke. 2004 Jun; 35(6):1299-304. doi: 10.1161/01.str.0000128412.59768.6e. [PMID: 15131313]
  • Teruyuki Usui, Satomi Shizuuchi, Hirohito Watanabe, Fumitaka Hayase. Cytotoxicity and oxidative stress induced by the glyceraldehyde-related Maillard reaction products for HL-60 cells. Bioscience, biotechnology, and biochemistry. 2004 Feb; 68(2):333-40. doi: 10.1271/bbb.68.333. [PMID: 14981296]
  • Ryoji Nagai, Tomohiro Araki, Cristina Miki Hayashi, Fumitaka Hayase, Seikoh Horiuchi. Identification of N epsilon-(carboxyethyl)lysine, one of the methylglyoxal-derived AGE structures, in glucose-modified protein: mechanism for protein modification by reactive aldehydes. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2003 May; 788(1):75-84. doi: 10.1016/s1570-0232(02)01019-x. [PMID: 12668073]
  • Wei-Han Zhang, Jiyun Liu, Guozhang Xu, Quan Yuan, Lawrence M Sayre. Model studies on protein side chain modification by 4-oxo-2-nonenal. Chemical research in toxicology. 2003 Apr; 16(4):512-23. doi: 10.1021/tx020105a. [PMID: 12703968]
  • Yasuhiko Komatsu, Yoshinori Yukutake, Minoru Yoshida. Four different clones of mouse anti-acetyllysine monoclonal antibodies having different recognition properties share a common immunoglobulin framework structure. Journal of immunological methods. 2003 Jan; 272(1-2):161-75. doi: 10.1016/s0022-1759(02)00500-8. [PMID: 12505721]
  • Atsunori Furuhata, Mitsuhiro Nakamura, Toshihiko Osawa, Koji Uchida. Thiolation of protein-bound carcinogenic aldehyde. An electrophilic acrolein-lysine adduct that covalently binds to thiols. The Journal of biological chemistry. 2002 Aug; 277(31):27919-26. doi: 10.1074/jbc.m202794200. [PMID: 12032148]
  • F Peter Guengerich, Kyle O Arneson, Kevin M Williams, Zhengwu Deng, Thomas M Harris. Reaction of aflatoxin B(1) oxidation products with lysine. Chemical research in toxicology. 2002 Jun; 15(6):780-92. doi: 10.1021/tx010156s. [PMID: 12067245]
  • N Sujatha, S Suryakala, B S Rao. Enzyme immunoassay for aflatoxin B1-lysine adduct and its validation. Journal of AOAC International. 2001 Sep; 84(5):1465-74. doi: . [PMID: 11601466]
  • R H Nagaraj, V M Monnier. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins. Biochimica et biophysica acta. 1995 Nov; 1253(1):75-84. doi: 10.1016/0167-4838(95)00161-m. [PMID: 7492603]
  • S Reddy, J Bichler, K J Wells-Knecht, S R Thorpe, J W Baynes. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry. 1995 Aug; 34(34):10872-8. doi: 10.1021/bi00034a021. [PMID: 7662668]
  • T W Lo, M E Westwood, A C McLellan, T Selwood, P J Thornalley. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. The Journal of biological chemistry. 1994 Dec; 269(51):32299-305. doi: NULL. [PMID: 7798230]
  • K Sugahara, J Zhang, H Kodama. Liquid chromatographic-mass spectrometric analysis of N-acetylamino acids in human urine. Journal of chromatography. B, Biomedical applications. 1994 Jul; 657(1):15-21. doi: 10.1016/0378-4347(94)80064-2. [PMID: 7952062]
  • V Amarnath, D C Anthony, W M Valentine, D G Graham. The molecular mechanism of the carbon disulfide mediated cross-linking of proteins. Chemical research in toxicology. 1991 Mar; 4(2):148-50. doi: 10.1021/tx00020a004. [PMID: 1782343]
  • B K Wong, G B Corcoran. Effects of esterase inhibitors and buthionine sulfoximine on the prevention of acetaminophen hepatotoxicity by N-acetylcysteine. Research communications in chemical pathology and pharmacology. 1987 Mar; 55(3):397-408. doi: . [PMID: 3107095]
  • M K Samson, R L Stephens, S Rivkin, M Opipari, T Maloney, C W Groppe, R Fisher. Vinblastine, bleomycin, and cis-dichlorodiammineplatinum(II) in disseminated testicular cancer: preliminary report of a Southwest Oncology Group Study. Cancer treatment reports. 1979 Sep; 63(9-10):1663-7. doi: . [PMID: 91435]