Flavin mononucleotide (BioDeep_00000002940)
Secondary id: BioDeep_00000400406, BioDeep_00000407817
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C17H21N4O9P (456.1046)
中文名称: 2,6-蒽二酚, 核黄素-5'-单磷酸, 黄素单核苷酸
谱图信息:
最多检出来源 Homo sapiens(feces) 18.93%
Last reviewed on 2024-09-14.
Cite this Page
Flavin mononucleotide. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/flavin_mononucleotide (retrieved
2024-12-23) (BioDeep RN: BioDeep_00000002940). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC1=CC2=C(C=C1C)N(C3=NC(=O)NC(=O)C3=N2)CC(C(C(COP(=O)(O)O)O)O)O
InChI: InChI=1/C17H21N4O9P/c1-7-3-9-10(4-8(7)2)21(15-13(18-9)16(25)20-17(26)19-15)5-11(22)14(24)12(23)6-30-31(27,28)29/h3-4,11-12,14,22-24H,5-6H2,1-2H3,(H,20,25,26)(H2,27,28,29)/f/h20,27-28H
描述信息
Flavin mononucleotide, also known as riboflavin 5-monophosphate or riboflavine dihydrogen phosphate, is a member of the class of compounds known as flavin nucleotides. Flavin nucleotides are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Flavin mononucleotide is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Flavin mononucleotide can be found in a number of food items such as spinach, elliotts blueberry, tea leaf willow, and black mulberry, which makes flavin mononucleotide a potential biomarker for the consumption of these food products. Flavin mononucleotide can be found primarily in blood, as well as throughout most human tissues. Flavin mononucleotide exists in all living species, ranging from bacteria to humans. In humans, flavin mononucleotide is involved in several metabolic pathways, some of which include riboflavin metabolism, pyrimidine metabolism, beta-alanine metabolism, and doxorubicin metabolism pathway. Flavin mononucleotide is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, UMP synthase deficiency (orotic aciduria), carnosinuria, carnosinemia, and hypophosphatasia. Moreover, flavin mononucleotide is found to be associated with anorexia nervosa. Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B2) by the enzyme riboflavin kinase and functions as prosthetic group of various oxidoreductases including NADH dehydrogenase as well as cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH•) and reduced (FMNH2) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than NAD and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the conventional photo receptors as the signaling state and not an E/Z isomerization .
Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B2) by the enzyme riboflavin kinase and functions as the prosthetic group of various oxidoreductases, including NADH dehydrogenase, as well as cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH), and reduced (FMNH2) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than NAD and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the conventional photo receptors as the signaling state and not an E/Z isomerization. It is the principal form in which riboflavin is found in cells and tissues. It requires more energy to produce, but is more soluble than riboflavin. Flavin mononucleotide belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Flavin mononucleotide exists in all living species, ranging from bacteria to humans. Within humans, flavin mononucleotide participates in a number of enzymatic reactions. In particular, formic acid and flavin mononucleotide can be biosynthesized from FMNH2; which is catalyzed by the enzyme lanosterol 14-alpha demethylase. In addition, formic acid and flavin mononucleotide can be biosynthesized from FMNH2 through the action of the enzyme lanosterol 14-alpha demethylase. In humans, flavin mononucleotide is involved in bloch pathway (cholesterol biosynthesis). Outside of the human body, flavin mononucleotide has been detected, but not quantified in several different foods, such as mandarin orange (clementine, tangerine), horseradish tree, black elderberries, angelica, and ostrich ferns.
Acquisition and generation of the data is financially supported in part by CREST/JST.
D018977 - Micronutrients > D014815 - Vitamins
同义名列表
46 个代谢物同义名
{[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-2H,3H,4H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy}phosphonic acid; Flavin mononucleotide monosodium salt, dihydrate; Riboflavin-5′-monophosphate sodium salt hydrate; Riboflavin 5-(dihydrogen phosphoric acid); Riboflavine dihydrogen phosphoric acid; Flavin mononucleotide monosodium salt; Riboflavin 5-(dihydrogen phosphate); Flavin mononucleotide disodium salt; Flavin mononucleotide sodium salt; Riboflavin 5-monophosphoric acid; Riboflavine dihydrogen phosphate; Riboflavin monophosphoric acid; Riboflavin phosphate, sodium; Flavine mononucleotide (FMN); Riboflavin-5-phosphoric acid; Riboflavin 5-phosphoric acid; Phosphate, sodium riboflavin; 5-monoPhosphate, riboflavin; Sodium riboflavin phosphate; Riboflavine 5-monophosphate; Mononucleotide, riboflavin; Riboflavin 5-monophosphate; Riboflavin 5 monophosphate; Riboflavin-5-monophosphate; Riboflavin mononucleotide; Riboflavine monophosphate; Riboflavin-5-phosphate na; Riboflavin monophosphate; Riboflavine-5-phosphate; 5-Phosphate, riboflavin; Riboflavine 5-phosphate; Riboflavin 5 phosphate; Riboflavin 5-phosphate; Flavine mononucleotide; Mononucleotide, flavin; Riboflavin-5-phosphate; Flavin mononucleotide; Riboflavine phosphate; Riboflavin phosphate; Vitamin b2 phosphate; Riboflavin; Flavol; Flanin; FMN; Riboflavin-5'-monophosphate; FMN
数据库引用编号
30 个数据库交叉引用编号
- ChEBI: CHEBI:17621
- KEGG: C00061
- PubChem: 643976
- PubChem: 710
- HMDB: HMDB0001520
- Metlin: METLIN2301
- DrugBank: DB03247
- ChEMBL: CHEMBL1201794
- Wikipedia: Flavin_mononucleotide
- MeSH: Flavin Mononucleotide
- MetaCyc: |Oxidized-flavodoxins|
- MetaCyc: FMN
- KNApSAcK: C00019686
- foodb: FDB030862
- chemspider: 559060
- CAS: 146-17-8
- MoNA: PR100554
- MoNA: PS022901
- MoNA: PS022907
- MoNA: PS022908
- MoNA: PS022902
- PMhub: MS000007249
- PubChem: 3361
- PDB-CCD: FMN
- 3DMET: B04626
- NIKKAJI: J30.175B
- RefMet: FMN
- KNApSAcK: 17621
- LOTUS: LTS0066155
- wikidata: Q376061
分类词条
相关代谢途径
Reactome(5)
BioCyc(2)
PlantCyc(0)
代谢反应
319 个相关的代谢反应过程信息。
Reactome(47)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
Cbl + H+ + Homologues of MMACHC + TPNH ⟶ MMACHC:cob(II)alamin + TPN
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- NOSTRIN mediated eNOS trafficking:
N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- NOSTRIN mediated eNOS trafficking:
N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- NOSTRIN mediated eNOS trafficking:
Homologues of N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- NOSTRIN mediated eNOS trafficking:
N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B2 (riboflavin) metabolism:
FAD + H2O ⟶ AMP + FMN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B2 (riboflavin) metabolism:
FAD + H2O ⟶ AMP + FMN
- Vitamin B2 (riboflavin) metabolism:
FAD + H2O ⟶ AMP + FMN
- Cytosolic iron-sulfur cluster assembly (yeast):
TAH18:DRE2 oxidized + TPNH ⟶ H+ + TAH18:DRE2 reduced + TPN
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Complex I biogenesis:
ATMG00070.1 + NDUFA9:FAD + NDUFAF7:NDUFS2:2x4Fe-4S + NDUFS7:4Fe-4S + NDUFS8:2x4Fe-4S ⟶ IP subcomplex
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Complex I biogenesis:
Homologues of NDUFS3 + NDUFA9:FAD + NDUFAF7:NDUFS2:2x4Fe-4S + NDUFS7:4Fe-4S + NDUFS8:2x4Fe-4S ⟶ IP subcomplex
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Complex I biogenesis:
H0ZFC8 + H0ZPZ2 + H0ZTH6 + IP subcomplex ⟶ Intermediate 1
BioCyc(10)
- flavin biosynthesis I (bacteria and plants):
2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- nitrilotriacetate degradation:
FMNH2 + O2 + nitrilotriacetate ⟶ FMN + H2O + glyoxylate + iminodiacetate
- actinorhodin biosynthesis:
NADPH + a (1'-hydroxy-3',5'-dioxo-2'-(3''-oxobutanoyl)cyclohexyl)-3,5-dioxohexanethioate-[PKS-acp] ⟶ 9-hydroxy-3,5,7,11,13,15-hexaoxohexadecanoyl-[PKS-acp] + NADP+
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
FMNH2 + O2 ⟶ D-erythrose-4-phosphate + H2O + dimethylbenzimidazole
- two-component alkanesulfonate monooxygenase:
FMNH2 + O2 + an alkylsulfonate ⟶ FMN + H2O + an aldehyde + sulfite
- adenosylcobalamin biosynthesis I (early cobalt insertion):
H+ + NADPH + cobalt-precorrin-6A ⟶ NADP+ + cobalt-precorrin-6B
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
FMN + H+ + cob(II)yrinate a,c-diamide ⟶ FMNH2 + cob(I)yrinate a,c-diamide
- flavin biosynthesis:
5-amino-6-(5'-phosphoribitylamino)uracil + NADP+ ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + H+ + NADPH
- adenosylcobalamin biosynthesis II (late cobalt incorporation):
H2O + SAM + precorrin-5 ⟶ S-adenosyl-L-homocysteine + H+ + acetate + precorrin-6A
- 5,6-dimethylbenzimidazole biosynthesis:
ATP + riboflavin ⟶ ADP + FMN + H+
WikiPathways(4)
- Folate metabolism:
Thromboxane A2 ⟶ Thromboxane B2
- Selenium micronutrient network:
Ascorbic acid ⟶ Dehydroascorbic acid
- Selenium micronutrient network:
Ascorbic acid ⟶ Dehydroascorbic acid
- Folate metabolism:
Thromboxane A2 ⟶ Thromboxane B2
Plant Reactome(231)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
ATP + RIB ⟶ ADP + FMN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
GTP + H2O ⟶ 2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + HCOOH + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
GTP + H2O ⟶ 2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + HCOOH + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
ATP + RIB ⟶ ADP + FMN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
5-amino-6-(5'-phosphoribosylamino)uracil + H+ + TPNH ⟶ 5-amino-6-(5'-phosphoribitylamino)uracil + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(27)
- Kandutsch-Russell Pathway (Cholesterol Biosynthesis):
Fe2+ + Hydrogen Ion + Lathosterol + Oxygen ⟶ 7-Dehydrocholesterol + Fe3+ + Water
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Uracil Degradation III:
Hydrogen Ion + Malonic semialdehyde + NADPH ⟶ Hydroxypropionic acid + NADP
- Uracil Degradation III:
FMNH2 + Oxygen + Uracil ⟶ Flavin Mononucleotide + Hydrogen Ion + Peroxyaminoacrylate
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Flavin Biosynthesis:
5-Amino-6-(5'-phosphoribosylamino)uracil + Hydrogen Ion + NADPH ⟶ 5-Amino-6-(5'-phosphoribitylamino)uracil + NADP
- Riboflavin Metabolism:
Adenosine triphosphate + Riboflavin ⟶ Adenosine diphosphate + Flavin Mononucleotide
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Riboflavin Metabolism:
FAD + Water ⟶ Adenosine monophosphate + Flavin Mononucleotide
- Flavin Biosynthesis:
Adenosine triphosphate + Riboflavin ⟶ Adenosine diphosphate + Flavin Mononucleotide + Hydrogen Ion
- Bloch Pathway (Cholesterol Biosynthesis):
Desmosterol + NADP ⟶ Cholesterol + Hydrogen Ion + NADPH
- Mevalonate Pathway:
(S)-2,3-Epoxysqualene ⟶ Lanosterol
- Juvenile Hormone Synthesis:
Juvenile Hormone III + Water ⟶ Juvenile Hormone III Acid + Methanol
PharmGKB(0)
5 个相关的物种来源信息
- 3702 - Arabidopsis thaliana:
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 9606 - Homo sapiens: -
- 35128 - Thalassiosira pseudonana: 10.1016/J.PROTIS.2019.05.004
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xin Sun, Jiang-Zhe Zhao, Chuan-Shuo Wu, Ke-Wei Zhang, Liang Cheng. Flavin mononucleotide regulated photochemical isomerization and degradation of zeatin.
Organic & biomolecular chemistry.
2024 03; 22(10):2021-2026. doi:
10.1039/d4ob00028e
. [PMID: 38372990] - Nowshin Farjana, Hiromitsu Furukawa, Hisako Sumi, Isao Yumoto. Effect of Fermentation Scale on Microbiota Dynamics and Metabolic Functions for Indigo Reduction.
International journal of molecular sciences.
2023 Sep; 24(19):. doi:
10.3390/ijms241914696
. [PMID: 37834143] - Joseph H Lynch, Sanja Roje. A higher plant FAD synthetase is fused to an inactivated FAD pyrophosphatase.
The Journal of biological chemistry.
2022 12; 298(12):102626. doi:
10.1016/j.jbc.2022.102626
. [PMID: 36273586] - Hai Ying Wen, Li Bin Pan, Shu Rong Ma, Xin Yu Yang, Jia Chun Hu, Hai Fan Zhao, Zeng Qiang Gao, Yu Hui Dong, Yan Wang, Heng Zhang. Structural basis for the transformation of the traditional medicine berberine by bacterial nitroreductase.
Acta crystallographica. Section D, Structural biology.
2022 Oct; 78(Pt 10):1273-1282. doi:
10.1107/s2059798322008373
. [PMID: 36189746] - Fabian Piskol, Kerstin Neubauer, Maurice Eggers, Lisa Margarete Bode, Jan Jasper, Alan Slusarenko, Edward Reijerse, Wolfgang Lubitz, Dieter Jahn, Jürgen Moser. Two-component carnitine monooxygenase from Escherichia coli: functional characterization, inhibition and mutagenesis of the molecular interface.
Bioscience reports.
2022 09; 42(9):. doi:
10.1042/bsr20221102
. [PMID: 36066069] - Yeshveer Singh, Ruby Sharma, Manasi Mishra, Praveen Kumar Verma, Ajay Kumar Saxena. Crystal structure of ArOYE6 reveals a novel C-terminal helical extension and mechanistic insights into the distinct class III OYEs from pathogenic fungi.
The FEBS journal.
2022 09; 289(18):5531-5550. doi:
10.1111/febs.16445
. [PMID: 35313092] - Surabhi Bangarbale, Blythe D Shepard, Shivani Bansal, Meth M Jayatilake, Ryan Kurtz, Moshe Levi, Carolyn M Ecelbarger. Renal Metabolome in Obese Mice Treated with Empagliflozin Suggests a Reduction in Cellular Respiration.
Biomolecules.
2022 08; 12(9):. doi:
10.3390/biom12091176
. [PMID: 36139016] - Maria Tolomeo, Guglielmina Chimienti, Martina Lanza, Roberto Barbaro, Alessia Nisco, Tiziana Latronico, Piero Leone, Giuseppe Petrosillo, Grazia Maria Liuzzi, Bryony Ryder, Michal Inbar-Feigenberg, Matilde Colella, Angela M S Lezza, Rikke K J Olsen, Maria Barile. Retrograde response to mitochondrial dysfunctions associated to LOF variations in FLAD1 exon 2: unraveling the importance of RFVT2.
Free radical research.
2022 Jul; 56(7-8):511-525. doi:
10.1080/10715762.2022.2146501
. [PMID: 36480241] - Xiaoying Jing, Shanchao Hong, Jian Zhang, Xue Yang, Xianlong Geng, Yan Ye, Zhigang Hu. A rapid and quantitative detection method for plasma soluble growth stimulating gene protein 2 based on time resolved fluorescence immunochromatography.
Analytical methods : advancing methods and applications.
2022 06; 14(22):2179-2187. doi:
10.1039/d2ay00120a
. [PMID: 35608240] - Changjing Zhang, Leilei Zhu, Shuaifei Lu, Mengyuan Li, Ming Bai, Yucheng Li, Erping Xu. The antidepressant-like effect of formononetin on chronic corticosterone-treated mice.
Brain research.
2022 05; 1783(?):147844. doi:
10.1016/j.brainres.2022.147844
. [PMID: 35218705] - Bankala Krishnarjuna, Thirupathi Ravula, Ayyalusamy Ramamoorthy. Detergent-free isolation of CYP450-reductase's FMN-binding domain in E. coli lipid-nanodiscs using a charge-free polymer.
Chemical communications (Cambridge, England).
2022 Apr; 58(31):4913-4916. doi:
10.1039/d1cc07193a
. [PMID: 35356954] - Rafael Rivera-Lugo, Samuel H Light, Nicholas E Garelis, Daniel A Portnoy. RibU is an essential determinant of Listeria pathogenesis that mediates acquisition of FMN and FAD during intracellular growth.
Proceedings of the National Academy of Sciences of the United States of America.
2022 03; 119(13):e2122173119. doi:
10.1073/pnas.2122173119
. [PMID: 35316134] - Jiayu Liu, Yangyang Zhao, Zheng Qing Fu, Fengquan Liu. Monooxygenase LaPhzX is Involved in Self-Resistance Mechanisms during the Biosynthesis of N-Oxide Phenazine Myxin.
Journal of agricultural and food chemistry.
2021 Nov; 69(45):13524-13532. doi:
10.1021/acs.jafc.1c05206
. [PMID: 34735148] - Reinmar Eggers, Alexandra Jammer, Shalinee Jha, Bianca Kerschbaumer, Majd Lahham, Emilia Strandback, Marina Toplak, Silvia Wallner, Andreas Winkler, Peter Macheroux. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana.
Phytochemistry.
2021 Sep; 189(?):112822. doi:
10.1016/j.phytochem.2021.112822
. [PMID: 34118767] - Hanna Grajek, Jacek Kubicki, Ignacy Gryczyński, Jerzy Karolczak, Grażyna Żurkowska, Agnieszka I Piotrowicz-Cieślak, Piotr Bojarski. Effect of Dimer Structure and Inhomogeneous Broadening of Energy Levels on the Action of Flavomononucleotide in Rigid Polyvinyl Alcohol Films.
International journal of molecular sciences.
2021 Jul; 22(14):. doi:
10.3390/ijms22147759
. [PMID: 34299377] - Mariana Voicescu, Oana Craciunescu, Daniel G Angelescu, Rodica Tatia, Lucia Moldovan. Spectroscopic, molecular dynamics simulation and biological studies of Flavin MonoNucleotide and Flavin Adenine Dinucleotide in biomimetic systems.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2021 Feb; 246(?):118997. doi:
10.1016/j.saa.2020.118997
. [PMID: 33032115] - E V Ekusheva, V B Voitenkov, O A Rizakhanova. [The effectiveness of cytoflavin in complex therapy of patients with the coronavirus infection COVID-19].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2021; 121(12):33-39. doi:
10.17116/jnevro202112112133
. [PMID: 35041310] - M V Putilina, N V Teplova, K I Bairova, A E Petrikeeva, N I Shabalina. [The result of prospective randomized study CITADEL - the efficacy and safety of drug cytoflavin in postcovid rehabilitation].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2021; 121(10):45-51. doi:
10.17116/jnevro202112110145
. [PMID: 34874654] - Sweta Narayanan Iyer, Nemeshwaree Behary, Vincent Nierstrasz, Jinping Guan. Glow-in-the-Dark Patterned PET Nonwoven Using Air-Atmospheric Plasma Treatment and Vitamin B2-Derivative (FMN).
Sensors (Basel, Switzerland).
2020 Nov; 20(23):. doi:
10.3390/s20236816
. [PMID: 33260671] - Yang Hai, Mengbin Chen, Arthur Huang, Yi Tang. Biosynthesis of Mycotoxin Fusaric Acid and Application of a PLP-Dependent Enzyme for Chemoenzymatic Synthesis of Substituted l-Pipecolic Acids.
Journal of the American Chemical Society.
2020 11; 142(46):19668-19677. doi:
10.1021/jacs.0c09352
. [PMID: 33155797] - James N Iuliano, Jinnette Tolentino Collado, Agnieszka A Gil, Pavithran T Ravindran, Andras Lukacs, SeungYoun Shin, Helena A Woroniecka, Katrin Adamczyk, James M Aramini, Uthama R Edupuganti, Christopher R Hall, Gregory M Greetham, Igor V Sazanovich, Ian P Clark, Taraneh Daryaee, Jared E Toettcher, Jarrod B French, Kevin H Gardner, Carlos L Simmerling, Stephen R Meech, Peter J Tonge. Unraveling the Mechanism of a LOV Domain Optogenetic Sensor: A Glutamine Lever Induces Unfolding of the Jα Helix.
ACS chemical biology.
2020 10; 15(10):2752-2765. doi:
10.1021/acschembio.0c00543
. [PMID: 32880430] - Gongquan Liu, Weiwei Wang, Fangyuan He, Peng Zhang, Ping Xu, Hongzhi Tang. Structural Insights into 6-Hydroxypseudooxynicotine Amine Oxidase from Pseudomonas geniculata N1, the Key Enzyme Involved in Nicotine Degradation.
Applied and environmental microbiology.
2020 09; 86(19):. doi:
10.1128/aem.01559-20
. [PMID: 32737127] - Patrick Schall, Lucas Marutschke, Bernhard Grimm. The Flavoproteome of the Model Plant Arabidopsis thaliana.
International journal of molecular sciences.
2020 Jul; 21(15):. doi:
10.3390/ijms21155371
. [PMID: 32731628] - Martina Petrenčáková, Rastislav Varhač, Tibor Kožár, Michal Nemergut, Daniel Jancura, Marc-Simon Schwer, Erik Sedlák. Conformational properties of LOV2 domain and its C450A variant within broad pH region.
Biophysical chemistry.
2020 04; 259(?):106337. doi:
10.1016/j.bpc.2020.106337
. [PMID: 32126442] - Sanghwan Ko, Bora Hwang, Jung-Hyun Na, Jisun Lee, Sang Taek Jung. Engineered Arabidopsis Blue Light Receptor LOV Domain Variants with Improved Quantum Yield, Brightness, and Thermostability.
Journal of agricultural and food chemistry.
2019 Oct; 67(43):12037-12043. doi:
10.1021/acs.jafc.9b05473
. [PMID: 31581772] - M Cicuéndez, V S Silva, J Santos, A Coimbra, H Oliveira, M Ayán-Varela, J I Paredes, S Villar-Rodil, M Vila. MoS2 flakes stabilized with DNA/RNA nucleotides: In vitro cell response.
Materials science & engineering. C, Materials for biological applications.
2019 Jul; 100(?):11-22. doi:
10.1016/j.msec.2019.02.002
. [PMID: 30948045] - Eva-Maria Theismann, Julia Katharina Keppler, Jörg-Rainer Knipp, Daniela Fangmann, Esther Appel, Stanislav N Gorb, Georg H Waetzig, Stefan Schreiber, Matthias Laudes, Karin Schwarz. Adjustment of triple shellac coating for precise release of bioactive substances with different physico-chemical properties in the ileocolonic region.
International journal of pharmaceutics.
2019 Jun; 564(?):472-484. doi:
10.1016/j.ijpharm.2019.04.039
. [PMID: 30991131] - Irina A Rodionova, Fereshteh Heidari Tajabadi, Zhongge Zhang, Dmitry A Rodionov, Milton H Saier. A Riboflavin Transporter in Bdellovibrio exovorous JSS.
Journal of molecular microbiology and biotechnology.
2019; 29(1-6):27-34. doi:
10.1159/000501354
. [PMID: 31509826] - Yujie Liu, Wei Wu, Zhongzhou Chen. Structures of glycolate oxidase from Nicotiana benthamiana reveal a conserved pH sensor affecting the binding of FMN.
Biochemical and biophysical research communications.
2018 09; 503(4):3050-3056. doi:
10.1016/j.bbrc.2018.08.092
. [PMID: 30143257] - Elke Prade, Mukesh Mahajan, Sang-Choul Im, Meng Zhang, Katherine A Gentry, G M Anantharamaiah, Lucy Waskell, Ayyalusamy Ramamoorthy. A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs.
Angewandte Chemie (International ed. in English).
2018 07; 57(28):8458-8462. doi:
10.1002/anie.201802210
. [PMID: 29722926] - Carlo Barnaba, Thirupathi Ravula, Ilce G Medina-Meza, Sang-Choul Im, G M Anantharamaiah, Lucy Waskell, Ayyalusamy Ramamoorthy. Lipid-exchange in nanodiscs discloses membrane boundaries of cytochrome-P450 reductase.
Chemical communications (Cambridge, England).
2018 Jun; 54(49):6336-6339. doi:
10.1039/c8cc02003e
. [PMID: 29863198] - James N Iuliano, Agnieszka A Gil, Sergey P Laptenok, Christopher R Hall, Jinnette Tolentino Collado, Andras Lukacs, Safaa A Hag Ahmed, Jenna Abyad, Taraneh Daryaee, Gregory M Greetham, Igor V Sazanovich, Boris Illarionov, Adelbert Bacher, Markus Fischer, Michael Towrie, Jarrod B French, Stephen R Meech, Peter J Tonge. Variation in LOV Photoreceptor Activation Dynamics Probed by Time-Resolved Infrared Spectroscopy.
Biochemistry.
2018 02; 57(5):620-630. doi:
10.1021/acs.biochem.7b01040
. [PMID: 29239168] - Benjamin Ricken, Boris A Kolvenbach, Christian Bergesch, Dirk Benndorf, Kevin Kroll, Hynek Strnad, Čestmír Vlček, Ricardo Adaixo, Frederik Hammes, Patrick Shahgaldian, Andreas Schäffer, Hans-Peter E Kohler, Philippe F-X Corvini. FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics.
Scientific reports.
2017 Nov; 7(1):15783. doi:
10.1038/s41598-017-16132-8
. [PMID: 29150672] - Jefferson S Plegaria, Markus Sutter, Bryan Ferlez, Clément Aussignargues, Jens Niklas, Oleg G Poluektov, Ciara Fromwiller, Michaela TerAvest, Lisa M Utschig, David M Tiede, Cheryl A Kerfeld. Structural and Functional Characterization of a Short-Chain Flavodoxin Associated with a Noncanonical 1,2-Propanediol Utilization Bacterial Microcompartment.
Biochemistry.
2017 10; 56(42):5679-5690. doi:
10.1021/acs.biochem.7b00682
. [PMID: 28956602] - Bastian Daniel, Barbara Konrad, Marina Toplak, Majd Lahham, Julia Messenlehner, Andreas Winkler, Peter Macheroux. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.
Archives of biochemistry and biophysics.
2017 10; 632(?):88-103. doi:
10.1016/j.abb.2017.06.023
. [PMID: 28676375] - Francisco J Corpas, Juan B Barroso. Nitric oxide synthase-like activity in higher plants.
Nitric oxide : biology and chemistry.
2017 08; 68(?):5-6. doi:
10.1016/j.niox.2016.10.009
. [PMID: 27816665] - Tatsuya Iwata, Dai Nozaki, Atsushi Yamamoto, Takayuki Koyama, Yasuzo Nishina, Kiyoshi Shiga, Satoru Tokutomi, Masashi Unno, Hideki Kandori. Hydrogen Bonding Environment of the N3-H Group of Flavin Mononucleotide in the Light Oxygen Voltage Domains of Phototropins.
Biochemistry.
2017 06; 56(24):3099-3108. doi:
10.1021/acs.biochem.7b00057
. [PMID: 28530801] - Congyun Jin, Yoshiaki Yao, Atsushi Yonezawa, Satoshi Imai, Hiroki Yoshimatsu, Yuki Otani, Tomohiro Omura, Shunsaku Nakagawa, Takayuki Nakagawa, Kazuo Matsubara. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane.
Biological & pharmaceutical bulletin.
2017; 40(11):1990-1995. doi:
10.1248/bpb.b17-00292
. [PMID: 29093349] - A V Deriugina, A V Shumilova. [An influence of cytoflavin on oxidative stress and activity of Na/K-ATPase of erythrocytes after brain trauma].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2017 ; 117(11):51-55. doi:
10.17116/jnevro201711711151-55
. [PMID: 29265087] - Na Sa, Renu Rawat, Chelsea Thornburg, Kevin D Walker, Sanja Roje. Identification and characterization of the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2016 12; 88(5):705-716. doi:
10.1111/tpj.13291
. [PMID: 27490826] - Bing Wang, Samantha M Powell, Neda Hessami, Fares Z Najar, Leonard M Thomas, Elizabeth A Karr, Ann H West, George B Richter-Addo. Crystal structures of two nitroreductases from hypervirulent Clostridium difficile and functionally related interactions with the antibiotic metronidazole.
Nitric oxide : biology and chemistry.
2016 11; 60(?):32-39. doi:
10.1016/j.niox.2016.09.003
. [PMID: 27623089] - Jiansong Ren, Gwen Murphy, Jinhu Fan, Sanford M Dawsey, Philip R Taylor, Jacob Selhub, Youlin Qiao, Christian C Abnet. Prospective study of serum B vitamins levels and oesophageal and gastric cancers in China.
Scientific reports.
2016 10; 6(?):35281. doi:
10.1038/srep35281
. [PMID: 27748414] - I V Gatckikh, M M Petrova, T P Shalda, E L Varygina, M N Kuznetsov, A N Narkevich. Dynamics of cognitive disorders in patients with type 2 diabetes mellitus under effect of metabolic therapy.
Klinicheskaia meditsina.
2016 ; 94(7):533-9. doi:
NULL
. [PMID: 30289219] - V D Skripkо, A J Pasko, A L Kovalenko, V A Zaplutanov. [Cytoflavin rationale for the use in treatment of patients with postsurgical hypothyroidism].
Khirurgiia.
2016 ; ?(7):53-57. doi:
10.17116/hirurgia2016753-57
. [PMID: 27459489] - V A Dorovskikh, O N Li, N V Simonova, M A Shtarberg. [EFFECT OF CITOFLAVIN ON THE PARAMETERS OF LIPID PEROXIDATION IN BLOOD PLASMA OF RATS UNDER COLD STRESS CONDITIONS.].
Eksperimental'naia i klinicheskaia farmakologiia.
2016; 79(7):29-34. doi:
. [PMID: 29782743]
- V V Boyarintsev, I A Denisenko. Comparative evaluation of contemporary methods of treatment and rehabilitation of post-apoplexy patients.
Meditsina truda i promyshlennaia ekologiia.
2016 ; ?(11):1-7. doi:
NULL
. [PMID: 30351684] - I V Zadnipryanyi, O S Tretyakova, T P Sataeva. [Investigation of the antioxidant activity and cardioprotective effect of reamberin and cytoflavin in newborn rats exposed to chronic hemic hypoxia].
Arkhiv patologii.
2015 Nov; 77(6):39-44. doi:
10.17116/patol201577639-44
. [PMID: 26841648] - Douglas A Whitelaw, Rochelle Tonkin, Carla E Meints, Kirsten R Wolthers. Kinetic analysis of electron flux in cytochrome P450 reductases reveals differences in rate-determining steps in plant and mammalian enzymes.
Archives of biochemistry and biophysics.
2015 Oct; 584(?):107-15. doi:
10.1016/j.abb.2015.09.002
. [PMID: 26361974] - Mark D White, Karl A P Payne, Karl Fisher, Stephen A Marshall, David Parker, Nicholas J W Rattray, Drupad K Trivedi, Royston Goodacre, Stephen E J Rigby, Nigel S Scrutton, Sam Hay, David Leys. UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis.
Nature.
2015 Jun; 522(7557):502-6. doi:
10.1038/nature14559
. [PMID: 26083743] - M B Fedorkiv. [PREVENTION AND CORRECTION OF PULMONARY COMPLICATIONS FOR SEVERE ACUTE PANCREATITIS].
Klinichna khirurhiia.
2015 Jun; ?(6):22-4. doi:
"
. [PMID: 26521460] - Hackwon Do, Soo Jin Kim, Chang Woo Lee, Han-Woo Kim, Hyun Ho Park, Ho Min Kim, Hyun Park, HaJeung Park, Jun Hyuck Lee. Crystal structure of UbiX, an aromatic acid decarboxylase from the psychrophilic bacterium Colwellia psychrerythraea that undergoes FMN-induced conformational changes.
Scientific reports.
2015 Feb; 5(?):8196. doi:
10.1038/srep08196
. [PMID: 25645665] - N V Tsygan, A P Trashkov, V A Yakovleva, V M Malkova, E V Gracheva, A L Kovalenko, A G Vasiliev. [Characteristics of the regulation of neurotrophic mechanisms in ischemic stroke].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2015; 115(7):112-116. doi:
10.17116/jnevro201511571112-116
. [PMID: 26356524] - Sachiko Kashojiya, Koji Okajima, Takashi Shimada, Satoru Tokutomi. Essential role of the A'α/Aβ gap in the N-terminal upstream of LOV2 for the blue light signaling from LOV2 to kinase in Arabidopsis photototropin1, a plant blue light receptor.
PloS one.
2015; 10(4):e0124284. doi:
10.1371/journal.pone.0124284
. [PMID: 25886203] - I V Gatskikh, O F Veselova, I N Brikman, T P Shalda, E L Varygina, M N Kuznetsov, A V Shul'min, M M Petrova. [EFFECTIVENESS OF CYTOFLAVIN FOR THE CORRECTION OF COGNITIVE IMPAIRMENTS IN PATIENTS WITH TYPE 2 DIABETES MELLITUS].
Eksperimental'naia i klinicheskaia farmakologiia.
2015; 78(11):21-5. doi:
. [PMID: 27017701]
- Hongtao Ji, Yueyue Zhu, Shan Tian, Manyu Xu, Yimin Tian, Liang Li, Huan Wang, Li Hu, Yu Ji, Jun Ge, Weigang Wen, Hansong Dong. Downregulation of leaf flavin content induces early flowering and photoperiod gene expression in Arabidopsis.
BMC plant biology.
2014 Sep; 14(?):237. doi:
10.1186/s12870-014-0237-z
. [PMID: 25201173] - Thorsten Friedrich. On the mechanism of respiratory complex I.
Journal of bioenergetics and biomembranes.
2014 Aug; 46(4):255-68. doi:
10.1007/s10863-014-9566-8
. [PMID: 25022766] - Rui Huang, Kazutoshi Yamamoto, Meng Zhang, Nataliya Popovych, Ivan Hung, Sang-Choul Im, Zhehong Gan, Lucy Waskell, Ayyalusamy Ramamoorthy. Probing the transmembrane structure and dynamics of microsomal NADPH-cytochrome P450 oxidoreductase by solid-state NMR.
Biophysical journal.
2014 May; 106(10):2126-33. doi:
10.1016/j.bpj.2014.03.051
. [PMID: 24853741] - N I Zhernakova, T V Gorbach, O V Romashchenko, V V Rumbesht. Age-related features of Cytoflavin effectiveness during experimental myocardial ischemia.
Bulletin of experimental biology and medicine.
2014 Apr; 156(6):785-8. doi:
10.1007/s10517-014-2450-z
. [PMID: 24824697] - O A Vodop'ianova, I Ia Moiseeva, O P Rodina, I N Kustikova, N V Antropova. [The influence of cytoflavin and cardioxipin on the indices of lipid peroxidation and antioxidant protection in the blood of rat with dyslipidemia].
Eksperimental'naia i klinicheskaia farmakologiia.
2014; 77(6):27-9. doi:
"
. [PMID: 25102732] - Shadab Nizam, Rajesh Kumar Gazara, Sandhya Verma, Kunal Singh, Praveen Kumar Verma. Comparative structural modeling of six old yellow enzymes (OYEs) from the necrotrophic fungus Ascochyta rabiei: insight into novel OYE classes with differences in cofactor binding, organization of active site residues and stereopreferences.
PloS one.
2014; 9(4):e95989. doi:
10.1371/journal.pone.0095989
. [PMID: 24776850] - E A Kartashova, M G Romantsov, I V Sarvilina. [The influence of citoflavin on molecular mechanisms of hypertensive encephalopathy development in patients with systolic arterial hypertension].
Eksperimental'naia i klinicheskaia farmakologiia.
2014; 77(6):18-23. doi:
"
. [PMID: 25102730] - E A Kartashova, M G Romantsov, I V Sarvilina. [The study of the effectiveness of drug prevention mechanisms of cardiovascular aging by cytoflavin].
Advances in gerontology = Uspekhi gerontologii.
2014; 27(4):737-45. doi:
"
. [PMID: 25946853] - Ali Ryan, Elise Kaplan, Jean-Christophe Nebel, Elena Polycarpou, Vincenzo Crescente, Edward Lowe, Gail M Preston, Edith Sim. Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes.
PloS one.
2014; 9(6):e98551. doi:
10.1371/journal.pone.0098551
. [PMID: 24915188] - O A Vodop'ianova, I Ia Moiseeva, O P Rodina, I N Kustikova, N V Antropova. [The assessment of the effects of cytoflavin and cardioxipin on the emotional status of rats with dyslipidemia].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2014; 114(7):53-5. doi:
"
. [PMID: 25176268] - E A Lebedeva, M E Belousova, A A Kurtasov, Z A Nemkova, M Iu Kaminskiĭ, R V Popov, S L Trofimovich. [Efficiency of intensive care with cytoflavin in patients of advanced age in combined traumatic brain injury].
Advances in gerontology = Uspekhi gerontologii.
2014; 27(3):578-83. doi:
"
. [PMID: 25827011] - Andrei S Halavaty, Keith Moffat. Coiled-coil dimerization of the LOV2 domain of the blue-light photoreceptor phototropin 1 from Arabidopsis thaliana.
Acta crystallographica. Section F, Structural biology and crystallization communications.
2013 Dec; 69(Pt 12):1316-21. doi:
10.1107/s1744309113029199
. [PMID: 24316821] - Sarah Raffelberg, Alexander Gutt, Wolfgang Gärtner, Carmen Mandalari, Stefania Abbruzzetti, Cristiano Viappiani, Aba Losi. The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein.
Biological chemistry.
2013 Nov; 394(11):1517-28. doi:
10.1515/hsz-2013-0163
. [PMID: 23828427] - N V Tsygan, A P Trashkov. [Brain functional state and cytoprotective potential in model of acute cerebral hypoxia (experimental research)].
Patologicheskaia fiziologiia i eksperimental'naia terapiia.
2013 Oct; ?(4):10-6. doi:
NULL
. [PMID: 24640767] - Joe Carroll, Shujing Ding, Ian M Fearnley, John E Walker. Post-translational modifications near the quinone binding site of mammalian complex I.
The Journal of biological chemistry.
2013 Aug; 288(34):24799-808. doi:
10.1074/jbc.m113.488106
. [PMID: 23836892] - Noriyuki Suetsugu, Sam-Geun Kong, Masahiro Kasahara, Masamitsu Wada. Both LOV1 and LOV2 domains of phototropin2 function as the photosensory domain for hypocotyl phototropic responses in Arabidopsis thaliana (Brassicaceae).
American journal of botany.
2013 Jan; 100(1):60-9. doi:
10.3732/ajb.1200308
. [PMID: 23196397] - Giomar Rivera-Cancel, Laura B Motta-Mena, Kevin H Gardner. Identification of natural and artificial DNA substrates for light-activated LOV-HTH transcription factor EL222.
Biochemistry.
2012 Dec; 51(50):10024-34. doi:
10.1021/bi301306t
. [PMID: 23205774] - Maria Wadsäter, Tomas Laursen, Aparajita Singha, Nikos S Hatzakis, Dimitrios Stamou, Robert Barker, Kell Mortensen, Robert Feidenhans'l, Birger Lindberg Møller, Marité Cárdenas. Monitoring shifts in the conformation equilibrium of the membrane protein cytochrome P450 reductase (POR) in nanodiscs.
The Journal of biological chemistry.
2012 Oct; 287(41):34596-603. doi:
10.1074/jbc.m112.400085
. [PMID: 22891242] - Ataru Higa, Jebunnahar Khandakar, Yuko Mori, Yoshie Kitamura. Increased de novo riboflavin synthesis and hydrolysis of FMN are involved in riboflavin secretion from Hyoscyamus albus hairy roots under iron deficiency.
Plant physiology and biochemistry : PPB.
2012 Sep; 58(?):166-73. doi:
10.1016/j.plaphy.2012.07.001
. [PMID: 22819862] - Eduardo Hilario, Yang Li, Dimitri Niks, Li Fan. The structure of a Xanthomonas general stress protein involved in citrus canker reveals its flavin-binding property.
Acta crystallographica. Section D, Biological crystallography.
2012 Jul; 68(Pt 7):846-53. doi:
10.1107/s0907444912014126
. [PMID: 22751670] - Abhigyan Sengupta, Wilbee D Sasikala, Arnab Mukherjee, Partha Hazra. Comparative study of flavins binding with human serum albumin: a fluorometric, thermodynamic, and molecular dynamics approach.
Chemphyschem : a European journal of chemical physics and physical chemistry.
2012 Jun; 13(8):2142-53. doi:
10.1002/cphc.201200044
. [PMID: 22532419] - Ta-Yi Yu, Kenny C Mok, Kristopher J Kennedy, Julien Valton, Karen S Anderson, Graham C Walker, Michiko E Taga. Active site residues critical for flavin binding and 5,6-dimethylbenzimidazole biosynthesis in the flavin destructase enzyme BluB.
Protein science : a publication of the Protein Society.
2012 Jun; 21(6):839-49. doi:
10.1002/pro.2068
. [PMID: 22528544] - Takanori Maruta, Tadashi Yoshimoto, Daisuke Ito, Takahisa Ogawa, Masahiro Tamoi, Kazuya Yoshimura, Shigeru Shigeoka. An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis.
Plant & cell physiology.
2012 Jun; 53(6):1106-16. doi:
10.1093/pcp/pcs054
. [PMID: 22505691] - V V Shilov, A Iu Andrianov, S A Vasil'ev, Kh V Batotsyrenova, A T Loladze. [Pharmacological correction of hypoxia in patients with severe carbon monoxide poisoning].
Georgian medical news.
2012 Apr; ?(205):31-8. doi:
"
. [PMID: 22665729] - V A Kosinets, S S Osochuk, N N Iarotskaia. [Correction of protein-lipid composition in liver mitochondria during experimental widespread purulent peritonitis].
Eksperimental'naia i klinicheskaia farmakologiia.
2012; 75(3):31-4. doi:
"
. [PMID: 22679751] - V A Kosinets. [Metabolic correction of the lipid-transport system in experimental diffuse purulent peritonitis].
Vestnik khirurgii imeni I. I. Grekova.
2012; 171(3):92-6. doi:
"
. [PMID: 22880442] - N E Manturova, E V Silina, V A Stupin, G O Smirnova, S B Bolevich. [Free radical processes in the pathogenesis of involutional skin changes].
Terapevticheskii arkhiv.
2012; 84(10):75-8. doi:
"
. [PMID: 23227506] - Boris Hedtke, Ali Alawady, Alfonso Albacete, Koichi Kobayashi, Michael Melzer, Thomas Roitsch, Tatsuru Masuda, Bernhard Grimm. Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue.
Plant molecular biology.
2012 Jan; 78(1-2):77-93. doi:
10.1007/s11103-011-9846-1
. [PMID: 22081402] - V A Kosinets, N N Iarotskaia. [Free-radical oxidation in liver during experimental widespread purulent peritonitis].
Eksperimental'naia i klinicheskaia farmakologiia.
2012; 75(10):37-41. doi:
"
. [PMID: 23240157] - M G Romantsov, A Iu Petrov, L N Aleksandrova, D S Sukhanov, A L Kovalenko. [Pathogenetic correction of metabolic disturbances in chronic liver affections].
Antibiotiki i khimioterapiia = Antibiotics and chemoterapy [sic].
2012; 57(11-12):33-41. doi:
"
. [PMID: 23700935] - S Turunen, E Käpylä, K Terzaki, J Viitanen, C Fotakis, M Kellomäki, M Farsari. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity.
Biofabrication.
2011 Dec; 3(4):045002. doi:
10.1088/1758-5082/3/4/045002
. [PMID: 21904026] - Christopher C Marohnic, Warren J Huber Iii, J Patrick Connick, James R Reed, Karen McCammon, Satya P Panda, Pavel Martásek, Wayne L Backes, Bettie Sue S Masters. Mutations of human cytochrome P450 reductase differentially modulate heme oxygenase-1 activity and oligomerization.
Archives of biochemistry and biophysics.
2011 Sep; 513(1):42-50. doi:
10.1016/j.abb.2011.06.008
. [PMID: 21741353] - Shu-Chun Chuang, Rachael Stolzenberg-Solomon, Per Magne Ueland, Stein Emil Vollset, Øivind Midttun, Anja Olsen, Anne Tjønneland, Kim Overvad, Marie-Christine Boutron-Ruault, Sophie Morois, Françoise Clavel-Chapelon, Birgit Teucher, Rudolf Kaaks, Cornelia Weikert, Heiner Boeing, Antonia Trichopoulou, Vassiliki Benetou, Androniki Naska, Mazda Jenab, Nadia Slimani, Isabelle Romieu, Dominique S Michaud, Domenico Palli, Sabina Sieri, Salvatore Panico, Carlotta Sacerdote, Rosario Tumino, Guri Skeie, Eric J Duell, Laudina Rodriguez, Esther Molina-Montes, José Marı A Huerta, Nerea Larrañaga, Aurelio Barricarte Gurrea, Dorthe Johansen, Jonas Manjer, Weimin Ye, Malin Sund, Petra H M Peeters, Suzanne Jeurnink, Nicholas Wareham, Kay-Tee Khaw, Francesca Crowe, Elio Riboli, Bas Bueno-de-Mesquita, Paolo Vineis. A U-shaped relationship between plasma folate and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition.
European journal of cancer (Oxford, England : 1990).
2011 Aug; 47(12):1808-16. doi:
10.1016/j.ejca.2011.02.007
. [PMID: 21411310] - Ivo H M van Stokkum, Magdalena Gauden, Sean Crosson, Rienk van Grondelle, Keith Moffat, John T M Kennis. The primary photophysics of the Avena sativa phototropin 1 LOV2 domain observed with time-resolved emission spectroscopy.
Photochemistry and photobiology.
2011 May; 87(3):534-41. doi:
10.1111/j.1751-1097.2011.00903.x
. [PMID: 21261629] - Rajender Kumar, Vinita Hooda, C S Pundir. Purification and partial characterization of oxalate oxidase from leaves of forage Sorghum (Sorghum vulgare var. KH-105) seedlings.
Indian journal of biochemistry & biophysics.
2011 Feb; 48(1):42-6. doi:
. [PMID: 21469601]
- I V Gordiushina, R P Savchenko, D S Sukhanov, A Iu Petrov, M G Romantsov. [Antioxidant and membranoprotector treatment of chronic pyelonephritis].
Eksperimental'naia i klinicheskaia farmakologiia.
2011; 74(4):27-30. doi:
NULL
. [PMID: 21678656] - E V Silina, S A Rumiantseva, S B Bolevich, N I Men'shova. [Course of free radical processes and prognosis of ischemic and hemorrhagic stroke].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2011; 111(12 Pt 2):36-42. doi:
NULL
. [PMID: 22792747] - N V Polutova, N V Ostrovskiĭ, M G Romantsov, N P Chesnokova. [Positive effect of cytoflavin on metabolic status changes in patients with burn disorder].
Eksperimental'naia i klinicheskaia farmakologiia.
2011; 74(7):33-7. doi:
. [PMID: 21894767]
- S O Rogatkin, N N Volodin, M G Degtiareva, O V Grebennikova, M Sh Marganiia, N D Serova. [Current approaches to cerebroprotective treatment of premature newborns in reanimation and intensive care departments].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2011; 111(1):27-32. doi:
NULL
. [PMID: 21350408] - G N Bisaga, M M Odinak, A N Boĭko, Iu B Mel'nik, N F Popova. [Possibilities of treatment of multiple sclerosis exacerbations without corticosteroids: a role of metabolic and antioxidant therapy].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2011; 111(2):44-8. doi:
"
. [PMID: 21350423] - S V Tumanian, L G Ivanova. [Antioxidant protection as a component of anesthetic management cancer patients].
Khirurgiia.
2011; ?(6):66-9. doi:
"
. [PMID: 21716223] - Aikaterini T Vasilaki, Donald C McMillan, John Kinsella, Andrew Duncan, Denis St J O'Reilly, Dinesh Talwar. Relation between riboflavin, flavin mononucleotide and flavin adenine dinucleotide concentrations in plasma and red cells in patients with critical illness.
Clinica chimica acta; international journal of clinical chemistry.
2010 Nov; 411(21-22):1750-5. doi:
10.1016/j.cca.2010.07.024
. [PMID: 20667447] - Masahiro Kasahara, Mayumi Torii, Akimitsu Fujita, Kengo Tainaka. FMN binding and photochemical properties of plant putative photoreceptors containing two LOV domains, LOV/LOV proteins.
The Journal of biological chemistry.
2010 Nov; 285(45):34765-72. doi:
10.1074/jbc.m110.145367
. [PMID: 20826774] - S N Karpishchenko, S N Zheregelia, S I Glushkov. [Using cytoflavin for correcting x-ray contrasting agent-induced nephropathy].
Eksperimental'naia i klinicheskaia farmakologiia.
2010 Oct; 73(10):40-2. doi:
NULL
. [PMID: 21254514] - G A Livanov, V P Amagyrov, B V Batotsyrenov, A N Lodiagin, Kh V Batotsyrenova. [Pharmacological correction of hypoxic and free-radical disorders in patients with acute myocardial infarction complicated by acute heart failure].
Eksperimental'naia i klinicheskaia farmakologiia.
2010 May; 73(5):12-4. doi:
"
. [PMID: 20597363]